This project has received funding from the European’s Union Horizon -
2020 research innovation programme under Grant Agreement No. 957258

Architecture for Scalable, Self-human-centric, Intelligent,
Secure, and Tactile next generation IoT

%:ie assist-iot

D4.3 Final Core Enablers Specification
and Implementation

Deliverable No. D4.3 Due Date 31-0OCT-2023

Type Report Dissemination Level Public

Version 1.0 WP WP4

Description Final specification and implementation status of Smart IoT Devices, GWEN and
enablers of the horizontal planes of ASSIST-IoT.

ey UNIVERSITAT

1 OLITECNICA ’:ﬂL IN (i
TERMINALLINK | Y'S;S
\L[§
y KONEGRANES'

IFAN

orange”

_:05'-
Deliverable D4.3 — Final Core Enablers Specification and Implementation as:‘;fio ;
Copyright
Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.
The ASSIST-IoT consortium consists of the following 15 partners:
UNIVERSITAT POLITECNICA DE VALENCIA Spain
PRODEVELOP S.L. Spain
SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece
TERMINAL LINK SAS France
INFOLYSIS P.C. Greece
CENTRALNY INSTYUT OCHRONY PRACY Poland
MOSTOSTAL WARSZAWA S.A. Poland
NEWAYS TECHNOLOGIES BV Netherlands
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece
KONECRANES FINLAND OY Finland
FORD-WERKE GMBH Germany
GRUPO S 21SEC GESTION SA Spain
TWOTRONIC GMBH Germany
ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer

This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may
not be reproduced or copied without permission. This deliverable contains original unpublished work except
where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others
has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT
Consortium (including the Commission Services) and may not be disclosed except in accordance with the
Consortium Agreement. The commercial use of any information contained in this document may require a
license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information
contained in this document is capable of use, nor that use of the information is free from risk, and accepts no
liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications
Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is
not responsible for any use that may be made of the information it contains.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 2 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Authors

Name Partner e-mail
Alejandro Fornes P01 UPV alforlea@upv.es
Francisco Mahedero P01 UPV framabio@upv.es
Rafael Vafio P01 UPV ravagar2(@upv.es
Raul Reinosa P01 UPV rreisim@upv.es
Eduardo Garro P02 PRO egarro@prodevelop.es
Juan Antonio Pavon P02 PRO jpavon@prodevelop.es
Pawetl Szmeja P03 IBSPAN pawel.szmeja@ibspan.waw.pl
Piotr Sowinski P03 IBSPAN piotr.sowinski@ibspan.waw.pl
Konstantinos Flevarakis P04 CERTH kostisfl@iti.gr
Evripidis Tzionas P04 CERTH tzionasev(@iti.gr
Georgios Stavropoulos P04 CERTH stavrop@iti.gr
Konstantinos Fragkos P06 INF cfragkos@infolysis.gr
Nikolaos Vrionis P06 INF nvrionis@infolysis.gr
Johan Schabbink P09 NEWAYS Johan.Schabbink@newayselectronics.com
Nasia Balakera P10 ICCS nasia.balakera@iccs.gr
Fotios Konstantinidis P10 ICCS fotios.konstantinidis@jiccs.gr
Tom Papaioannou P10 ICCS thomas.papaioannou@jiccs.gr
Konstantinos Routsis P10 ICCS konstantinos.routsis@iccs.gr
Zbigniew Kopertowski P15 OPL Zbigniew.Kopertowski@orange.com
Jaroslaw.Legierski P15 OPL Jaroslaw.Legierski@orange.com
History
Date Version Change
07-Feb-2023 0.1 ToC presented
30-Sep-2023 0.2 First round of contributions
11-Oct-2023 0.3 Second round of contributions
27-Oct-2023 0.9 Integration of changes from IR
31-Oct-2023 1.0 Official release, final version submitted to EC
Key Data
Keywords Enablers, GWEN, Smart IoT devices, Implementation
Lead Editor P01 UPV — Alejandro Fornés

Rafael Borné (P13 - S21Sec), Katarzyna Wasielewska-Michniewska (P03 -
IBSPAN)

Internal Reviewer(s)

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 3 of 93

)
o0
Deliverable D4.3 — Final Core Enablers Specification and Implementation ass‘is;cfio ;

Executive Summary

This deliverable is written in the framework of WP4 — Core enablers design and development of ASSIST-IoT
project under Grant Agreement No. 957258. The document gathers the work and outcomes of the four tasks of
the work package in the period M18-M36, which are devoted to the design and implementation of enablers and
hardware elements required to implement the different planes of the ASSIST-IoT architecture.

The four planes of the ASSIST-IoT reference architecture are as follows: Device and edge plane, Smart network
and control plane, Data management plane and Application and services plane. This work package is devoted
to the design and implementation of the software and hardware artifacts needed to realise a system based on
such reference architecture.

This deliverable reports the final outcomes of the work package, specifically, the realisation of the project
hardware (GWEN and smart [oT devices) and the final specifications of the project enablers. For each one of
the latter, the following information is provided: table of general data, high-level component diagrams, table of
components considered and utilised realisation technologies, endpoints/interfaces, enabler stories, and table
with implementation information. Jointly with these specifications, the enablers’ code is attached and presented
along with this report.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 4 of 93

050
Deliverable D4.3 — Final Core Enablers Specification and Implementation as:‘;fio ;
Table of contents
TADIE OF COMEETILS ...ttt ettt et b et e bt s bt e e e bt e st e et eaeenteeb e ententeebeemteebeentenbeeneeneesneenean 5
LSt OF £ADIES ...ttt ettt b et h e e a et a et e bt et e et eh e et e bt en e e bt eae et e eneennan 6
LIS OF FIGUIES ..ottt ettt et e b e bt h e e e at e et e bt et e e sbeesbtesateeateeate e beeabeeeneeeabeembeenbeanseenses 7
| o) i Tox (1117 18 T3PPSR 10
L. ADOUL thiS dOCUMENLc..eiiiiieiietieie et ettt et et e bt e bt e s bt e satesateeateenteebeesbeesneeans 12
L1, DEliVETable COMEXE .. .eetiiuieiiitieieie ettt ettt ettt sttt et e bt e s ettt est e tesbt et eebe e st e bt eneenteeneensesteeneans 12
1.2, Outcomes of the deliVErable...........ooouiiiiiiiiiii ettt ettt st 12
130 L@SSOMS LEAIML.......itiiiieiiieieie ettt ettt s et a et estees e e e e bt e st e eeeneeneesneeneenteeneans 13
1.4. Deviation and COTTECHIVE ACTIOMSeeiuiereiertieriieeie et et et eettesteeteete e bt esbeesseeseeesaeeenseenseenseesseesaneens 13
1.5, VerSION-SPECITIC TIOLES .. .euieitieriiieiieiieiiesteesttestesreesbeesbeesteesteesesesssessseesseessaeseesssessseessassaesseesssessnenns 13
I 115 (014 10 (1110) o U SPPUPRRRRI 14
3. DEVICES SPECIIICALIONS ...vvieerieiieiiesiiesreiteeteeteesteesttestbestreesbeesseesstesssassseasseessessseesseesssesssenssessseessassseenssenns 15
Bl GWEN ettt et ettt et et e st e et et e e st e s b e e se e st e st e st et e estenbeeseentenseeneenseeneensenseeneens 15
3.2, ASSIST-IOT 10CAlISAtION tAZccvierieriiiieiiesee et ete et et esteestesbesbeesbeesseesseesssesssessseessaesseesssensneans 17
3.3, ASSIST-I0T fall AITeSt AEVICE.ecueruieiietieieiieieie ettt et ee st enee st e st e eesbeeeeseeeneens 17
4. HOTIZONEAL @NADIETS.eiiuiiiiieiietieciie ettt ettt ettt st st e e te e be e s bt e saeeeateeabeenbeenbe e beesaeesnneentean 18
4.1. Smart Network and Control €nabIerscccoeeieiirieieiieee ettt 19
4.1.1. SMAIT OTCRESTIALOTiiiieiiieiieeciee ettt ettt et eeteeeebeeeteeesabeeeteeeseseeearaeeseseeeseeesareeas 19
4.1.2. SDN CONIOIET ...ttt ettt ettt et et a et esteese e teeseenee st eneeseeneeneenseeneans 24
4.1.3. Auto-configurable Network €Nablercoccviiiiiiiiiieii et 28
4.1.4. Traffic classification eNabIercooiiiiiiiiiee e 30
4.1.5. MUILI-INK @NADIET ..ottt ettt et e e eb e e eaeeesabeeereeeenas 33
4.1.6. SD-WAN ENADIET......ceeeuiiiieiieieitteee ettt ettt ettt et e st e eat et e e st e ee st eneeseeneeneesseeneans 38
4.1.7. WAN acceleration €Nabler...........c.eiiiiiiiiiiiiiiicce ettt e et e 42
4.1.8. YA S < 21 o) < SRS RTSP 45
4.2. Data Management ENaDIETSceeviierierienieeieeieeieesee e stesteeteesteesteessaesssesnseesseeseesseesssesnseenses 50
4.2.1. Semantic rePOSILOTY ENADIET........c..ccuiiiiiiiiiiiie ettt e stteereereebeeveesteeserestbeesbeesbeesseessseseneans 50
4.2.2. Semantic translation ENaDLETcoiiiiiiiriiiee e 55
4.2.3. Semantic annotation ENADIETcouiriiiiiririeieeet ettt 59
424, Edge data DIOKETccoviiiieciieciieciecte ettt ettt ve e ta e s tae s tvesebeesbeesbe e bsesssessseesbeesres 63
4.2.5. Long-term Storage €NabIercccuveciieciieiiieierie ettt et esnaesnneeneeas 68
4.3. Application and Services €NADIETScceccieriiriieiieiierieieesreereeteesteesteestressbeesreesseesseesssessseesseensees 73
4.3.1. Tactile dashbOard..........co.coiiiiiiiie ettt 73
4.3.2. Business KPI reporting €nablerc.ooovieiieiiiiiieieeie et ere et eve e sneeeveesveesres 77
4.3.3. Performance and usage diagnosis €Nablerc.cevvvverieeriienienienieeie e 79
434, OpenAPI management €NADIETcccveiiiiiieiiiieeciecee ettt eveeeveeveesteeseneerneeaves 82
4.3.5. Video augmentation ENabIETcccvieeiieiiierieiie ettt see e reebeebe s esseessaeseaesnneenseas 86

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 5 of 93

_.'0;';'

Deliverable D4.3 — Final Core Enablers Specification and Implementation as:‘;:cfio ;

4.3.6. Mixed reality ENabIer........cooiiiiiiiiie et 88
5. Enabler’s Technical Documentation and Demo Videos..........coceririerieniiieninieienieeees e 92
T 0701 To] 113 o) s B OO OO PO URRPRTUPUPRRURN 93
List of tables
Table 1. General eqUIPMENt SPECITICALIONS.vveriieriierieriietiettertereesreereereeteestaeseresssessseesseessaesseesssessseessens 15
Table 2. GWEN SPECITICALIONSeevvieriieiieiieeieesieeseesteste e reeseeseesseeseaessseesseesseesseesssesssessseesseesseesssesssenssessees 16
Table 3. Localisation tag SPECIfICATIONSc..uieriieriiirtieiieeie ettt ettt ettt et e st et e bttt e bt e saeeeaeeeneean 17
Table 4. Fall arrest device SPECITICALIONS.cccuveriierieiiesriirieieeseestesresreeseeteesteesssesssessseesseesseesseesssesssesssees 17
Table 5. Template table to report the general information of the enablers...........cccceveveeeiiecievienienciececeen 18
Table 6. Components and implementation of €nabler X..........ccccoeviiiiiiiiiiiiiieeee e 18
Table 7. Template table to report the API of the enablers...........occoviiiiiiiiiiii e 19
Table 8. Template table to report the implementation status of the enablers............cccceeevveeriecieviencienieeiee, 19
Table 9. General information of the Smart Orchestrator............ccoeviiiiiiiiiiieeeeee e 19
Table 10. Components and implementation of Smart OrChestrator...........ooueevveereerierieee et 20
Table 11. API of the Smart OrCRESTIAOTeouiiriieiieieeee ettt et st ee e 21
Table 12. Implementation status of the Smart OrCheStrator...........cvevveriiiiiiereereeree e 24
Table 13. General information of the SDIN CONIOLIETcccuieiiiiiiiiiiiie e 24
Table 14. Components and implementation of SDN CONtIOLIETccevcvireiiirieerieeriecieere et 25
Table 15. API 0f the SDIN CONLIOLLETcoiiiiiieieiieieeee ettt ettt et e et e e e eeeneens 26
Table 16. Implementation status of the SDN CONtIOIIETcoeeviiriiriiiiiiiierieeeerteeeee e 28
Table 17. General information of the Auto-configurable network enablercoceviniiiininiininnicnenen. 28
Table 18. Components and implementation of Auto-configurable network enablercccoceieniniinence. 29
Table 19. API of the Auto-configurable Network €nabler............cccveviiiiiiiiiiiiieierieere e 29
Table 20. Implementation status of the Auto-configurable network enablercccoeeieiieiiiniininieee, 30
Table 21. General information of the Traffic classification enabler.............ccoocvereiiirieiinieereeeeeeeeee 30
Table 22. Components and implementation of the Traffic classification enabler.............cccccoooveeiiiiieiinencn. 31
Table 23. API of the Traffic classification €NabIerccoecueeiiiiiiiriiiii e 32
Table 24. Implementation status of the Traffic classification enabler..............cccceeviiriiniieiienieiee e 33
Table 25. General information of the Multi-link enablercoccoooiiiiiiiiiie e 33
Table 26. Components and implementation of the Multi-link enabler.............cocevirieiiniinininienineeenenee 34
Table 27. API of the Multi-link @nabIerccoeiiiriiiiieie ettt ettt eaee e s 35
Table 28. Implementation status of the Multi-link enablercccocveviiiiiiiiienieciece e 38
Table 29. General information of the SD-WAN enabIer...........ccccoeuiiiiiiiieierieee e 38
Table 30. Components and implementation of the SD-WAN enablerccccecevirieneniinenienieneneeenenee 39
Table 31. API of the SD-WAN @NabIET.......ccoeiiiiiieieieee ettt aeeee e eneens 40
Table 32. Implementation status of the SD-WAN enabler...........ccccocviiiiiiiiiieiieciecrecre e 42
Table 33. General information of WAN acceleration enabler.............cooeeiiiiiiiieniinienenieereeceeeeee e 42
Table 34. Components and implementation of the WAN acceleration enablerccccceceeveeriniinenieneneneen. 43
Table 35. API of the WAN acceleration enabIer............coocieiiiierierieieeeee et 44
Table 36. Implementation status of the WAN acceleration enabler............cccooeevierinieniniiieniiieenceeeee 45
Table 37. General information of the VPN enabler.........c.ccoociiiiiiiiiiiniiieeeeeeeee e 45
Table 38. Components and implementation of the VPN enabler...........cccovvvvievieniiiiieiicieeeeeeee e 46
Table 39. API 0f the VPN @NabICT........ccuoiiiiieiieieeet ettt ettt eesne e e eeeeneans 46
Table 40. Communication interface (UDP) of the VPN enabler............cccoeeeiiiiiiiiiiiicieceeecceeeee e 46
Table 41. Implementation status of the VPN enabler............ccoecieriiniiniiiiieieeceeeee e 50
Table 42. General information of the Semantic repoSitory enabler............ccecvvieviieiieiieeieeie e 50
Table 43. Components and implementation of the Semantic repository enablerccceeceereriineneenieneneens 51
Table 44. API of the Semantic repOSItOrY €NADIET.........c.cccvieerieiieiierie e et et e e ebeeieeseeseesssesnseenseas 51
Table 45. Implementation status of the Semantic repository enabler............ccveveeriiiieeiieciieieeeeecee e 55

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 6 of 93

_.'0;';'

Deliverable D4.3 — Final Core Enablers Specification and Implementation as:‘;:cfio ;
Table 46. General information of the Semantic translation enabler.............c.ccooceeviiiiiiiiiiiiie, 55
Table 47. Components and implementation of the Semantic translation enablerccocceririiininiineneen. 56
Table 48. API of the Semantic translation enabler — APT SETVeTcccooiiiiiiiiiiniieeeeeeeeee e 56
Table 49. Communication interfaces of the Semantic translation enabler — Streaming broker 57
Table 50. Implementation status of the Semantic translation enabler.............ccccceevvviieiiiieiiiecieecee e 58
Table 51. General information of the Semantic annotation enabler..............cccceevieririeriniiiereeeeeee e 59
Table 52. Components and implementation of the Semantic annotation enablercccceeevierciieeiieeecneennn, 60
Table 53. API of the Semantic annotation enabler — AP SEIVETcccvoiiiiiiiiiiiiirieeeec e 60
Table 54. Communication interfaces of the Semantic annotation enabler — Streaming broker 61
Table 55. Implementation status of the Semantic annotation enabler..............cccveeviercieeciiecieniereere e 63
Table 56. General information of the Edge data BroKerccooiiiiiiiiiiiiiiie e 63
Table 57. Components and implementation of the Edge data broker...........c.cccevveviercienciieciieieieiece e 64
Table 58. Communication interfaces of the Edge data broker — MQTT Broker.........ccccccveevveviveveeneenrenreennnn 65
Table 59. API of the Edge data broker — FR-SCIIPEcc.eeiiiiiieiieiieiee ettt 65
Table 60. Implementation status of the Edge data broKercccoviiviiiiiiiiiiiieee e 68
Table 61. General information of the Long-term storage enabler.............cccvevvieviierienienieereeeeeeee e sve e 68
Table 62. Components and implementation of the Long-term storage enabler...........c.cccceeevvevvereereenrenreennnn 69
Table 63. User Communication interfaces of the Long-term storage enabler............ccooceeiieiiiiiiiniinnneeen. 70
Table 64. Implementation status of the Long Term storage enabler............ccccveveevierieeciiecrieieeeeee e sve e 73
Table 65. General information of the Tactile dashboard.............ccoccorieiiiiiiiiie e 73
Table 66. Components and implementation of the Tactile dashboardcccceeviiiiiiiiiiiini e, 74
Table 67. User Communication interfaces of the Tactile dashboard.............ccceverriiiiiiiiiiiiiiiee, 74
Table 68. Implementation status of the Tactile dashboard..............cccceeviiiiiiiiinienieee e 77
Table 69. General information of the Business KPI reporting enablercccoviiiiiniiiiiinienieieeeeeen 77
Table 70. Components and implementation of the Business KPI reporting enabler...............cccecceevinniiniennen. 78
Table 71. User Communication interfaces of the Business KPI reporting enabler.............cccocvevvevienvennennnen. 78
Table 72. Implementation status of the Business KPI reporting enabler............ccccccveviieiieciienienienieereereennnn 79
Table 73. General information of the Performance and usage diagnosis enablerc.ccecevereineninncncneen. 79
Table 74. Components and implementation of the Performance and usage diagnosis enabler......................... 80
Table 75. User Communication interfaces of the Performance and usage diagnosis enabler (GUIs)............... 81
Table 76. API of the Performance and usage diagnosis enabler - TargetAPL..........ccccoeviieiiiiieiinnnieeee, 81
Table 77. Implementation status of the Performance and usage diagnosis enablercceccveveenennirniennnen. 82
Table 78. General information of the OpenAPI management €nablerccecverierieniiecrieneereeree e eveennens 82
Table 79. Components and implementation of the OpenAPI management enabler...........cccccoereeveninnicncnee. 84
Table 80. API of the OpenAPI management enabler.coceevieririiiiiiiiiiieeeteeeeeee e 84
Table 81. Implementation status of the OpenAPI management enablercccecveeieeiiecrieneeneenee e 85
Table 82. General information of the Video augmentation enablerc.ccvevieerierieniierieieeeeree e 86
Table 83. Components and implementation of the Video augmentation enabler..............ceceveriinenenncneneen. 86
Table 84. User Communication interfaces of the Video augmentation enabler..............ccccevvevrieveenienneeneennn, 87
Table 85. Implementation status of the Video augmentation €nablerc.cecvevierieeiieciieneeniecee e 88
Table 86. General information of the MR enablercccooiiiiiiiiiiiiieeeeee e 88
Table 87. Components and implementation of the MR enabler.............ccooeveviiniiniiiniiieiceeeeeee e &9
Table 88. API Of the MR €NaDIETccueiuiiiiiiieiieiieee ettt ettt st et stesbe et esesseeneeseeeneans 89
Table 89. Implementation status of the MR €nablerccoovviiviiiiiiiiiciiceceeceeee e 91
List of figures

Figure 1. ASSIST-IoT enablers and hardware elements formalisedcccceevierieiieniiieciieieeecee e 14
Figure 2. GWEN PIOtOLYPE ...ocuveeeiieiieriieiie et ete et estte st e site e te e st esstesteesaeessseenseesseesseesssesssesnseenseenseesssesssesnsesnsees 15
Figure 3. The heart of the module, the Qorvo DWM1001C UWB breakout board............cccceeevievenenneneneee 17
Figure 4. Example of high-level diagrami.........c..ccoviiiiiiiiiiiiieieceecee ettt ev e e ve e st eaveeave s 18
Figure 5. High-level diagram of the Smart Orchestrator............ccveviiiieriiiiiieerieeeee e 20
Figure 6. Smart Orchestrator enabler ES1 (add CIUSIET)........cveeovieriiiriiiiicie ettt 22
Figure 7. Smart Orchestrator enabler ES2 (1iSt TEPOSITOIIES)....cvveiuieirieiieeiieiienieeetiesiteereereereesseesseesereesneessees 22

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 7 of 93

_.'0;';'

Deliverable D4.3 — Final Core Enablers Specification and Implementation as:‘;:cfio ;

Figure 8. Smart Orchestrator enabler ES3 (delete repoSIitory)c.cevierieiiierieeieenieeieeie et 23
Figure 9. Smart Orchestrator enabler ES4 (add enabler)...........cooeiirieiiiieiinieeee et 24
Figure 10. High-level diagram of the SDN cONtroller............cooieiiriiiiiiiiiiiieee e 25
Figure 11. SDN controller ES1 (device configuration).ceereerienienieenieeieesieeeie et 27
Figure 12. SDN controller ES2 (intent deploOyment)cocueeuierieriiniiiieee ettt 27
Figure 13. SDN controller ES3 (t0p0logy diSCOVETY) ...uvivvirrieiieiieriieiie et eieeieesee e svesreesseeseeseesssessseensens 27
Figure 14. High-level diagram of the Auto-configurable network enabler.............ccooceeiiiiiiiiiniiniiiie, 29
Figure 15. Auto-configurable network enabler ES1 (policy-based network adaptation)..........cccceeveeerieneennnen. 30
Figure 16. High-level diagram of the Traffic classification enablerccocoeveririeiiniiiereeeeeeeee 31
Figure 17. Traffic classification enabler ES1 (train model)ccccoeevviiiiiiiieiieniecieec e 32
Figure 18. Traffic classification enabler ES2 (packet classification)ccccceeveerieniiniiiiiiieieeeeceneeeeeeen 33
Figure 19. High-level diagram of the Multi-link enabler: client side (left), server side (right)............c.cccvennee.. 34
Figure 20. Multi-link client and server example between tWo hostS..........ccceiiereriiieiinieereeee e 34
Figure 21. Multi-link enabler ES1 (Server-side Start/StoP)ccceceereerieriieriieenieeneeete et 35
Figure 22. Multi-link enabler ES2 (client-side Start/StOP)cceereerierieriieeiieerieeriee et ettt 36
Figure 23. Multi-link enabler ES3 (change bonding parameters)c..ccvevvereereeniencreereesieesieeseeseresveesnes 36
Figure 24. Multi-link enabler ES4 (bring up/down tunnel interfaces)ccccveveerieriencriecieereerieree e eveenens 37
Figure 25. Multi-link enabler ESS (PING tEST).....eeruiiriiiieeieeieeitette sttt ettt ettt ettt saeeseee e es 37
Figure 26. Multi-link enabler ES6 (ClIeNt/SEIVET STATUS)cccvievvieriieriierreeieeieesieesieeseresereesreesseesseesssesssesssesssees 38
Figure 27. High-level diagram of the SD-WAN enabler...........ccccooiriiiiiiiiiiieee et 39
Figure 28. SD-WAN enabler ES1 (overlay management)ccccevierieiiiiiiienieenieeieeie et 40
Figure 29. SD-WAN enabler ES2 (tunnel establiShment)............ccccovoiiviiiiiiiiiieenienieec e 41
Figure 30. SD-WAN enabler ES3 (connection of hubs with edge ClUSter)cccevveviinciieciieiieiecie e, 42
Figure 31. High-level diagram of WAN acceleration enabler.............ccocueviieiiiiiiniiniiececeeeeeee e 43
Figure 32. WAN acceleration enabler ES1 (configuring/querying the CNF)ccoociiiiiiiiiiinniiiieeeeeen, 44
Figure 33. WAN acceleration enabler ES2 (querying the common endpoints)cccccveeveevieeveenvenrenveennens 45
Figure 34. High-level diagram of the VPN €nabIer...........ccooiiiiiiiiieieieee et 46
Figure 35. VPN enabler ES1 (get network interface information)..........cocceeereeveninienininienienieeneeeneeeene 47
Figure 36. VPN enabler ES2 (CIeate CHENL)c.cccviiieiiiiiiciieiieeesiiesee et eteeseesetesressveesveesvaessaeseneseneannes 47
Figure 37. VPN enabler ES3 (delete CHENL)c.ccviiiieiiiciiciieitetesite sttt ettt v e eeveesveesve e e e saaeseneennes 48
Figure 38. VPN enabler ES4 (enable/disable ClENt)cccuieiierieriiiiieieeieeeeeeeee et 49
Figure 39. VPN enabler ESS (CONNECE CHENL)ocuiiiiiiiiieiieiieieeieesite ettt ettt s es 49
Figure 40. High-level diagram of the Semantic repository enabler............coccoiiereririeienieereeeeeeeeee 50
Figure 41. Semantic repository enabler ES1 (modify metadata)..........c..coceeveiiniiininienininieneieeneeeceeene 52
Figure 42. Semantic repository enabler ES2 (get metadata)c..coceeviiiiiiininiiininieieeeeeeneeeeene 52
Figure 43. Semantic repository enabler ES3 (upload file with model)cccoeoiiiiieiinieeeeeeeee 53
Figure 44. Semantic repository enabler ES4 (get file with model)occoviiieiiiineeeeeeeee 53
Figure 45. Semantic repository enabler ES5 (upload documentation)c.cceceevereenieneenienenieneneeienieneens 54
Figure 46. Semantic repository enabler ES6 (check documentation job Status)cccceeeeeieieeienenieseeeenene 55
Figure 47. High-level diagram of the Semantic translation enabler..............cooceeoeririeiinieiereeee e 56
Figure 48. Semantic translation enabler EST (store alignment)cccoeevrriienieniieniienie e 57
Figure 49. Semantic translation enabler ES2 (get alignment metadata)............ccccevvvevieecireciienienieniesieeee e 58
Figure 50. Semantic translation enabler ES3 (create stream-based translation channel)............cccccvevveenennen. 58
Figure 51. High-level diagram of the Semantic annotation enabler..............cccceereririeienieiereeee e 59
Figure 52. Semantic annotation enabler — annotation channel architecture OVerviewc.ccoceveveerienenncee 61
Figure 53. Semantic annotation enabler ES1 (batch annotation)c..cceevveeviieniesiesie e seee e 61
Figure 54. Semantic annotation enabler ES2 (configure channel for stream annotation)ccccceeeveevvennen. 62
Figure 55. Semantic annotation enabler ES3 (stream annotation)c.cceecvereerieniencieesieeseeseesee e snesneens 63
Figure 56. High-level diagram of the Edge data brokercoceiiiiiiiiiiiiiiiieeeteeecteeeee e 64
Figure 57. Edge data broker EST (fIltETINE)cveeviiiiiieiiieiiereeieeceeste sttt te et e e eebeeveeve e saneeeveennes 66
Figure 58. Edge data broker ES2 (TUINE)....cc.eoteriiriiiiieiee ettt s 67
Figure 59. High-level diagram of the Long-term storage enabler...........c.ccooereriieniinieninineneeeeeeee e 69
Figure 60. Long-term storage enabler ES1 (store NOSQL data)cccccueeviieviieiiieiieiiecie et 71
Figure 61. Long-term storage enabler ES2 (get NOSQL data)cccccueviiiiieiiieiiieiieciece e e 71
Figure 62. Long-term storage enabler ES3 (store SQL data)cceeeeeririiiieniiieninieeseeeree e 72

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 8 of 93

_.5'..

Deliverable D4.3 — Final Core Enablers Specification and Implementation as:‘;:cfio ;

Figure 63. Long-term storage enabler ES4 (get SQL data)........ccccoiiiiiiiiiiiiiieeeeec et 73
Figure 64. High-level diagram of the Tactile dashboard..............ccccoooiiiiiiiiiiiie e 74
Figure 65. Tactile dashboard ES1 (10Zin WEDPAZE)ccvevevirrieiieiieiiesie ettt ee e eee et eesereesseennes 75
Figure 66. Tactile dashboard ES2 (show data managed by PUI9 database)cccecevviiiieninninniniieeeen, 76
Figure 67. Tactile dashboard ES3 (show data not managed by PUI9 database)ccccoeveeveenennnniincnen. 76
Figure 68. High-level diagram of the Business KPI reporting enablercocceverieiiniiienienienienceeeeee 77
Figure 69. Business KPI reporting enabler ES1 (generate graphs from time-series data)ccccceveeeneennen. 79
Figure 70. High-level diagram of the Performance and usage diagnosis enablerccccoeveereeninnirnenneen. 80
Figure 71. Performance and usage diagnosis enabler ES1 (metrics gathering and presentation) 82
Figure 72. High-level diagram of the OpenAPI management enablercecevirierenienenienerereeeeeee &3
Figure 73. OpenAPI management enabler ES1 (get API documentation)cccceevieriieiiesieneenienieeieeenn 84
Figure 74. OpenAPI management enabler ES2 (publish API document)ccccooeeiiniiiieniniiniieeeee &5
Figure 75. OpenAPI management enabler ES3 (interact with enablers)...........ccccovivieiinieiiniineeeeeeeee &5
Figure 76. High-level diagram of the Video augmentation enablerccccoeveeviiniiniiiiieiieeeeeeeeen 86
Figure 77. Video augmentation enabler ES1 (model training)........ccccceveeerieeriieneenienieeie e 87
Figure 78. Video Augmentation enabler ES2 (video inference)ccccoevererieeieninieienieeseeeeseeeeeeene 88
Figure 79. High-level diagram of the MR enablerccooiiiiiiiiiiiieee e &9
Figure 80. MR enabler ES1 (fetch and visualisation of the BIM model).........cccccoviiniiniiiiiiinieiieeeeee, 90
Figure 81. MR enabler ES2 (SENd TEPOTL).......cccuieriiiriieiieniierieieeitestteste e ereeieesteesereseressseessaessaesseesssesssesssens 90
Figure 82. MR enabler ES3 (receive NOtfICAtION)cccveccvierieiieiieriesie et ereeieeseesresresereesseesaesnesesessseesses 91

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 9 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

List of acronyms

Acronym Explanation

Al Artificial Intelligence

API Application Programming Interface
BIM Building Information Model

BLE Bluetooth Low Energy

CLI Command Line Interface

CNCF Cloud Native Computing Foundation
CNF Cloud Native Network Function
CNI Container Network Interface

CNN Convolutional Neural Network
CRD Custom Definition Resource

CSV Comma-Separated Values

DB Database

DHCP Dynamic Host Configuration Protocol
DNS Domain Name System

EDB Edge Data Broker

FL Federated Learning

FR Filtering & Ruling

GUI Graphical User Interface

GWEN Gateway and Edge Node

HAL Hardware Abstraction Layer
HDMI High-Definition Multimedia Interface
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol

IdM Identity Management

IoT Internet of Things

IPSec Internet Protocol Security

IPSM Inter-Platform Semantic Mediator
JSON JavaScript Object Notation

K8s Kubernetes

KPI Key Performance Indicator

LTSE Long-Term Storage Enabler

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 10 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

MQTT Message Queuing Telemetry Transport
ML Machine Learning

MR Mixed Reality

NB NorthBound

NGIoT Next Generation loT

NoSQL Not only SQL

OEM Original Equipment Manufacturer
(0N Operating System

0SS Operational Support System
PUD Performance and Usage Diagnosis
PUI9 Prodevelop’s User Interface

QoS Quality of Service

RDF Resource Description Framework
REST REpresentational State Transfer
RML RDF Mapping Language

RTG Rubber-Tyred Gantry

RTT Round-Trip Time

SB SouthBound

SDN Software Defined Network
SD-WAN Software Defined WAN

SIM Subscriber Identity Module

SQL Structured Query Language

TCP Transmission Control Protocol
UDP User Datagram Protocol

Ul User Interface

URL Uniform Resource Locator

VNF Virtualized Network Function
VPN Virtualized Private Network
WAN Wide Area Network

XML eXtensible Markup Language

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 11 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

1. About this document

Two are the main objectives of this deliverable: (i) to finalise the specifications of the horizontal enablers
designed, and (ii) to provide the final functional of the enablers developed. These enablers are the cornerstone
of the project, allowing the design and realisation of Next Generation [oT (NGIoT) systems based on the
ASSIST-IoT architecture. With them, the pilots of the project will be implemented and the outcomes, evaluated.
Apart from software enablers, D4.3 also includes the final specifications and pictures of the ASSIST-IoT’s
Gateway/Edge Node (GWEN) and the Smart IoT devices, which have been developed specifically for the
project.

This deliverable corresponds to the final document of a series of three iterations. The iterative nature of this
report was firstly due to the fact that the requirements and the reference architecture were evolving in WP3 and
a result of the interactions with WP5. Also, an agile evolution is needed and desired considering the feedback
from the integration activities of WP6, and the use of the artifacts in pilots, under WP7.

1.1. Deliverable context
Keywords Lead Editor

Objectives 02: D4.3 presents the final specifications of the enablers of the network plane and is
presented jointly with their final version.

03: Specifications of enablers focused on data (semantics, broker, storage) are provided, as
well as their final version.

0S5: Human-centric interfaces for the use cases are presented.
WOI‘k plan To define limits, competences

and interactions that require

Novel, key compenents and adaptations (e.g., agreed APIs) (
< WPS5 Transversal Enabler

’L Design and Development

technologies research for
T3.1 State-of- further design choices
the-Art

To test, validate, integrate
and document, following
DevSecOps methodology
provided

To be addressed and fulfilled
with the realisation of enablers
and provision of loT devices

T3.2& T13.3 and nodes
Use-cases and
Requirements

’L and support

To later on materialise in

pilot deployments (WP7 Pilots and
kvalidation

Design principles (containers,
k8s), design methodology, and

high-level functionalities and
T3.5 paradigms to cover To evaluate and assess resulting

Architecture from testing and pilots gf WP8 Evaluationand

To evaluate human-centric Assessment

aspects of the applications

)
WP6 Testing integration }
1
)

Milestones This deliverable is directly related with MS7 — Integrated solution, as these enablers are,
jointly with WP5’s, the main artifacts contributing to the final, integrated solution. In any
case, integration efforts are carried out under the scope of WP6, under test in the pilots
(WP7).

Deliverables | This deliverable is the natural evolution of D4.2, and receives inputs from D3.3
(requirements and use cases — second iteration) and D3.7 (architecture definition — final
iteration). Enablers stemming from this WP feed WP6 for testing, integration, distribution
and documentation, being the cornerstone of pilots’ implementations of WP7, and key part
in the technical evaluation to be performed under the scope of WP8.

1.2. Outcomes of the deliverable

This document reports the final specifications of the hardware and software artifacts implemented during the
execution of WP4, updating the information provided in D4.1 and D4.2. Along with this document, the code of
the enablers, which jointly with the GWEN are the main outcomes of the WP4, will be published in public
repositories (and upload to EC portal, as a compressed file), so they are openly available.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 12 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

1.3. Lessons learnt

During the implementation phase, designs required to adapt to the actual needs of NGIoT systems, represented
by the project pilots. These are some of the lessons learnt during the last phase of WP4 activities:

Although the GWEN was initially designed to act as a Kubernetes master, its relative low RAM made
it more suitable to act as worker of another Kubernetes master. In future designs, additional RAM will
be needed to have the ability of working as master.

Persistency in Kubernetes can be problematic in K8s-based environments if not managed properly.
Enablers had to be tested in different cases, e.g., in case of pod deletion/restart, power down, and manual
chart uninstall.

All the lessons learnt stated in Section 1.4 of D4.2 apply.

1.4. Deviation and corrective actions

The Consortium dedicated effort to formalise (in D4.1) and materialise (in D4.2) the artifacts of the WP4,
however, there are some deviations that have slightly altered the initial plan:

Cilium was selected as the main K8s CNI plugin for the clusters. However, its low maturity in Yocto
systems require adapting the Smart orchestrator to work also with flannel as an alternative for Yocto-
based nodes.

Some enablers have suffered significant design modifications, like the multi-link and the traffic
classification enabler. Additional effort had to be devoted to complete them in time.

Initial tests of the smart orchestrator shown slow installation times, execution errors and
incompatibilities. Because of this, although the design did not change significantly, the underlying
technologies had to be changed and its code refactored to be usable.

All the actions stated in Section 1.5 of D4.2 apply.

1.5. Version-specific notes

The following notes apply to this version:

The final hardware artifacts of the project are now reported, including pictures.

The specifications of the enablers have been updated, showing the final component diagrams, endpoints
and enabler stories, thus making D4.2 obsolete.

D4.3 can be considered a self-contained document, however, some data has not been included in this
report and can be checked at D4.2, such as the rationale for technologies selection to avoid excessive
document length. This information has not been deemed important as many enablers components could
have been realised considering alternative technologies or programming languages.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 13 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assis;c-iot

2. Introduction

The ASSIST-IoT architecture is based on a multidimensional approach, considering planes and verticals'.
Planes are collections of functions that can be logically layered on top of one another. Data gathered and
potentially pre-processed in the Device and edge layer, can be optimally transported in a network managed by
the Smart network and control plane, processed (routed, stored, transformed) in the Data management plane,
and consumed by the Applications and services plane. Verticals, in turn, represent inherent properties of the
system or cross-cutting to the rest of the architecture, as well as functions targeting specific NGIoT properties.

Enablers are the cornerstone of the ASSIST-IoT reference architecture. They offer specific features belonging
to the aforementioned planes and verticals. As each business scenario has its own particularities, not all the
enablers are needed in all architecture realisations, although some of them are considered essential, i.e., should
be part of any system based on ASSIST-IoT.

This deliverable reports the specifications of the enablers designed and implemented for the four planes of
the architecture. All of them (but the exceptions, like the MR enabler) are packaged and follow the
encapsulation principles of the project: they are designed as a set of microservices or micro-applications,
realised as containers, only accessible via exposed interfaces, and packaged as Helm charts following the
specifications of the project — aligned with current trends. All WP4 enablers have been finalised, and have been
published in public repositories (except OpenAPI enablers because of internal policy of the institution in charge,
see D6.8). In any case, as all software products, they can be enhanced and evolve in the future.

Application and Services plane

Business KPIl Reporting enabler Video Augmentation

enabler
Performance and Usage

Tactile Dashboard _)
Diagnosis enabler

OpenAPl Manager MR enabler

Data Management plane
Semantic Translation enabler

Edge Data Broker
Semantic Annotator enabler

Long-term Data Storage Enabler
Semantic Repository enabler

Smart Network and Control plane

Smart Orchestrator

Traffic classification Multi-link
SDN enabler enabler

Controller

VPN enabler | SD-WAN enabler

Auto-configurable WAN acceleration
network enabler enabler

Device and Edge plane
ASSIST-loT ASSIST-loT Fall
Localisation Tag ASSIST-IoT GWEN Arrest Device

Figure 1. ASSIST-10T enablers and hardware elements formalised

! ASSIST-IoT project, D3.7 — Architecture Definition Final.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 14 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assis;c-iot

3. Devices specifications

The specifications shown in Table 1 represent the environmental conditions in which the devices designed and
developed during the execution of the project (the GWEN and the Smart of IoT devices) can be operated and
stored. Some iterations are still needed before finalise the industrialisation of the hardware, but in any case
devices have been designed to be later on tested considering [EC60068-2-2(Bd) + IEC60068-2-1(Ad),
IEC60068-2-29 and IEC60068-2-6 test methods, for environmental, shock and random vibrations, respectively.

Table 1. General equipment specifications

Condition type Condition and testing methods Value

Environmental Ambient temperature range, normal operation -10 to 50 [°C]

operating Relative humidity range, normal operation 20 to 90 [%] non-condensing
Environmental Storage temperature range -20 to 70 [°C]

storage Storage relative humidity 5 to 95 [%] non-condensing

3.1. GWEN

The ASSIST-IoT Gateway and Edge Node (GWEN) is the edge gateway developed for the ASSIST-IoT project.
It is a demonstrator setup with flexible configuration suitable to fit all pilots with adjustable computational
power and interfaces. The specifications of the GWEN respond to the block schematic diagram shown in Figure
4 from D4.2. It is important to remind that the gateway has been tested in pilots 1, 2 and 3b, supporting the
execution of some of the enablers of the project. Having 2 GB of RAM by default, GWENSs had to work clustered
with other edge devices, such as RaspberryPis, in order to provide enough processing power in those use cases
that required a large number of enablers deployed at the edge.

Figure 2. GWEN prototype

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 15 of 93

%uie
Deliverable D4.3 — Final Core Enablers Specification and Implementation ass.is;c—io ;
Electronic Electronic component Specification
type
USB USB2.0 & USB3.0
Ethernet 2x a 1GB Ethernet port
Wired SD card Micro SD card interface
interfaces Power Barrel connector 12VDC
HDMI Mini HDMI interface
Camera interface CSlI interface for connecting a camera
Wireless WiFi A WiFi interface following IEEE 802.11ac is available
interfaces BLE Bluetooth Low Energy (BLE) 5.2 (IEEE 802.11ac)
Compute Processing module 1.MX 8M Plus. Quad core @1.8 GHz (ARM® Cortex®-A53)
Et(()) \:f;e& RAM 2GB & 4GB LPDDR4 (2 variants were developed)
eMMC 16GB eMMC
Expansion boards
CAN Automotive CAN open module
RS485 An USB to RS485 module is available
Mobile network module A M.1 slot is reserved for 3G/4G/5G functionality. A SIM card slot is available on
the GWEN.

The firmware of the GWEN consists of an Operating System (OS) a container runtime and in addition pre-
installed software to support enablers will be used. This pre-installed software operates on top of the OS, next
to the container runtime so custom containers can use this pre-installed software. Key specifications of the Edge
node firmware are given:

Operating System (OS): Yocto, based on Linux, is used as OS. The Yocto Project is an open
source collaboration project that helps developers creating custom Linux-based systems regardless
of the hardware architecture. The project provides a flexible set of tools and a space where
embedded developers worldwide can share technologies, software stacks, configurations, and best
practices that can be used to create tailored Linux images for embedded and IOT devices, anywhere
a customised Linux OS is needed.

Hardware Abstraction Layer (HAL): The HAL consists of device driver as interface between the
electronics and the OS. The Yocto project supports several kinds of peripherals and provides device
drivers which implement hardware specific functionality for these peripherals. Besides, not
supported peripherals of the Edge node will need own developed device drivers. These are also part
of the HAL.

Configuration and initialisation: The configuration and initialisation of the standard interfaces
(Ethernet, Serial, etc.), SSH and a default user will be preconfigured on the Edge node, making the
node fully functional and ready to run enablers on.

Container runtime: For the container runtime, Docker is used. Docker is a set of platform-as-a-
service products that use OS-level virtualisation to deliver software in packages called containers.
Containers are isolated from one another and bundle their own software, libraries and configuration
files; they can communicate with each other through well-defined channels. As the enablers will be
implemented as containers, Docker will be preinstalled.

Pre-installed software: The following supportive software will be pre-installed at the Edge node:

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 16 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Python: Python is a general-purpose programming language that will be used by many
enablers. It is used for web development, Al, machine learning, mobile application
development, etc. As Python will be used on the Edge node, it will be preinstalled.

Kubernetes (K3s): Kubernetes automates operational tasks of container management and
includes built-in commands for deploying applications, rolling out changes to applications,
scaling applications up and down to fit changing needs, monitoring applications making it
easier to manage applications. Where K3s is a lightweight Kubernetes distribution created
by Rancher Labs, and it is fully certified by the Cloud Native Computing Foundation
(CNCF). K3s is highly available and production-ready. It has a very small binary size and
very low resource requirements.

Wazuh: Wazuh is a free and open source platform used for threat prevention, detection, and
response. It is capable of protecting workloads across on-premises, virtualised,

containerised, and cloud-based environments.

3.2. ASSIST-IoT localisation tag

The localisation tags and anchors are build up according the following block-diagram:

Electronic component Specification
UWB Transceiver Qorvo DWM1001c
Battery 16340 rechargeable battery

Micro controller

STM32F072CBT6 & Nordic nRF52832

Program/Debug

JTAG

Buzzer, LED, pushbutton

The DEV-kit (Qorvo mdek1001c) has several built in components such as a buzzer,
2 LED’s and 2 pushbuttons which can be programmed as liked. In the pilots these
were used for operator communication and response. The DEV-kit also has a build-
in accelerometer which is used for the fall-arrest.

3.3. ASSIST-IoT fall arrest device

Electronic component

Specification

Fall arrest sensor interface

digital I2C/SPI serial interface

Inertia Measurement Unit (IMU)

LIS2DH12 3-axis accelerometer motion sensor

UWB Transceiver

The accelerometer is part of a build in component of the Qorvo DWM1001c
breakout board.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 17 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

4. Horizontal enablers

All enablers will report their final specifications in the same way. In total, five sections will be included, with
the following data:

General specifications and features

Enabler Name of the enabler

Id Short unique identifier/acronym
Owner and support Lead and supporting beneficiaries
Description and main

. . Functional description of the enabler. Improve current descriptions!!
functionalities P f p p

Bullet points for describing its features, focusing on advancements over SotA (e.g.,

Key features improvements over Prometheus when developing the PUD, or the EDB w.r.t VerneMQ)

Plane/s involved Horizontal plane or planes on which the enabler's features are delivered
Requirements mapping List of the IDs of the requirements addressed or considered. Update 4.1 using D3.3 data
Use case mapping List of the IDs of the use cases related to this enabler. Update 4.1 using D3.3 data
Internal components List of the internal components of this enabler

Components and technologies

A high-level schema of the internal microservices or micro-applications is to be included. It should be
highlighted that, when implemented, some components can be wrapped in a single container.

a N

SO0

- /

The description and implementation technologies of each one of the components will be reported in a table as
the following one:

Component Description Technology/s

It is in charge of / Id deals with / It provides ...

NOTE: Apart from components of the encapsulation exceptions, Docker, K8s and Helm have been considered
for implementing all the enablers. Additional notes can be added, for complementing the information provided
or express any aspect worth to be included.

Communication interface/s

The third section reports the communication interfaces. Generally, this refers to API endpoints, following the
table below. In case that other interfaces are present (e.g., MQTT connections, VPN enabler via dedicated
TCP/UDP connection, etc.) they will be reported accordingly.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 18 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Method Endpoint Description
GET/POST/PUT/DELETE

* Extended information can be found in the enabler documentation.

Enabler stories

This section updates the use cases in which enablers respond until a specific event or call, presenting the
interaction that happens among the components. In this deliverable, they are referred to as enabler stories, as
“use cases” could be confused with the pilot-related use cases of the project. Also, referring to them as “user
stories” would not have been correct as some actions are not triggered by users, but other enablers.

Additional information

The fifth and last section reports additional information related to documentation, encapsulation readiness,
integration with other enablers of the project, and features that could be extended in future releases.

Category Status

Link to ReadtheDocs Link to documentation

Additional features that could be added/extended in the future, now that more
knowledge about the enabler is available

Row to explain if an enabler is an encapsulation exception, and why, or if it has
a full functional Helm package ready

Expresses if the enabler require others to offer all its functions, or if it works in
a complete standalone fashion

Potential features

Encapsulation readiness

Integration with other enablers

4.1. Smart Network and Control enablers

4.1.1. Smart orchestrator

4.1.1.1. General specifications and features

Enabler Smart orchestrator enabler
Id T42E1
Owner and support UPV

The Smart Orchestrator Enabler aims to control the lifecycle of enablers in a multi-cluster
environment. It not only serves a management function but also provides network security
and enabler instantiation automation capabilities. The Smart Orchestrator works with

Description and main ; ’ 3
Helm charts as a packaging system, which offers the following benefits:

functionalities
e Simplifies the packaging of software, making it easily customisable.
e Enables seamless upgrades of enablers.
e Allows managing the enablers lifecycle.
Key features e Introduces network security and automation capabilities.
e FEases the connection of enablers.
Plane/s involved Smart Network and Control Plane

e R-P1-20: Remote latency capabilities (it will be in charge of deploying enablers
related to network)

e R-P1-22: Multilink wireless network capabilities (it will be in charge of
deploying the related CNFs)

Requirements mapping

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 19 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Enabler Smart orchestrator enabler

e R-P3A-11: Connectivity between OEM and fleet (it may/can deploy a ping-
based CNF to evaluate connection between fleet and OEM prior to an update,
and instantiate those VNFs needed for stablishing the connection)

e R-P3A-12: Edge Connectivity (it may/can deploy CNFs to support required
latencies)
This enabler is inherent to an ASSIST-IoT ecosystem and therefore it should be present
at all pilots, otherwise it would not be possible to orchestrate VNFs and hence the Smart
Network and Control plane would not be present. Among the use cases of the project, the
ones with higher need of it are:

Use case mapping e UC-P1-6: Wireless remote RTG operation
e UC-P1-7: Target visualisation during RTG operation

e UC-P2-6: Safe navigation instructions

e UC-P3B-1: Vehicle’s exterior condition documentation
API, Scheduler, Multi-cluster service controller, Metrics server, Orchestrator
microservices

Internal components

4.1.1.2. Structure, components and implementation technologies

e

~

Scheduler Orchestrator

microservices

Multicluster
Metrics-Server Service
controller

-)

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s

The RESTful API serves as a central gateway to access all orchestrator
services. Its primary responsibilities include handling API requests for
API adding, retrieving, and deleting clusters, repositories, and enablers. | Express
Additionally, it incorporates a scheduler function for automating enabler
cluster scheduling.

Orchestrator These microservices provide the orchestration functions for adding, Express
Microservices retrieving, and deleting clusters, repositories, and enablers. P
Multicluster Replicates cloud-based services, allowing them to be accessed by edge

. Python, Cilium
service controller services using their respective DNS names ython,

Provides automatic cluster election for the enablers instantiation based on | Python, mck8s,

Scheduler the resources available or network traffic. NeuralProphet

Metrics server Provide the scheduler with the resources from each of the clusters. Prometheus

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 20 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

4.1.1.3. Communication interfaces

Method Endpoint Description

GET /clusters Returns the clusters that have been added.

GET /clusters/{id} Returns the cluster that has been added by id.

GET /clusters/node/{id} Returns the nodes in a cluster that have been added.

GET /clusters/cloud/find Returns the cloud cluster.
et 0 S st
DELETE [clusters/{id} Deletes a cluster by id.

GET /repos Returns the repositories.

GET /repos/charts/{id} Returns the charts available in a specific repository.

POST /repos/public Se;v:;tir;y[ill{tlg,tﬁzssc;gggl and name, incorporate a public

POST /repos/private aG;\;?\rllaatl:rli;)I;tii}s/cir;glg?e, ;1;31: rind user credentials, incorporate
POST /repos/update Updates the repositories available charts in each of them.
DELETE /repos/{id} Deletes a repository by id

GET /enabler Returns the enablers installed in the clusters.

GET /enabler/cluster/{id} Returns the enablers installed in a specific cluster.

T T
POST /enabler/upgrade/{id} Xilseirg IE)-rowded with a body, it upgrades an enabler changing the
DELETE /enabler/{id} Deletes an enabler by id.

DELETE /enabler/volumes/{id} Deletes the volumes by the enabler id.

4.1.1.4. Enabler stories

Numerous enabler stories can be applicable to this particular enabler. However, it is possible to categorise some
of them into groups that share a common objective.

The first enabler story depicts how a cluster addition to the Smart Orchestrator enabler occurs. This operation
consists in a POST request where the request body includes the K8s cluster kubeconfig.

STEPS 1-2: The user sends a POST request with some data related with the credentials and additional fields
such as the name, description or the CNI installed in the cluster. These data are captured by the API and sent to
the corresponding microservice.

STEP 3: The microservice responsible for the task attempts to stablish connection with the K8s cluster. If the
connection is successful, the clustermesh is stablished and the next step is initiated.

STEP 4: After the cluster has been created, in order to enable the scheduler to work, the metrics server must
have the newly added cluster registered. Consequently, the microservice proceeds to register it.

STEP 5: If an error occurs, the response will include the error message, which is then transmitted to the user.
If no errors occur, a successful response is returned.

STEP 6-7: The microservice sends a request to the database for adding or updating the cluster and the DB is in
charge of doing it.

STEPS 8-10: If an error occurs, the response will include the error message, which is then transmitted to the
user. If no errors occur, a successful response is returned.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 21 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
User
S.0 .
} Microservices RIS
: |
i 1. Upload Kubernetes config_ ™ 2.Upload Kubernetes config - -3 Stablish connection

and create a cluster

4 Write or update a cluster

' 5. Return result -
O R LR R]

6. Write or update a cluster

e
—>} —7_Add or update
' b 4 a cluster
' 8. Return result B
O R EEEEE LR e | h

9. Return result

.............................

The second story groups all the GET requests (get clusters, get helm repositories, get enablers); in this
case the example is focused in getting the helm repositories.

User

i S.0
- - API
: microservices satat
:
5 i :
1. Repository ID ' : :
E 1 2 Repository ID i ':
] : o 3. Get DB repository -~
v i : —_—
] Y
! I

E] : ! | 4. Get DB repository

5. Return result

STEPS 1-2: The user sends a GET request for getting the repositories data. The request is captured by the API
and sent to the corresponding microservice.

STEPS 3-4: The microservice sends a request to the database for getting the helm chart repository and the DB
is in charge of doing it.

STEPS 5-7: If an error occurs, the response will include the error message, which is then transmitted to the
user. If no errors occur, a successful response is returned.

The third enabler story consolidates all DELETE requests (delete cluster, delete helm repository, delete
enabler), with the specific example in this case being centered around the deletion of a Helm repository.

STEPS 1-2: The user sends a DELETE request for deleting a specific repository including the ID of it. The
request is captured by the API and sent to the corresponding microservice.

STEP 3: The microservice in charge of this task deletes it from the system.
STEPS 4-5: The microservice sends a request to the database. The DB is in charge of deleting it.

STEPS 5-7: If an error occurs, the response will include the error message, which is then transmitted to the
user. If no errors occur, a successful response is returned.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 22 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

User

X

S.0

microservices

1. Repository 1D

: 2. Repository ID ey

. H
P v+ 3. Delete repository :

4 Delete DB repository .+,

1} 1
5. Return result i 5. Delete repository

g 7. Return result

8.8end result of operation i ! :

R P

The fourth story explains how an enabler is instantiated. This story may involve two variables: the utilisation
of the scheduler and the use of the multicluster service, although they are not mandatory for installing an enabler.

STEPS 1-2: The user sends a POST request with some data related with the name, helm repository and helm
chart, values and cluster (placement policy when the scheduler is used). These data are captured by the API and
sent to the corresponding microservice.

STEP 3: When the scheduler feature is activated, the microservice sends a request to fetch the available clusters,
considering both the resources within the cluster and the resources requested by the enabler.

STEPS 4-5: The scheduler sends a request to the database for getting the K8s clusters kubeconfig. The DB is
in charge of getting them.

STEP 6: If an error occurs, the response will include the error message, which is then transmitted to the user.
If no errors occur, a successful response is returned.

STEP 7: The scheduler selects the cluster by using the placement policy and the resources mentioned earlier.

STEP 8: If an error occurs, the response will include the error message, which is then transmitted to the user.
If no errors occur, a successful response is returned.

STEP 9: A microservice creates the enabler, installing it from the helm chart saved in the repository selected
and in the cluster selected by the scheduler. When an enabler is installed, if it contains an multicluster service,
triggers an event.

STEPS 10-11: The microservice sends a request to the database. The DB is in charge of creating the enabler
DB record.

STEPS 12-14: If an error occurs, the response will include the error message, which is then transmitted to the
user. If no errors occur, a successful response is returned.

If the multicluster service is enabled in the enabler helm chart, the task runs simultaneously to the enabler DB
creation.

STEPS 10-11: The multicluster service controller gets the K8s event and gets all the K8s kubeconfig from the
DB, except the cloud one.

STEP 12: If an error occurs, the response will include the error message and will print an error log. If no errors
occur, a successful response is returned.

STEP 13: The multicluster service controllers deploys the services in all the edge clusters by stablishing
connection with them.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 23 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

User

S.0
\ microservices
1
| | : '
j
'

' -~
11. Select enabler to instanciate] 1
|

Multicluster
Service a1
controller databaze

H '
i :
H i
i .
: i
H

1 \
i 14. Return result L cTEETS
PN LSl M

g

1 2. Select enabler to instanciate !
;

13. Return result

t 3. Send request

1
5. Get kubeconfigs

8. Return result =«

10. Get K3s event

9. Create naw enabler. |
and

and Kubernetes

] .
triggers new event E .'L. request DS kubeconfi
1

[11. Gat II(L.bECD"\'_IQS except cloud
i :(12 Returnresult &

1) — 1
13. Deploys services in clustérs
o

1 i
! i

H 10. Create new DB enabler H

—
' " | 11. Create new DB enabler
12. Return result [1

4.1.1.5. Implementation information

Category

Status

Link to ReadtheDocs

https://assist-iot-enablers-
documentation.readthedocs.io/en/latest/horizontal planes/smart/smart orchestrator.html

Potential features

All the features for the project have been implemented. However, newer versions may
incorporate ClusterAPI for provisioning, upgrading, and managing multiple clusters
resources.

Encapsulation readiness

Full functional Helm package ready

Integration with other
enablers

The enabler is integrated with the PUD to be used as the Metrics Server.

4.1.2. SDN Controller

4.1.2.1. General specifications and features

Enabler SDN Controller
Id T42E2
Owner and support OPL

Description and main
functionalities

SDN Controller is the part of programmable network management system (control plane)
to control network devices i.e., software switches based on OpenFlow protocol, including
configuring, monitoring and management of packet flows. The main functionalities are
related to network management, operation and maintenance, allowing topology
management, network configuration, network control and network operations, among
other features.

Key features

e Network topology configuration,
e Monitoring of network elements,

e Packet flows configuration.

Plane/s involved

Smart Network and Control Plane

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 24 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Enabler

SDN Controller

Requirements mapping

R-P3A-11: Connectivity between OEM and fleet (it provide connectivity setup
and control)

R-P3A-12: Edge Connectivity (it provides network core connectivity for edge
systems)

Use case mapping

Not applicable directly in the pilots as it requires SDN equipment. It is envisioned to any
of'use cases in which SDN network or 5G virtualised edge access will be deployed as well
as for other enablers related to programmable network. Among pilot’ use cases, it would
be involved for mission critical systems:

UC-P1-6: Wireless remote RTG operation
UC-P2-6: Safe navigation instructions
UC-P3B-1: Vehicle’s exterior condition documentation

UC-P1-7: Target visualisation during RTG operation

Internal components

GUI
Northbound API

Configuration, Control, Topology component
Southbound API

4.1.2.2. Structure, components and implementation technologies

The SDN Controller is the key element of an SDN network, implementing control plane functionalities related
to network management, traffic management and monitoring. In a typical controller architecture (see high-level
architecture in Figure 10), one can distinguish core functional modules like Configuration, Control, Topology,
and Northbound (NB) and Southbound (SB) APIs.

OO

-~

3

Graphic User Interface

Northbound AP1

Southbound API /

For implementation in the project the open source ONOS controller was selected. The version for K8s
deployment with Helm chart was developed. The main components are depicted in the table below:

Component Description Technology/s
Northbound API provide REST API and new generation interfaces
p g
Northbound API using gNMI, gNOI, P4Runtime, NetDisco. It is needed for developing Java

applications for network control and orchestrations and can be used by
other external enablers.

Southbound API provide protocols like NETCONF and new generation
Southbound API interfaces using gNMI, gNOI, P4Runtime, NetDisco. It is needed for | Java
network devices control provided by different vendors.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 25 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

This component is responsible for network flow control and meter API.

network devices, links, and hosts.

Control Module It allows for network routing and traffic management. Java, REST API
Configuration This 'component is i.n charge of copﬁguration of network devices, Java. REST API
Module tracking the changes in the configuration of the network. ’

This component is responsible for topology management of the
Topology Module network. It manages and keeps information about the network graph and | Java, REST API

Graphic User
Interface

This component will expose the functionalities of the internal modules
of the SDN Controller for administrative purposes.

Java, REST API

4.1.2.3. Communication interfaces

Method URL Description
— 5 Py—— . . .
GET/POST/ NMink/ ?{device=deviceld} L1st§ all infrastructure links, creates, update, deletes
PUT/DELETE {port=portNumber} device
{direction=[ALL,INGRESS,EGRESS|}
GET/POST/ /devices/{deviceid}/port Lists all infrastructure devices, creates, update, deletes
PUT/DELETE | '“¢Viceshaeviceidy/ports device
GET/POST/ Lists all end-stations hosts.
PUT/DELETE /hosts/{hostId}
GET /topology/clusters/{clusterld} Gets list of topology cluster overviews.
GET/POST Gets set of pre-computed shortest paths between the
/DELETE /paths/{elementld;/{elementld} specified source and destination network elements
GET/POST . Creates, lists, deletes a single flow rule applied to the
/DELETE /lows/{deviceld}/{flowld} specified infrastructure device
GET/POST . Creates, lists, deletes a single meter entry applied to the
/DELETE /meters/{deviceld; specified infrastructure device.
GET/POST . .y s . Gets the details for the given Intent object. Creates,
/DELETE /intents/{app-id}/{intent-id} deletes a new Intent object.
GET/POST/ /applications/{app-name} Gets a list of all installed applications. Activates,
PUT/DELETE PP PP deactivates the named application.
Gets the configuration values for a single component.
GET/POST . .
/configuration/{component} Adds, removes a set of configuration values to a
/DELETE
component

NOTE: Extended information can be found in the enabler documentation.

4.1.2.4. Enabler stories

The usage of SDN controller enabler is envisioned in many applications and for other enablers needs that require
the network control and monitoring features. Three exemplary stories are presented below, being the flow almost
identical (the major change is on the SDN controller internal function consumed).

The first enabler story is related to the configuration of a programmable network device (switch), following

the sequence and related steps:

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the
configuration of the given device with specified parameters.

STEP 2: The NB API receives the configuration and sends the request to the configuration module for
processing and formatting.

STEP 3: Configuration module sends the configuration request to SB API in the required format.

STEP 4: SB API sends in a given format the configuration request to the selected device.
STEPS 5-7: A message of the result of the operation is returned to back to the NB APIL

STEP 8: Once the process has finished, the API returns a confirmation message.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 26 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
User/
Application
Northbound - Southbound
Configuration

i API 9 API
! 1. Request (parameters) ' 1 : :
: T : : !
' i1 2 Device configuration request _ : E
1 o " 3. Send configuration ! !
E b v parameters : 4. Configure device ‘:
' [i ™ i
I L | i i] 5 Return i)
1 [e 6. Return LR LR EE LR R e -
; L 7. Return O iR LE DL - I
. L L L EETTEPERR ' ! :
. 8. Return . | ; |
M | ! !

I 1
Figure 11. SDN controller ES1 (device configuration).

The second enabler story shown is related to the deployment of an intent, which essentially specifies how
the network should behave in terms of policies or directives rather than specific actions. The flow and steps are

the following:
Northbound Southbound
API API
) 1 \ H

User/
Application
1. Request (parameters '
! a0 i "

2. Intent object parameters |

4. Enforce intent actions

7. Return I R R LT s

1 8. Return

Figure 12. SDN controller ES2 (intent deployment)
STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the
intent object action with specified parameters.

STEP 2: The NB API receives the request and sends it to control module for processing.
STEP 3: Control module sends request to deploy intent in the network using SB APIL.
STEP 4: SB API enforce the intent action in the SDN network.

STEPS 5-7: A message of the result of the operation is returned to back to the NB API.
STEP 8: Once the process has finished, the API returns a confirmation message.

The third enabler story depicted is related to topology discovery. In this case, the diagram and steps are the
ones described below:

User/
Application

i Northbound Topology Southbound SDN network

1. Request (parameters)

2 Topclogy request

3. Discover topology

6. Topology parameters

8. Topology information A CEEE T_ _C_IQI_\%(Et?Ej_'[u_p_qls)g_]!f T

.Figuru 13. SDN controller ES3 (topology t/i.s‘('m.'er_r)

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 27 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the
topology discovery.

STEPS 2-3: The NB API receives the request and forwards it to the topology module for processing, which
then sends a request to deploy a specific action in the network using SB APL

STEP 4: The SB API asks for the needed information in the SDN network.

STEPS 5-6: Information about topology is collected by the SB API module, which sends the collected
information to the topology module.

STEPS 7-8: Once processed, the topology module sends the answer with the information to NB API module,
which returns it to the user/application/enabler.

4.1.2.5. Implementation information

Category Status

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal planes/smart/sdn_controller.html

This enabler could be combined with other enablers in the project and used for application
development to manage the SDN network.

Link to ReadtheDocs

Potential features

Encapsulation Controller is encapsulated in Docker images and work in a Kubernetes cluster. Helm chart
readiness is ready to use.
Integration with other

Usage with other enablers and integrated with auto-configurable network enabler.

enablers

4.1.3. Auto-configurable network enabler

4.1.3.1. General specifications and features

Enabler Auto-configurable network enabler
Id T42E3
Owner and support OPL
This enabler provides optimised network resource management using network routing
Description and main configuration capabilities of the SDN Controller. Using an Al-based solution, it improves
functionalities the performance of the network KPI’s i.e., traffic load distribution, data losses and transfer
latency.

e Al based policy rules generation,

e Monitoring of network parameters (traffic load) and QoS parameters (data losses

Key features
and latency),

e Network resources optimisation for multidimensional KPI’s
Plane/s involved Smart Network and Control Plane

e R-PI1-20: Remote latency capabilities (this enabler can help prioritising

. . involved traffic)
Requirements mapping

e R-P3A-12: Edge Connectivity (it provides network core connectivity for edge
systems)
Not applicable directly in the pilots as it requires SDN equipment. It is deployable in any
of use cases in which SDN network is applied. Among pilot’ use cases, it would be
involved for mission critical and video streaming systems:

Use case mapping e UC-P2-6: Safe navigation instructions

e UC-P3B-1: Vehicle’s exterior condition documentation

e UC-P3B-2: Exterior defects detection support
Internal components Policy Engine, Monitoring Module

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 28 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sdn_controller.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sdn_controller.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

4.1.3.2. Structure, components and implementation technologies

This enabler provides functionalities for optimising network configuration leveraging the SDN Controller in
programmable network environment. It assumes generation of the policies and enforces them using the
northbound APIs of the SDN Controllers. Polices are set automatically (using Al solutions: Ant Colony
mechanism) to improve the performance and quality of selected KPIs of the network (e.g., traffic load
distribution, data transfer losses and latency). Enabler provides three different strategies regarding KPI’s
optimisation: network resources, data transfer losses and latency of data transfer. Moreover, multidimensional
optimisation strategy taking into account all mentioned parameters was developed.

This enabler considers two components: (i) a policy engine, in charge of the creation of polices and their
execution in the SDN network for optimising the KPIs and the creation of routing paths. It obtains network
information through the SDN controller, and data traffic via (ii) a monitoring module, responsible for
collecting network traffic and QoS statistics. The internal structure is presented in figure below.

SO0

- ™

Policy Engine

Monitoring

For the project K8s deployment with helm chart was developed. The main components are depicted in the table
below.

Component Description Technology/s

This component is in charge of creation of polices and its execution in the
SDN network for optimising the network traffic and creation of routing paths.
Policy Engine It obtains the network information using SDN controller and data traffic and
QoS parameters using monitoring module. The optimising algorithms is
supported by Al techniques like Deep Learning and Ant Colony algorithm.

This component is responsible for collecting network traffic statistics and
QoS parameters. The monitored KPIs are: traffic load per link, data losses and | Python, Java
latency per link. Open source rt-sFlow tool was integrated.

Python, Java,
REST API

Monitoring
Module

4.1.3.3. Communication interfaces

Method URL Description

POST /enabled/{true/false} Enables/Disables the enabler
NOTE: Extended information can be found in the enabler documentation.

4.1.3.4. Enabler stories

The usage of the enabler is related to the strategies of the performance/quality parameters goal optimisation.
Three strategies were implemented, aiming at optimising traffic load optimisation, data transfer losses and
latency in the network (RTT).

A flow diagram and related steps of the enabler story is presented below, consisting in the policy-based
adaptation of the network, also considering the gathering of needed information:

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 29 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

User

% Policy Engine

Manual policy {option)
or application start/stop

Monitoring

1. Collecting th e: parameters (agent)

E J' 2. Request parameters : : Loop
| 3. Measured parameters i _: :
4. Send the rules for network
i E 5. Enforce the rules
i | 3 6. Return !
H 7.Return I !
I Aemmmmn e s -

STEP 1: The policy engine requires data from the network. The monitoring module has to collect them
previously, communicating with agents present in network nodes. This will be a continuous operation once the
enabler is on.

STEP 2: The policy engine requests the selected parameters for a given purpose (optimise the load traffic, data
losses or latency) from the monitoring module.

STEPS 3-4: After data reception, the policy module generates the rules and sends them to the SDN controller.
STEP 5: SDN controller deploys the rules in the SDN network.

STEPS 6-7: Confirmation messages are sent back to the policy engine.

The policy engine works in standalone fashion, triggering itself regularly when the new flow is coming to the

network.

4.1.3.5. Implementation information

Category Status

https://assist-iot-enablers-

Link to ReadtheDocs | documentation.readthedocs.io/en/latest/horizontal planes/smart/auto_configurable network
enabler.html

This enabler can be used for other application development to optimise the SDN network

Potential features

resources.
Encapsulation Enabler is encapsulated in Docker image and work in a Kubernetes cluster. Helm chart is
readiness ready to use.

Integration with
other enablers

Integrated with SDN controller enabler.

4.1.4. Traffic classification enabler

4.1.4.1. General specifications and features

Enabler Traffic classification enabler
Id T42E4
Owner and support UPV

In SDN-enabled networks, a controller is responsible for controlling the underlying
switches that distribute traffic according to different rules, including sources/sinks, ports
and type of traffic. Regarding the latter, it is possible that the controller is not able to

Description and main
functionalities

Version 1.0 — 31-OCT-2023 - ASSIST-1oT® - Page 30 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Enabler Traffic classification enabler

acknowledge the type of traffic of a specific packet, needing a specific SDN application
to identify it on its behalf. This enabler will be in charge of this functionality, allowing:

e Training a machine learning model to classify traffic packets, based on the
combination of different algorithms.

e To infer the type of traffic of a specific packet based on different packet
parameters.

Key features e Allows using widespread pcap files to train the models offline

e Two different types of models to train and use: CNN and Resnet
Plane/s involved Smart Network and Control Plane

Not applicable, as any pilot makes use of SDN equipment. If SDN networks were
available, it could be mapped to:

e R-P1-20: Remote latency capabilities (this enabler can help prioritising involved
traffic)

e R-P3A-12: Edge Connectivity (this enabler can prioritise traffic related to PCM
calibration updates)
Not applicable, as any pilot makes use of SDN equipment. If they had, it would fit those
use cases in which a particular traffic could be prioritised by the SDN Controller. Among
pilot’ use cases, it would be involved in those that traffic of either video streams, mission
critical systems or image data have priority:

Use case mapping e UC-PI1-7: Target visualisation during RTG operation

e UC-P2-6: Safe navigation instructions

Requirements mapping

e UC-P3B-1: Vehicle’s exterior condition documentation

e UC-P3B-2: Exterior defects detection support
Internal components API, Training module, classifier

4.1.4.2. Structure, components and implementation technologies
o oo

Traffic Classification API

Training Module Classifier

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s

API REST, acting as a central proxy of the operations that are
offered by the enabler. It is responsible of managing the API
API calls related to starting a training and an inference process. It | Flask
also includes necessary calls for preparing data used for further
training.

It will be invoked for training the ML models, ideally when an
Training module | extended or new dataset is available (mandated by a user). | scapy, torch, scikit-learn
Currently, a CNN and a Resnet models are incorporated.
Contains the functions in charge of executing the inference
Classifier process, taking a trained model and a set of packet features as | scapy, torch, scikit-learn
inputs.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 31 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

4.1.4.3. Communication interfaces

Method Endpoint Description

GET /version Returns the version of the enabler.

GET /health Returns status of the enabler (it is considered healthy if its
components are deployed and can be communicated).

GET /v1/api-export Returns the openapi specifications of the enabler.

POST /v1/preprocess Given a set of .pcap files via volume (in ML_folder/data), these

are prepared for further training.

Given a set of preprocessed files (in ML_folder/preprocessed),
POST /vl/create_train_test_set these are split in two sets for training and validation, and parcel
files are prepared.

Given a set of prepared files (in ML _folder/target), a training
POST /v1/train process is started. This may take a long time depending on the
input data volume

Returns the application of the packets of a .pcap file, considering a

POST /vl/enn_inference_app previously trained CNN model (present in ML_folder/model).
. Returns the traffic type of the packets of a .pcap file, considering a
POST /vl/cnn_inference_traffic previously trained CNN model (present in ML_folder/model).
. Returns the application of the packets of a .pcap file, considering a
POST /VI/resnet_inference_app previously trained resnet model (present in ML folder/model).
POST /v1/resnet_inference_traffic Returns the traffic type of the packets of a .pcap file, considering a

previously trained resnet model (present in ML_folder/model).

4.1.4.4. Enabler stories

Two are the enabler stories that apply to this enabler. The
first enabler story will be instantiated by a user, once the %
volume attached to the training module labelled samples
of data (in .pcap format) to use for this purpose. The story

has been updated to represent the different calls thatauser | @jPrerecessng § e
has to make to complete flow. Particularly, the steps i fraining module
related to the first use case are: i

Training module

1. The user starts the

STEPS 1-2: Before training, the .pcap files used for

3. Data preprocessed i E

training need to be pre-processed. The user starts this e T
. . . . i 3.Dat d i
process interacting with the enabler API, which forwards — ic--2-- =2 PO 10
this operation to the training module. L 4 The user makes the
. : call to separate training '
STEP 3: Once the operation has been completed, the API | somvalidationdata 5 Foruard actiontothe |
. . . . (O raining module '
is notified, informing the user.] ¥ 2 >

STEPS 4-5: Afterwards, pre-processed packets havetobe |
separated in a training and a validation set. The user starts i1 6 Damsesprovisoned | ¢
this process with the respective API call, which is then s

forwarded to the training module.

E 7. The user makes the call

STEP 6: Once the operation has been completed, the API fo start the training of the

. . . . i model (resnet/cnn - 8. Forward action to the
is notified, informing the user. . () i training module

STEPS 7-8: With the sets ready, the user can start the

training process, selecting the desired model. 8 Treiring insher and

.. E] del saved g
STEP 9: Once the training has been completed, the APl | s rrainingfinishedang (<777 T T

medel saved

is notified, informing the user. oL modelsaved iS

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 32 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

The second enabler story can be initiated by a user or by the SDN controller, related to the classification of a

packet or group of packets. In this case, the next steps are followed:

STEP 1: A external entity (user or SDN Controller) starts an inference process via APl command, making use
of previously-trained model. The .pcap file to process is attached.

STEP 2: The API communicates with the classifier to start a new process, forwarding the data received.

STEP 3: When the process is finished, a message with the inferred class is sent back to the API (much faster
than the training time, sub-second) and the launcher, notified.

SDN
Controller

Traffic

classification API

1. Sends packet/s to be 2 Forwards it to the

classified :r-: inference method
E 3. Returns packet class E E
| i when finished B
3. Returns packet class ! E‘("""""""""""""" o
when finished Vo :

4.1.4.5. Implementation information

Category Status

Link to https://assist-iot-enablers-

ReadtheDocs documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification enabler.html
In the current version, models are stored in a K8s’ persistent volume. In future releases, the enabler

Potential could be enhanced by using the FL repository enabler with that end. Also, in future API versions,

features calls can be transformed to be model-agnostic, passed via parameter, to allow the use of additional
models.

Enca.psulatlon Full functional Helm package ready

readiness

Integration with | Any integration has been performed. In case an SDN controller needs it, it should be adapted

other enablers suitably to consume the Traffic classification API.

4.1.5. Multi-link enabler

4.1.5.1. General specifications and features

Enabler Multi-link enabler
Id T42E5
Owner and support UPV

Description and main
functionalities

The main goal of this enabler is to manage different wireless access networks, so in case
the configured primary link is down a second one is up without noticing (at least, not by
the user) any kind of service disruption. The enabler offers the ability to be reconfigured
in the meantime it is running.

Key features

e Allows to maintain connection between two hosts with multiple interfaces and
select them in priority order.

e Its performance could be changed to support redundancy instead of (or jointly
with) reliability.

Plane/s involved

Smart Network and Control Plane

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 33 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Enabler Multi-link enabler

e R-P1-22: Multilink wireless network capabilities (self-explanatory).

Requirements mapping e R-P1-21: Remote reliability capabilities (in case one network fails, another can

take over, considering redundancy mechanisms)
e UC-P1-6: Wireless remote RTG operation

e UC-PI1-7: Target visualisation during RTG operation
Internal components Client/server API, Bridging component, Bonding component, VPN client/server

Use case mapping

4.1.5.2. Structure, components and implementation technologies

a D

L33
L °

Multi-link server
API

Multi-link client
APl

Bridging
component

ECHPD Client VPN Server VPN

compone nt

\ AN

s Rl

/

In the next figure one can see an implementation of the Multi-link enabler between two hosts, in this case there
are two links (Ethernet and WiFi) combined by a bond in the client side and a bridge on the server side. The
bond monitors the primary link (WiFi) and in case this link fails switch to the backup link (Ethernet). If the
primary link connection is restored, it will switch to the primary link. In other words, the devices will be
communicating all the time using the primary link except when the connection of the primary link is down.

CLIENT SERVER
eth0/103 ! | eth0/104
D : 158.42.89.0/24 1
tap1 |® < : > | tap1
bond bridge
Fed 10.8.0.253/24 wian0/100 1 wlan0/101 10.8.0.254/24 Pt

; 192 168 150 0/24 f
tap2 | M= el —> R ET

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s

API REST, acting as a central proxy of the operations that are offered
. by the enabler. It is responsible of managing the API calls related to

Client/server API start and stop the client and server, also calls to reconfigure the Express
bonding component and active testing of the enabler.

Bonding component | It will be invoked to create/configure the bond interface. Bash

as

Bridging component | It will be invoked to create/configure the bridge interface.

VPN Client/Server Create tpnnels of layer 2 (tap) for each link that compounds the OpenVPN
bond/bridge.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 34 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

4.1.5.3. Communication interfaces

Method Endpoint Description
GET /version Returns the version of the enabler.
GET /health Returns status of the enabler (it is considered healthy if its
components are deployed and can be communicated).
GET /v1/api-export Returns the Open API specifications of the enabler.
GET /vl/server/key Returns the key used by the tap tunnels
GET /v1/server/status Returns if the server side is running or not
GET /v1/client/status Returns if the client side is running or not
GET /v1/client/bond_params/{ | Returns the bond configuration of the interface provided in the URL
interface} as parameter
POST /V1/ping_test Execute. ping to the IP provided in the JSON of the request body and
— returns if it was successful or not.
Start the server side of the multilink creating the bonding component
POST IVl/server/start and the tap tunnels specified in the JSON body of the request.
/vl/server/stop/{bridging | Stop the server side of the multilink deleting the bonding component
POST . .
_component} specified as parameter in the URL.
. Start the client side of the multi-link creating the bonding component
POST /VI/client/start and the tap tunnels specified in the JSON body of the request.
/v1/client/stop/{bonding Stop the client side of the multi-link deleting the bonding component
POST — . .
component} specified as parameter in the URL.
POST {Vl/cllent/bond_p arams/{ Change the configuration parameters related to the bond interface.
interface}
POST /vl/tap_up/{tap} Bring up the tunnel interface indicated as parameter in the URL.
POST /v1/tap_down/{tap} Bring down the tunnel interface indicated as parameter in the URL.

NOTE: Extended information can be found in the enabler documentation. Specially the requests available by
each side (client and server).

4.1.5.4. Enabler stories

Although there are many operations, some of them follow the same communication schema, so they will be
grouped. The first enabler story is related with the start/stop of the server side of the multi-link enabler.
With this operation it is possible to enable/disable the server side.

i Server APl

Bridging

compone nt

2_Create/delete the vpn
tunnels for each interface
waiting for new connecfions

3. Createfdelete bridge
interface with tunnels as
slaves

1. Start/stop serverwith a
1 determined configuration i

TR L EREEP 10 5. Returns
6. Returns o

STEP 1: The user consumes the API of the Multilink-server to start/stop the server side. In the case of the start
operation the configuration of the client must be in the request body as JSON following the schema in the

OpenAPIL. If the request is for stop the server, it is needed the name of the bridging component as a parameter
in the URL.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 35 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

STEP 2: The VPN server component creates/deletes the tap tunnels specified in the bond configuration and
leave this connection opened and waiting for a connection request by the client.

STEP 3: Create/delete the bridge interface with tunnels as slaves.

STEPS 4-6: If there is any error, return error response showing the error log, if everything is correct return
successful response.

The second enabler story refers to the same as the previous one but applying it to the client side (multi-link
client start-stop).

% Client API Client VPN Server AP Bonding
\ component
! 1 Startistop clientwitha | : : |
' determined configuration J,I 2. Create/delete the vpn © 3. Get simetrickey of the)
! L tunnels for each interface Har tunnels from server ! '
! : T T ET T PTPRN i

key of the tunnels

5. Start/stop tunnels and create/delete bond
interface with tunnels as slaves

6. Returns

R
;
;
;

STEP 1: The user consumes the API of the Multi-link client to start/stop the client side. In the case of the start
operation the configuration of the client must be in the request body as JSON following the OpenAPI schema.

STEP 2: The VPN client component creates/deletes the tap tunnels specified in the bond configuration.
STEP 3: Request to the server side the key of the tunnels and start the tunnels connection.

STEP 4: The server key is received and stored in the client side.

STEP 5: The bond interface is created/deleted adding/removing the tap tunnels as slaves.

STEPS 6-8: If there is any error, return error response showing the error log, if everything is correct return
successful response.

The third enabler story explains how to change the bonding parameters (only client side has bonding
component). The steps are:

i Client API

Bonding
component

i 1.Request/Change bond |
i params request o 2. GetfApplychanges to the
L + + bond interface configuration :

' 4. Returns -

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 36 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

STEP 1: The user consumes the API of the Multi-link client to get/change the client side. In the case of changing
parameters, the configuration of the bond parameters that want to be changed must be in the request body as
JSON following the schema in the OpenAPI.

STEP 2: Apply the changes to the bonding component.

STEPS 3-4: If there is any error, return error response showing the error log, if everything is correct return
successful response.

The fourth enabler story is referred to bring up or down tunnels (tap interfaces) in the client side. It could
be interesting for test the correct behaviour of the bond, selecting the correct links in case of failures.

% Client API Client VPN

1. Request tap up/down

wnnel interface _\ 2.Bring up/down tunnel
L] interface
.
ittt S 3.Returns
4 Returns .'

STEP 1: The user queries the API of the Multi-link client to bring up/down a tunnel interface. The tunnel
interface selected is in the URL as parameter.

STEP 2: Bring up/down the interface.

STEPS 3-4: If there is any error, return error response showing the error log, if everything is correct return
successful response.

The fifth enabler story corresponds to a procedure to check the connectivity between client or server side to
another host. This request has been implemented to test the connection between the client and server side.

-

1. Request ping test

2. Returns -

STEP 1: The user queries the API of the Multi-link client to make a ping test. The IP to test the connection with
is in the request of the query.

STEP 2: Ping to the host.

STEP 3-4: If there is any error, return error response showing the error log, if everything is correct return
successful response with the ping log.

The sixth enabler story refers to the request to know the client/server status.

STEP 1: The user queries the client API to know the status of the server.
STEP 2: Check the status.

STEPS 3-4: If there is any error, return error response showing the error log, if everything is correct return
successful response with the status of the client/server (running or not).

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 37 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

X

1. Request client/server
status

2. Returns

4.1.5.5. Implementation information

Category Status

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal _planes/smart/multi link enabler.html
In the current version, the pod that creates, configures and reconfigures the bond interface
(create-bond-and-taps) needs superuser privileges due to create, modify and delete
interfaces it’s a must and it is needed the kernel of the host to do such actions. There has
been explored the alternative of doing such actions with a Kubernetes CNI plugin. In the
test realised it has been figured it out that it is not as reliable as the actual implementation
so it could be developed in a future.

Link to ReadtheDocs

Potential features

Enca.psulatlon Full functional Helm package ready
readiness
zl:l:‘el;gll;ﬁlon with other The enabler doesn’t have a direct integration with any other enabler.

4.1.6. SD-WAN enabler

4.1.6.1. General specifications and features

Enabler SD-WAN enabler
Id T42E6
Owner and support UPV

The objective of this enabler is to provide access between nodes from different sites based
on SD-WAN technology. This enabler implements mechanisms to connect K8s clusters

Description and main via private tunnels, facilitating (i) the deployment and chaining of virtual functions to

functionalities secure connections between them and/or towards the Internet and (ii) the implementation
of functions to optimise WAN traffic (via WAN Acceleration enabler)
e Provides tunnelling feature, for securing network connections between sites.
Key features e Facilitates the implementation of application-level QoS policies.

e FEasy configuration of a complex technology

The SD-WAN enabler is in the Smart Network and Control plane of the ASSIST-IoT
Plane/s involved architecture. It belongs to the building block related to self-contained networks, which are
the ones used for provisioning private networks over public ones.

. . e R-C-10: Transmission security
Requirements mapping

e R-C-11: Network optimisation

This enabler will grant a secure and optimised connection for applications and services
from different sites. Since Pilot 3b, that could be the target of this enabler, has a cloud
managed by a third-party, the enabler cannot be exploited as some network prerequisites
cannot be met.

Use case mapping

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 38 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Enabler SD-WAN enabler

e UC-P3B-1: Vehicle’s exterior condition documentation
e UC-P3B-2: Exterior defects detection support
e SD-WAN controller

Internal components * Royne
e NoSQL Database
e FEtcd

4.1.6.2. Structure, components and implementation technologies

The SD-WAN enabler was initially designed with a central and (some) edge components, however, they will
be finally realised as independent enablers. This change is motivated mostly for deployment reasons, as an
SDWAN edge must be deployed independently on each cluster that will be included within the SD-WAN
managed architecture. The functionalities of the WAN optimisation enabler will be combined with the original
SD-WAN edge component. Hence, the present enabler will comprise the central elements, which will be in
charge of automatically controlling the SD-WAN edges and hubs, enabling and securing the connections. Its
structure is presented in Figure 27, consisting of the following elements:

e

o0

SD-WAN
controller

(via K8s API)

(S

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s
Component in charge of managing the aspects related to SD-WAN
SD-WAN communication, including overlays, IP provisioning, tunnels, hub registration, Go
controller connections and observation and cluster addition to be managed by it. Provides
a REST API to interact with it.
Service that receives requests from the controller and dispatch K8s resources to | Go, gRPC, KS8s
Rsync the WAN Acceleration enabler and K8s resources of the involved clusters to | customer
setup the dedicated tunnels. resources
NoSQL Stores key information regarding managed clusters, hubs, overlays, IP ranges, MongoDB
Database etc.
Eted Internal metadata database used to exchange configuration between the Eted database
controller and rsync.

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 39 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

4.1.6.3. Communication interfaces

Method Endpoint Description

Endpoint in charge of creating, modifying, deleting and
/overlays getting information regarding a set of edge clusters (and
hubs) managed by the enabler.

Endpoint in charge of defining IPSec proposals that can be
used for tunnels in an overlay.

GET/POST/ Joverlays/{id}/hubs Defines a traffic hub in an overlay. Requires certificate and
PUT/DELETE kubeconfig file to be able to manage it.

/overlays/{id}/proposal

/overlays/{id}/ipranges Defines the overlay IP range used for the edge clusters.

Defines an edge cluster location (with WAN Acceleration
/overlays/{id}/devices enabler). Among other input, it required kubeconfig file and
certificate information.

/overlays/{id}/hubs/{id}/devices{id} | Defines a connection between a hub and an edge cluster.

4.1.6.4. Enabler stories

Although there are many operations, some of them follow the same communication schema, so they will be
grouped.

The first enabler story is related to the management of an overlay, which defines the clusters managed by
the enabler. The diagram and related steps are de following:

User

% SD-WAN
\ controller

1. Add/remove/edit an

overlay to be managed ') '
by the enabler .. 2. Asks/Stores information

from the database

3. Returns

' 4 Returns

STEP 1: The user consumes the API of the SD-WAN controller to create, modify or delete an edge cluster part
of an overlay.

STEP 2: The information is stored or updated in the database.
STEP 3: The database confirms that the operation has been completed successfully.
STEP 4: Once the process has finished, the API returns a confirmation message.

NOTE: The flow is identical for the enabler stories related to definition of IP ranges to be used for the
connections, and IPSec configuration proposals for an overlay.

The second enabler story is related to the provisioning and establishment of SD-WAN tunnels for edge nodes
(and hubs) belonging to an overlay. The diagram and involved steps are the following:

STEP 1: The user consumes the API of the SD-WAN controller to create, modify or delete a SD-WAN
connection (establish a tunnel).

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 40 of 93

y Yo
o0t®
Deliverable D4.3 — Final Core Enablers Specification and Implementation ass.isltfiot

STEPS 2-3: The SD-WAN Controller gathers the needed information about the overlay, the IP addresses and
IPSec proposals available from the database.

STEP 4: The Controller sends the required data to the rsync component.
STEP 5: The rsync component provisions the needed manifests and interacts with the API of the target cluster.

STEPS 6-7: If the operation is performed successfully (connection established, modified or deleted,
accordingly), a confirmation message is sent back from the API of the target edge cluster to the SD-WAN
controller.

STEP 8: Once the process has finished, the Controller returns a confirmation message.

NOTE: Although not shown in the diagram, some metadata information shared between the components is
stored in the etcd database.

User

ﬁ SD-WAN
: controller

2. Collects info about IPSec
proposals, IP ranges and
] E edge/hubs part of the overlay

5 1. Registers/modifies/deletes |
an edge cluster or a hub i

3 Returns . ' 4 Send command

E E(---------------------------- i and data 1 5. Provisions and send the ;
4 custom K8s resources :
: >
! = 6. Returns i
it 7. Returns o e LEL LI LR e -
8. Returns H R e LT -

R R EEEEEE Lty b : i '

The third and last enabler story is related to the connection of hubs with edge cluster. The diagram and
related steps are depicted below. It should be mentioned that the flow may be activated in alternative ways (for
instance, in the previous use case, when a tunnel with the edge cluster is established, the connection with a hub
can be indicated and be part of the flow as well).

STEP 1: The user consumes the API of the SD-WAN Controller to create, modify or delete a connection
(establish a tunnel) between a hub and an edge cluster.

STEPS 2-3: The SD-WAN Controller gathers needed information about the overlay, the IP addresses and IPSec
proposals available from the database and sends the required data to the rsync component.

STEP 4: The Controller sends the required data to the rsync component to setup the hub.
STEP 5: The rsync provisions the needed manifests and interacts with the API of the target hub cluster.

STEPS 6-7: If the operation is performed successfully (connection established, modified or deleted,
accordingly), a confirmation message is sent from the API of the target hub cluster to the SD-WAN Controller.

SETP 8: Then, the controller mandates the rsync to prepare the required K8s resources so the hub provisions
(modifies or deletes) the tunnel with the edge node.

STEPS 9-10: By means of custom K8s resources, the hub cluster sends in turn a set of K8s resources to the
edge cluster to set up (modify or delete) the secured connection between them.

STEPS 11-13: If the operation is performed successfully, a confirmation message is sent back from the API of
the target hub cluster to the SD-WAN controller.

STEP 14: Once the process has finished, the Controller returns a confirmation message. NOTE: Although not
shown in the diagram, some metadata information shared between the components is stored in the etcd database.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 41 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

User

i SD-WAN
: controller

i 1. Registers/modifies/deletes |
an edge cluster or a hub

2. Collects info about IPSec
proposals, IP ranges and
. E edge/hubs part of the overlay

API K8s hub API K8s edge
Database cluster cluster

3. Returns ' : 4. Send command

E E(----------------------------- J and data ; 5. Provisions and send the
HE v custom K8s resources N

1 = 6. Returns : |
o 7 Returns ! | R bttt J
t LoRLETIEIETITELIT IR EEEE L, Fotemesssessecseneseesnanan . .

E i 8. Once the tunnel of the hub is working, the controller commands | g Prepares and sends a cuslomi

14. Returns E R CEEEEE

...........................

rsync to provision a tunnel between edge node and hub . _i resource so the hub provisions *

"1 | the tunnel with the edge cluster | 10. Provisions and send the

»

»" custom K8s resources

. s 11. Returns
: |] 12. Returns | et :
13. Returns SRR T e R PP LT = :

4.1.6.5. Implementation information

Category

Status

Link to ReadtheDocs

https://assist-iot-enablers-
documentation.readthedocs.io/en/latest/horizontal planes/smart/sd wan enabler.html

Potential features

This enabler cloud be combined with other enablers in the project to manage inter-
cluster communication.

Encapsulation readiness

All components are encapsulated in a helm chart ready to deploy the enabler.

Integration with other
enablers

This enabler was specifically designed to integrate with the WAN Acceleration
enabler.

4.1.77. WAN acceleration enabler

4.1.7.1. General specifications and features

Enabler WAN acceleration enabler
Id T42E7
Owner and support UPV

Description and main
functionalities

The WAN acceleration enabler will incorporate features that will improve the connections
among the clusters and/or sites managed by ASSIST-IoT, and towards the Internet. It will
be controlled by the SD-WAN enabler for establishing tunnels and will be in charge of
implementing features to support multiple WAN links, firewalling, tunnelling setups and
traffic control, including traffic shaping. Depending on its configuration (via the SD-
WAN enabler), it could act as:

e An SD-WAN Edge component, present in each K8s cluster, with a dedicated K8s
controller and a Containerised Network function (CNF) through which traffic
goes through it. The CNF will embed functions to setup aspects such related to
IPSec, firewalling, DNS, DHCP and WAN link management, whereas a Custom
Definition Resource (CRD) controller contains all the sub-controllers to create,
query and configure these features.

e A SD-WAN hub, which will act as a middleware among clusters and/or between
them and the Internet, enabling the introduction of additional CNFs related to
security, filtering, traffic shaping, etc. Once the basic features are implemented,
the incorporation of additional ones (as CNFs) will be evaluated.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 42 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Enabler

WAN acceleration enabler

Key features

Works jointly with the previous enabler (T42E6) to provide the same features (see table
29)

Plane/s involved

The WAN Acceleration enabler is located in the Smart Network and Control plane of the
ASSIST-IoT architecture. In particular, it belongs to the building block related to VNFs,
specifically (i) for provisioning private networks over public ones, jointly with the SD-
WAN enabler, and (ii) for supporting VNFs chaining (containerised, thus CNFs).

Requirements mapping

e R-C-10: Transmission security

e R-C-11: Network optimisation

Use case mapping

This enabler will grant a secure and optimised connection for applications and services
from different sites. Since Pilot 3b, that could be the target of this enabler, has a cloud
managed by a third-party, the enabler cannot be exploited as some network prerequisites

cannot be met.
e UC-P3B-1: Vehicle’s exterior condition documentation

e UC-P3B-2: Exterior defects detection support

Internal components .

e SD-WAN CRD controller
SD-WAN CNF
e API

4.1.7.2. Structure, components and implementation technologies

The structure diagram of the enabler is presented in the Figure 31. High-level diagram of WAN acceleration
enabler. Although the CNF exposes an API, this will be only consumed by the enabler’s dedicated K8s
controller, which will be triggered via the host’s K8s API as a response to a user command, or after a call from
the SD-WAN enabler. In addition, the enabler has an API to interact with it.

~

WAN Acceleration Enabler

CR Change
’7—1‘-

b4

SD-WAN Apply CR

CRD Controller

Create/Delete CR

A

Server

~

/

As aforementioned, the WAN Acceleration enabler is composed of three main elements, as one can see in the

figure below:

Component Description Technology/s
ovn4nfv-k8s-
SD-WAN CRD | Component that will receive API calls from the K8s API of the cluster to Ic) 11;%:;1; lifssource
Controller configure the CNF component. .
definition
controller
The CNF will embed functions to setup aspects such related to IPSec, OpenWRT
SD-WAN CNF | firewalling, DNS, DHCP, and WAN link management, exposing and API to be IPSec ’
controller/queried.
The API component contains an easy-to-use interface to create, list or delete all
API configuration related to internal management, such as firewall rules or mwan3 Python
policies. This component interacts directly with the K8s API server rather than
with other components.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 43 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

4.1.7.3. Communication interfaces

Method Endpoint Description
To create, list or delete firewall zones in
GET/POST/DELETE /api/v1/firewall/zones/{zone-name} | which to include rules for inter-cluster
traffic.
GET/POST/DELETE /api/vl/firewall/snats/{snat-name} | To create, list or delete firewall snat for
cluster configuration.
GET/POST/DELETE /api/v1/firewall/dntas/{dnat-name} | To create, list or delete firewall dnat for
cluster configuration.
GET/POST/DELETE /api/vl/firewall/forwarding/ To create, list or delete firewall forwarding
{forwarding-name} for cluster configuration.
GET/POST/DELETE /api/v1/firewall/rules/{rule-name} To create, list or delete firewall rules for
cluster configuration.
GET/POST/DELETE /api/vl/mwan3/policies{policy- To create, list or delete mwan policies for
name} the cluster configuration.
GET/POST/DELETE /api/vl/mwan3/rules/{rule-name} To create, list or delete mwan rules for the
cluster configuration.
GET /api/vl/version Get version of the enabler deployment
GET /api/v1/health Get health status of the enabler deployment
GET /api/v1/api-export Get API swagger

4.1.7.4. Enabler

stories

The first enabler story is related to the depicted endpoints will always follow the same flow, either for
configuring or querying the CNF components. The uses cases are related to WAN interfaces, policies, firewall
and MWAN3 as explained before and the diagram involved steps are the following:

|
1
i
i 1. Create, list or delete a K8s |
custom resource

8. Returns

] modified accordingly i

CRD Controller

2. The custom resource is

3. The CNF is configured/ :
queried accordingly !

API edge/hub

K8s cluster

4. The corresponding

7. Returns

3+, configuration is applied

STEP 1: The user interacts with the WAN Acceleration API to create, list or delete firewall/mwan3 custom
resource developed for the enabler.

STEP 2: The petition is sent from the API to the CRD controller and modified accordingly.

STEP 3: The controller performs the required action, interacting with the API exposed by the CNF.

STEP 4: The WAN Acceleration enabler applies the configuration via the API edge/hub K8s cluster.

STEPS 5-8: Once the process has finished, the WAN Acceleration API will return the confirmation message,

based on the response from

K8s cluster API message.

The second enabler _story is related to get the version, health and API swagger of the enabler (common

endpoints). The steps are the following:

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 44 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

E 1. Get version, health or API
| swagger

-
L
Catl

2. Returns the information
in JSON format

STEP 1: The user sends a request to the API endpoint to receive the common endpoints data such as the versions
available, health status or API swagger information of each version.

STEP 2: The API returns the information to the user in JSON format.

4.1.7.5. Implementation information

Category Status
Link to https://assist-iot-enablers-
ReadtheDocs documentation.readthedocs.io/en/latest/horizontal planes/smart/wan acceleration enabler.html

Potential features

This enabler cloud be combined with other enablers in the project to manage inter-cluster
communication.

Encapsulation
readiness

All components are encapsulated in a helm chart ready to deploy the enabler.

Integration with
other enablers

This enabler was specifically designed to integrate with the SD-WAN enabler.

4.1.8. VPN enabler

4.1.8.1. General specifications and features

Enabler VPN enabler
1d T42ES8
Owner and support UPV

Description and main
functionalities

This enabler will facilitate the access to a node or device from a different network to the
site’s private network using a public network (e.g., the Internet) or a non-trusted private
network. The site’s network will be considered trusted, so VPNs will not be needed to
connect nodes or devices that belong to it.

It should be highlighted that SD-W AN enabler will be the primarily choice for connecting
sites’ networks while VPN will (primarily) connect particular external elements to the
site’s network since VPN lacks both network and application-level performance
optimisation, and it requires extensive manual effort to add different sites to the entire
WAN.

Key features

e Secure access of devices to a site’s network

High scalability deployment for enabling the integration of a very large number
of devices

Plane/s involved

Smart network and control plane

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 45 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Enabler VPN enabler

. . e R-C-10: Transmission security
Requirements mapping

e R-C-25, Holistic security/privacy approach
Project’s use cases will be executed primarily with on-site networks. However, in case

Use case mapping that any device with external connectivity is needed to be integrated, the VPN enabler will
be used to boost security.
Internal components API, VPN server

4.1.8.2. Structure, components and implementation technologies

External network . Site's network
E oo s
A 4 E.
- - H
: VPN Server API

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s
API Thls cqmponent allows users to configure the VPN server and manage the Node.js, Express
clients, interfaces and keys.
Component that will setup the VPN tunnels with the clients and support the .
VPN server traffic from/to the connected clients. Wireguard
VPN client Installed in the devices that want to connect to the network site, it has to be Wireeuard
s compatible with the technology used for the server side. gl

NOTE: Wireguard has been selected for performance and scalability reasons, however, other technologies
could have been chosen.

4.1.8.3. Communication interfaces

Two interfaces are exposed in this enabler, the API so users can configure and manage it, and the VPN server
itself, which must be exposed to accept the connections from the external devices.

Method Endpoint Description

GET /info Adds an interface to be bonded

GET /info/conf Gets a list of managed interfaces

GET Ikeys Modifies the order of priority among the managed

interfaces
Endpoint to get information about a client, eliminating

GET/POST/DELETE /client it, or activating it.

DELETE /client Returns the list of clients registered in the server
PUT /client/enable Enables a client with the specified the public key
PUT /client/disable Disables a client with the specified the public key
VPN Tunnel Dedicated port Port to connect VPN clients to the VPN enabler

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 46 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assis;c-iot

4.1.8.4. Enabler stories

The enabler stories remain unchanged with respect to D4.2. The first enabler story of this enabler appears
when a user wants to obtain information about the network interface of the VPN server. Its diagram and
related steps are the following:

STEP 1: The user makes an HTTP GET request to the API to obtain the information about the VPN server
network interface.

STEP 2: The API executes interacts with the VPN server to get the information.
STEPS 3-4: The output returned by the server is sent to the user via the API, finishing the operation.

User

o

1. Get VPN interface info

! 2. Get VPN interface info

4. Returns interface info

NOTE: The flow is identical for retrieving the configuration file of the network interface (in step 2, considering
another command).

The second enabler story is to generate the needed keys to create a new VPN client. The diagram and the
involved steps are the following:

User

VPN Server

>

1. Generate keys

] 1
]]
] i
] i
] i
] i
] 1
] 1
E '.JI‘ y 2. Generate keys i
|] 3. public, private and |
\ i pre-shared keys |
! 4. public, private and ! :..q ____________________________ :
! pre-shared keys | I
(s i !
i 5. Create client using] '
: the generaled keys | | |
4 i
! ' i
i] 5. Create VPHM client . !
: ' : i
i i] 1 |
! b] 7. Set VPN peer !
" [) i
]]
! L 8. Client created ! |
l 5 T !
i i i
H | i 9. Save client - i
i i] 1 - _:
(] " i
: | 10. Client saved o
] | m = m
1 11. Necessary data for the | r: :r i—
i VPN connection] ! !
[1 | !
] [[i
i [i i
: i i

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 47 of 93

)
o0
Deliverable D4.3 — Final Core Enablers Specification and Implementation ass‘isltfiot

STEP 1: The user makes an HTTP GET request to the API to generate the needed keys to create a new VPN
client.

STEP 2: The API forwards the action to the VPN Server.

STEP 3: The VPN Server generates the needed keys (public, private and pre-shared) and returns them to the
APL

STEP 4: The API passes the keys to the user. With these steps, the client keys are provisioned but the client is
not enabled yet. To enable it, the following flow applies, initiated by the user:

STEP 5: A user makes an HTTP POST request to the API to create a new client, attaching the pre-shared and
the public keys in the request body.

STEP 6: The API assigns an IP address of the VPN server subnet to the new client and communicates with the
VPN server to provision the client, using the provided keys and the assigned IP.

STEP 7: The VPN server adds the new client to its configuration and to the network interface.
STEP 8: The VPN server returns the result of the operation to the APIL.

STEP 9: The API sends an HTTP request to the LTSE API to save the information of the new client.
STEP 10: If it is stored successfully, the LTSE returns a confirmation.

STEP 11: Finally, the API returns the necessary data (server public key, client IP, ...) to configure a client and
establish a connection to the VPN server.

The third enabler story is to delete a VPN client. The diagram and steps are the following:

User
LTSE
% m

1. Delete a client

2. Delete VPN client

‘-H-:' Tu
i T |3 Remove VPN
i peer
4. Client deleted H

..............................

5. Delete client

6. Client deleted

' 7. Return =
- \

STEP 1: The user makes an HTTP DELETE request to the API to delete the client specified by its public key.
STEP 2: The API forwards the action to the VPN Server.

STEPS 3-4: The VPN server removes the client from its configuration and from the network interface, returning
the result of the operation.

STEP 5: The API sends an HTTP request to the LTSE API to delete the client.
STEP 6: If it is deleted successfully, the LTSE returns a confirmation.
STEP 7: The API returns the result of the operation.

The fourth enabler story is to enable/disable a VPN client. The VPN server does not distinguish between
creating and enabling a client, nor deleting and disabling it. However, thanks to the LTSE, the keys and internal
IP addresses are kept in case clients are enabled or disabled. The diagram and involved steps are the following:

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 48 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

User

>0
34

= 2. Get client infermation

3. Client information

1. Enable/Disable a client

.

9. Client enabled

P,

STEP 1: The user makes an HTTP PUT request to the API to enable the client specified by its public key.
STEPS 2-3: The API sends an HTTP request to the LTSE API to obtain the client data, which returns it.

STEP 4-6: The APl communicates with the VPN server to create or delete the user. It also adds/removes the
peer to its configuration and to the network interface, returning the result of the operation.

STEP 7-8: The API sends an HTTP request to the LTSE API to update the client (set enabled field to true). If
everything is OK, the LTSE API returns an answer to the APL

STEP 9: The API returns the result of the whole operation.

The fifth (last) enabler story is to connect to the VPN using a client. To that end, a user has to configure an
external VPN client. The diagram and involved steps are the following:
User

o B B3

1. Configure a VPN connection -

e

2_ Establish VPM connection

; 3. Check client credentials,
] configure and stablish
the connection

5. VPH connection status

J-------'q--------------

STEP 1: The user configures a VPN connection and starts the connection process using a client.
STEP 2: The client tries to establish a connection to the server exposed by the VPN enabler.

STEP 3: The server checks the client credentials (the keys) and, if the credentials are valid, establishes the VPN
connection.

STEPS 4-5: Information about the connection is sent to the client, which can be seen by the user.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT® - Page 49 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

4.1.8.5. Implementation information

Category

Status

Link to ReadtheDocs

https://assist-iot-enablers-
documentation.readthedocs.io/en/latest/horizontal planes/smart/vpn enabler.html

Potential features

Any additional feature is foreseen to improve this enabler.

Encapsulation readiness

Full functional Helm package ready

Integration with other enablers

The VPN enabler can work in a standalone fashion, however, an integration with
the LTSE has been made to use it as backup of the tunnel and clients information.

4.2. Data Management enablers

4.2.1.

Semantic repository enabler

4.2.1.1. General specifications and features

Enabler Semantic Repository (SemRepo)
Id T43E1
Owner and support SRIPAS

Description and main
functionalities

This enabler offers a “nexus” for data models and ontologies, that can be uploaded in
different file formats, and served to users with relevant documentation. It supports files
that describe data models or data transformations, such as ontologies, schema files,
semantic alignment files, etc. Also, human-readable documentation for the models is
served. This enabler is designed as a public (i.e. network-wide) source of data models
(with metadata) to facilitate data interoperability and sharing in a semantic ecosystem.

Key features

e Versioning: different versions of data models,
e Metadata: arbitrary information about the models can be stored.
e Provision & search: data models are public and browsable,

¢ Documentation: automatically compiled from source files to HTML and served
to end users.

e Webhooks: notifying other actors about changes to the models.

Plane/s involved

Data Management Plane

Requirements mapping

R-P2-15, R-C-1, R-C-2, R-C-6, R-C-14

Use case mapping

UC-P2-1, UC-P2-2, UC-P2-3, UC-P2-4, UC-P2-5, UC-P2-6

Internal components

API server, database, file storage

4.2.1.2. Structure, components and implementation technologies

The Semantic repository has three components, where the API server serves as a gateway to the rest of the

enabler.

L -

API server
(Scala, JVM)

Database
(MongoDB)

File storage
(MinlO)

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 50 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/vpn_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/vpn_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s
Provides a high-performance streaming HTTP API for the enabler, based on | Scala, Akka, Akka

API server REST principles. Handles all user requests and performs background | Streams, Java
maintenance tasks. Virtual Machine

Database Stores the information about the models, documentation, metadata, MoneoDB
webhooks, and other. Highly scalable. &

File storage Stores the actual models. Supports storage tiering and is highly scalable. MinlO

4.2.1.3. Communication interfaces

This enabler communicates through the REST API, organised by namespaces and model identifiers. Each model
(i.e. the stored piece of data) is contained within a namespace, has a version ID, and may include more than one
file format (for a single data model). Most of the endpoint URLs contain the version id fragment, which may be
for example numeric, conforming to the Semantic Versioning standard, or almost any other string. To specify
the latest available version, “latest” should be used as the version id.

As the Semantic Repository enabler has a rich API, only the most representative portion of it is presented here.
The full REST API documentation can be found in the enabler documentation: https://assist-iot-enablers-
documentation.readthedocs.io/en/latest/horizontal planes/datamanagement/semantic_repository enabler.html

#rest-api-reference.

Method Endpoint Description
GET /v1/m Lists available repositories.
POST/PUT/ /v1/m/{namespace id} Creates (POST), updates (PATCH), or removes
DELETE P (DELETE) a specified namespace and its settings.
GET /v1/m/{namespace id} Returns.thc.a settings of the namespace and lists
models in it.
. . Returns the metadata of the model and lists the
GET /vl/m/{namespace id}/{model id} available versions of the given model.
Creates (POST), updates (PATCH), or removes
POST/PUT/DELETE {vl/m/{n:ilme.space id}/{model (DELETE) me.tadata ofa ve.rs1on.0f a model
id}/{version id} (version, creation data, modification date,
description, etc.).
GET {vl/m/{nﬁ.lme.space id}/{model Returns the metadata of the given model version.
id}/{version id}
POST/ /vl/m/{namespace id}/{model Sets (POST) or removes (DELETE) a specified file
id}/{version id}/content?
DELETE from the server.
format={data format}
Returns the specified version of a data model in a
GET /vl/m/{namespace id}/{model given format.
id}/{version id}/content? E.g., /raul/saref/1.1/content?format=rdfxml returns a
format={data format} ‘saref” model from repository ‘raul’ in version 1.1 in
file format RDF/XML
{Vl/m/{m.lmespace id}/{model Uploads source files for documentation compilation
POST id}/tversion with the specified compilation plugin
id}/doc_gen?plugin={plugin} P P piugin.
/vl/m/{namespace id}/{model .
GET id}/{version id}/doc/{file name? Returns the documentation for a model.
DELETE {Vl/m/{m’lme.space id}/{model Deletes the documentation for a model.
id}/{version id}/doc
. . Requests a compilation of a set of documentation
? =
POST /v1/doc_gen?plugin={plugin} source files in « sandbox » mode, with a given

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 51 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html%23rest-api-reference
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html%23rest-api-reference
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html%23rest-api-reference

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Method Endpoint Description
compilation plugin. The ID of the new job is returned
to the user.
S Returns the status of a documentation compilation
GET /vl/doc_gen/{job_id} job with the given ID.
GET /vl/doc_gen/{job_id}/content/{file} Returns the content O.f a given output file for a
— - documentation compilation job.
POST /vl/webhook Creates a new webhook.
GET /vl/webhook Retrieves the list of registered webhooks.
. Retrieves the details of a given webhook (GET) or
GET/DELETE /vl/webhook/{webhook_id} deletes it (DELETE).

4.2.1.4. Enabler stories

The first enabler story of this enabler is related to the modification of metadata, which allows a user to modify

the metadata of namespaces, models, model versions, and other objects in the Semantic Repository. This is
done via an HTTP REST interface, following the sequence diagram and steps specified below:

User

i API server

1. Send update request

4. Acknowledge update

D R e L P T 5

2. Update document i

3. Return update result H
o

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server instructs the database to update an appropriate document with the new metadata,
which returns the updated result.

STEP 4: The API server reports the update result to the user.

The second enabler story refers to the request of metadata, which allows a user to retrieve the metadata of

namespaces, models, model versions, and other objects in the Semantic repository.

User

1. Send request

] 4. Return result

2. Retrieve document ™

3. Return document

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server requests the needed information from the database, which returns it.

STEP 4: The API server returns the metadata to the user.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 52 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

For each model, there can be many versions in the Repository, and for each such version there can be multiple
available formats.

The third enabler story involves allowing a user to upload a file representing a given model, with an
associated version and format. The Semantic Repository stores the file, records the upload, and automatically
triggers documentation compilation, if there is an appropriate documentation plugin available. Documentation
compilation is performed asynchronously.

User
; 1. Upload file ,-i-. E ;

2. Stream file 1o storage

) 3. Acknowledge write 1 |
e £ ;

4. Update document

STEP 1: The user uploads a data model to the API server.

STEPS 2-3: The API server forwards the file stream to file storage, which acknowledges the successful upload
of the file.

STEPS 4-5: The API server requests a document update in the database, which returns an updated result.

STEP 6: The API server acknowledges the successful upload to the user and returns additional metadata (e.g.,
MDS5 checksum).

The fourth enabler story is related to the downloading of data models and documentation pages via the API
server.

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server requests the needed file from file storage, which returns a stream of the requested
file.

STEP 4: The API server forwards the file stream to the user.

User

i

1. Request file download

. s

2. Retrieve file ,:_
5"

3. Stream file from storage

The fifth _enabler story is about uploading source documentation files. The steps are the same for both
documentation assigned to a specific model and for the documentation sandbox. The only difference is in the

Version 1.0 — 31-OCT-2023 - ASSIST-10T®- Page 53 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

used API endpoints and the internal data structures in the database. Although the process described here relies
on a series of steps, in reality the system heavily uses asynchronous messaging and pipelined streams. Thus, the
whole process is very efficient and avoids caching the documentation files in memory.

User

i File storage Database

1. Upload source files

.

2. Stream files to storage

-
"
i
"

P
E 1]
'
v
F]
-

3. Acknowledge write ;
PSS Rohbiyihotinlofl i SRR

4. Create documentation compilation job

6, Return documentation | | H
job identifier i 5. Return upidate result

g]

-

7. Enqueue documentation job

B. Retrieve source files

9, Stream source files .:']

10. Compile documentation

11. Upload compiled documentation :
il -4

d
12, Acknowledge write '] !
H)

-

!

[i 13, Update docurr;entatmn status i
! 4

! ;“c 14, Return update'resull - 1]

STEP 1: The user sends an HTTP request to the API server. The request contains the compressed source files
and instructions for which plugin to invoke.

STEPS 2-3: The source files are saved to file storage for future use.

STEPS 4-5: A new documentation compilation job is created in the database. The job is assigned a random,
unique ID.

STEP 6: The user gets the response acknowledging the start of documentation compilation. The response
includes the compilation job ID, which can later be used to check the status of the job (use case 6).

STEP 7: The API server adds the compilation job to the immediate job queue.

STEPS 8-9: The appropriate compilation plugin picks up the job from the queue and retrieves the needed files
from storage (streaming).

STEPS 10-12: The plugin compiles the documentation and streams the result to file storage.
STEPS 13-14: The status of the documentation job is updated in the database.

The last (sixth) enabler story is related to retrieving the status of a previously requested documentation
compilation job. This is applicable to both documentation associated with a specific model and the
documentation sandbox.

STEP 1: The user requests the status of a documentation job with a given ID. The ID was previously given to
the user when requesting the job (use case 5).

STEPS 2-3: The API server checks the status of the documentation job in the database.

STEP 4: The status is returned to the user, including the information on whether it is in progress, succeeded, or
failed. If the job failed, an error message is included.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 54 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
User
%
o1 Request documentation I
' status ‘ :
* >ty :
i '+ 2 Check documentation job status _
. . T 3. Retn document 1§
: 4. Return status i
4.2.1.5. Implementation information
Category Status
. https://assist-iot-enablers-
Link to documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository

ReadtheDocs enabler.html

The enabler is considered feature-complete for the purposes of the project. However, in the future
Potential features | the security, interoperability and documentation pluggability mechanisms could be expanded or
improved.

Encapsulation
readiness
Integration with
other enablers

A single Helm chart for the whole enabler, including all components.

Enabler can be used in standalone mode, without other enablers.

4.2.2. Semantic translation enabler

4.2.2.1. General specifications and features

Enabler Semantic translation enabler (SemTrans)
Id T43E2
Owner and support SRIPAS

This enabler offers a configurable service to change the contents of semantically annotated
data following translation rules (so-called “alignments”). The core use case is to translate
data semantics between ontologies (which can be thought of as data schemas or
vocabularies) that can express the same information, without changing the meaning of the
information.

Flexibility of design and expressivity of configuration files allow for other use-cases, such
as semantic reduction (removing selected information, e.g., because of privacy reasons),
further annotation (adding additional information based on data content and possibly
external variables), or even encoding or encrypting selected data items into a serialised
form.

Description and main
functionalities

The Semantic Translator supports RDF as the only modern standard for semantic data. By
design it supports and promotes the “core ontology” design, in which data transformations
are always unidirectional and done to, or from a central ontology, and paired into
“translation channels” to achieve bidirectional transformations. In this manner, n-to-n
translations can be easily implemented, and the cost of including a new data model in
existing deployments does not grow exponentially. Translation services are offered as a
“static” API for batch data, or through a pub-sub broker for streaming data

Key features e Transformation of semantic data

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 55 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Enabler Semantic translation enabler (SemTrans)

e Uses RDF as a standard semantic file format

e Supports translation via streaming or REST API

e Flexible architecture supporting n-to-n translation
Data Management Plane
R-P2-1, R-P2-2, R-P2-7, R-P2-11, R-P2-15
UC-P2-1, UC-P2-2, UC-P2-3, UC-P2-4, UC-P2-5, UC-P2-6
List of the internal components of this enabler

Plane/s involved

Requirements mapping
Use case mapping
Internal components

4.2.2.2. Structure, components and implementation technologies

L-X- 1. L-X-T- 3 L-X-T- 3
e i T\

Streaming broker AFI Server

translation channel
manager

Alignment
application core

NS /

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s
API Server Hittp server for REST API Pekko Http

. s RDF Processing core responsible for parsing
Alignment application core and executing alignment files over data Apache Jena
Translation channel manager | Custom messaging channels management Scala

Data Persistence for translation channels

Storage configuration and alignment files PostgreSQL
Streaming Broker Streaming message broker Apache Kafka + Verne MQTT
GUI Web interface Javascript

4.2.2.3. Communication interfaces

Component Description Technology/s

POST /alignments Upload new alignment.

GET /alignments/[{name}/{version}] gleet list of stored alignments, or retrieve a specific alignment

DELETE /alignments/{name}/{version} Remove an alignment by name and version.
Convert IPSM-AF 1.0 XML alignment (older format) into

POST /convert IPSM-AF 1.0 RDF alignment

POST Jconvert/TTL Convert cells in IPSM-AF 1.0 RDF alignment file from XML
into TTL cell format.

POST/GET /channels Create a new translation channel (POST) or list currently active
channels (GET)

DELETE /channels/{channellD} Remove a channel by ID

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 56 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
Component Description Technology/s
GET /logging Get logging level information
POST /logging/{level} Set logging level
POST /translation One-time translation using a sub-list of stored alignments
GET /version Get version information.
GET /swagger Display REST API summary with “try it out” options.
Method Endpoint Description
Pub/Sub Multiple topics Subscribe to an output topic or publish to an input topic.
Messages sent to input topic of any translation channel will enter the
Input topic Multiple topics streaming core to be semantically translated following the translation
channel configuration.
Output topic Multiple topics Output topic of a translation channel contains only the translated input
message.
I . . . If monitoring is enabled for a translation channel, the monitoring topic will
Monitoring topic | Multiple topics . . .
output short timestamp information per each processed message.

4.2.2.4. Enabler stories

The first enabler story is related to the definition/storage of an alignment. Here, a user/client is able to store
(compiled) alignment data to the Storage component triggering the following steps:

Alignment
i :

1

i

i
1. send request 'I':

i

]]
] i
i i
i i
] i
L i
i] 2. retrisve alignment 1 i
i y v Ll i
i |t 3 retumn compiled result | i
; R &
| ! ' 4. save compiled alignment Li :
! i i i
i e i [
: L 5. refurn aligniment metadata [0
| §oretumresult § 1S TTTTTTTTTTTTTToTToeoms W 4
e ek] o

STEP 1: The user/client sends an HTTP request containing the alignment data to the API server. The server
validates the request.

STEP 2: The API server sends the alignment data to the Alignment application core component for compilation.
STEP 3: The Alignment application core component returns the compiled alignment to the API server.

STEPS 4-5: The API server saves the compiled alignment data to the Storage component, which the alignment
metadata.

STEP 6: The API server returns the metadata to the user/client.

The second enabler story enables a user/client to read metadata of an alignment stored in the database. This
enabler story has this sequence diagram and steps:

STEP 1: The user/client sends an HTTP request to the API server.

STEP 2: The API server sends an alignment metadata request to the Storage component,

STEPS 3-4: The storage component returns it to the API. Finally, the API server returns the metadata
description to the user/client.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 57 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

x_

The third enabler story allows a user/client to define/create a streaming-based translation channel using
available (compiled) alignments.

Alignment Channel Streamiing
|II|HHIH%HH|IIII app“iﬂﬁnﬂ core lIIIH%Hi%HiHIIIl e lIIII!!!!IIIIII

|
i
)
1. send request =] i
]
|
i

>0

2. retrieve channel data

—a

3. retrieve alignmenis

hJ
R |

4. return result

i
5. return alignmenis '
_______________________ _

-

S) S

6. create channel

7. create topics

: 8. return result
e

)
i
]
]
I
i
]
i_ 9. return channel metadata
10. return result |
i
]
I
)

STEP 1: The user/client sends channel creation request to the API server.

STEP 2: The API server requests the Alignment application core to retrieve alignments required by the
translation channel parameters.

STEPS 3-4: The Alignment application core retrieves the required (compiled) alignments from the Storage.
STEP 5: The Alignment application core returns the resulting translation information to the API server.

STEP 6: The API server asks the Channel manager component to create necessary topics for performing
streaming translation.

STEPS 7-8: Channel manager forwards the topic creation request to the Streaming broker, which returns
channel data.

STEP 9: The Channel manager the channel metadata to the API server.
STEP 10: The API server sends the result back to the user/client.

4.2.2.5. Implementation information

Category Status
Link to https://assist-iot-enablers-
documentation.readthedocs.io/en/latest/horizontal planes/datamanagement/semantic translation
ReadtheDocs - -
enabler.html
Potential Additional features that could be added/extended in the future, now that we have more knowledge
features about it.

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 58 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
Category Status
Encapsulation A single Helm chart for the whole enabler, including all components, with alternative
readiness supplementary Docker compose file.
Integration with | Can be used standalone, or connected with any other enabler that uses the supported streaming
other enablers technologies, in particular the Semantic Annotation enabler.

4.2.3. Semantic annotation enabler

4.2.3.1. General specifications and features

Enabler Semantic Annotation enabler (SemAnn)
Id T43E3
Owner and support P03 IBSPAN

Description and main
functionalities

This enabler offers a syntactic transformation service, that annotates data in various
formats (JSON, CSV and XML) and lifts it into RDF. Annotation is configured using
CARML - a dialect of RML (RDF Mapping Language) designed for streaming
annotation. The core functionality is designed to be integrated into a streaming pipeline
before the Semantic Translation enabler. However, the enabler can be used by itself to
annotate data through streaming technologies, or REST API. A custom annotation channel
architecture supports quick creation of lightweight channels with optional outputs for
error and monitoring. For very constrained devices, this enabler can be used without the
persistence module reducing storage requirements, at the trade-off of not persisting
configuration between restarts.

Key features

e Annotation of JSON, CSV and XML into RDF
e Lightweight annotation channels architecture for streaming annotation

e Standalone mode that reduces storage requirements

Plane/s involved

Data Management Plane

Requirements mapping

R-P2-1, R-P2-2, R-P2-7, R-P2-11, R-P2-15

Use case mapping

UC-P2-1, UC-P2-2, UC-P2-3, UC-P2-4, UC-P2-5, UC-P2-6

Internal components

API Server, Streaming core, Streaming Broker, Configuration Persistence (database)

4.2.3.2. Structure, components and implementation technologies

e

T N\

-

Configuration

persistence

N/, N

API Server Streaming Broker

N

L

2

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Version 1.0 — 31-OCT-2023 - ASSIST-10T®- Page 59 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
Component Description Technology/s
Streaming
configuration Http server for the REST API Akka Http
API Server
CARML Central component responsible for parsing and applying CARML files to
. Scala + Java
engine transform data
. +

Streaming core | Custom component that manages the streaming channels S;Z::;ns Alda
Coni.”lguratlon Database for persisting configuration MongoDB
Persistence

Streaming Message broker. This enabler can be connected to an external
Streamin broker and works with MQTT and/or Kafka, supporting both even in a single
Brokerl g annotation channel (i.e. input topic and output topic do not need to use the | VerneMQ/Kafka

same streaming broker, and can be set up independently on MQTT and/or
Kafka).

4.2.3.3. Communication interfaces

The table below presents an overview of the REST interface for the Semantic Annotation Enabler. Full details
with all parameter types, example values and detailed descriptions of every endpoint are in the Swagger
documentation.

Method Endpoint Description

GET /swagger/ View the REST API documentation and Swagger interface.

Retrieve information about all channels, or a single channel (if the
optional channelld is provided). Additional parameters can be used to
GET /channels/({channelld}) retrieve information selectively, e.g. ?settings=true returns settings
information, ?status=true returns status. Parameters may be used
together.

Add a new channel definition, and optionally materialise and start the
channel. This endpoint accepts channel configuration in JSON.
Depending on initial status (written in the configuration file), the
channel may be added, but not started.

Updates the channel status with values provided in the channel status
object provided in the request body. With the channel status object, the
channel can be started or stopped, or error/monitoring topic settings
updated (see channel architecture below).

PATCH /channels/{channelld}/restart | Stop and then start a channel.

POST /channels

PATCH /channels/{channelld}

DELETE | /channels/{channelld} Stop and remove a channel.
Retrieve information about all annotations, or a single annotation (if
GET /annotations/({annotationld}) | the optional annotationld is provided). Additional parameters are

supported, similar to the GET /channels endpoint.

POST /annotations Add a new annotation to storage.

DELETE | /annotations/{annotationld} Remove an annotation from storage.

GET /version Returns software version information.
GET /status Returns global status, including errors, if there are any.
GET /settings Returns current global settings.

This enabler uses a streaming channel architecture that annotates the messages between a series of topics (see
figure below). Messages sent to the input topic are pushed through the channel and processed at different stages.
The first “input monitoring” stage outputs a simple message for any message that passes through in order to
confirm that a message was received. The processing and error stage attempts to transform the message using

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 60 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

an annotation configuration file (CARML). If unsuccessful, errors are output on the error topic. Otherwise the
annotated message passes the “output monitoring” stage (with equivalent functionality to the “input monitoring”
stage) and is finally written to the output topic. Input and output topics are always active, provided that the
channel is not stopped. Monitoring and error topics can be optionally enabled or disabled, even if the channel
is running.

input output
monitoring monitoring
topic topic
monitor
msg msg

CIN 3 . - .RDF
input O | | . |input monitoring .| processing and F output output
topic stage = error stage monitoring stage topic

franstormation: String == String
JCSVIXML]JSON] M o

Error
topic

Method Endpoint Description
Pub/Sub tl\:)[;ilz;ple Subscribe to an output topic or publish to an input topic.
. Multiple Messages sent to input topic of any annotation channel will enter the streaming
Input topic . - - . -
topics core to be semantically annotated following the translation channel configuration.
Output topic i\:)[;ilct;ple Output topic of an annotation channel contains only the annotated message.
. If error topic is configured for an annotation channel, the error topic will output
. Multiple . . o
Error topic topics information about any errors, that prevented publishing the annotated message on
P the output channel, including invalid data format and other annotation errors.
ﬁgﬁ:{gﬁpm Multiple These topics output (independently from each other) information about received
topics g topics messages (currently only timestamp).

4.2.3.4. Enabler stories

The first enabler story is related to the use of batch annotation. Using it is quite straightforward, as the service
is stateless and idempotent. All information necessary to perform annotation must be sent in a single request by
the user, who then receives the annotated result. The sequence diagram and involved steps are the following:

A

1. Request annotation

2. Prepare annotation jok

3. Return job resulis

F A

4. Return annotated data

STEP 1: User prepares annotation rules in RML and data to be annotated and sends it to the batch API server.
STEP 2: Batch API server prepares annotation job and sends it to RML Mapper.

STEP 3: RML Mapper performs annotation using data from the request and returns results — whether annotation
was successful, or resulted in an error.

STEP 4: API server forwards annotated data and any errors to the user.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 61 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Before using the streaming annotation, a channel must be configured. Channel configuration specifies
topics (input, output, and optional error topic) and annotation file to be used. Annotation files must be uploaded
beforehand, and are retrieved, using ID specified in the channel configuration information. This second enabler
story follows the next sequence diagram:

Configuration _ _

1. Upload RML !

i

2. Store RML

3. Retum RML ID

4. Forward RML ID

S et S

5. Send channel configuration
h 8. Request RML

7. Retumn RML

A

S SN, S S,

8. Send channel cnnfléuration with RML

i 1 9. Configure topics
1

10. Confirm channel creation

o'
*

R mmecccc—ce——————————————

11. Return channel creation confirmation
.

mmmmmmmmnmme T e e s — e mEmmm s m - ————————————————

R
e

STEP 1: User uploads RML file to be used later.

STEPS 2-3: The API server uses the Configuration persistence component to store RML file under a given ID,
returned by the latter component.

STEP 4: The API server forwards the stored RML ID to the user.
STEP 5: User sends channel configuration, that specifies the ID of the uploaded RML file.

STEPS 6-7: The API server retrieves a previously stored RML file from the persistence component, which
returns it (or an error, if there is no RML file stored under the given ID).

STEP 8: The API server sends channel configuration with RML file to the streaming core.

STEP 9: The Streaming core configures topics in the streaming broker and materialises the annotation channel,
storing RML and topic configuration in memory.

STEP 10: Streaming core confirms channel creation and returns channel ID and configuration information.
STEP 11: The API server forwards channel ID and configuration information to the user.

The third enabler story is the use of streaming annotation capabilities. This is performed via interaction
with the streaming broker, which exposes input, output, and optional error topics. A consumer may subscribe
to output topics, and optionally to error topics. In general, channels do not need to have an error topic configured,
and error topics can be shared by multiple channels so that errors are aggregated.

Any message published on an input topic passes through the streaming core and is either annotated and
published on the output topic, or an error is generated and forwarded to the error topic (if it exists for the given
channel). A consumer does not need to have been subscribed to the output topic to subscribe to the error topic.
In practice, consumers interested in handling annotation errors are not in the same group of interests, as “regular”
clients that publish or receive messages via the annotator. This enabler story has the following diagram and
involved steps:

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 62 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

A

Consamer

1. Subscribe fo channel oulput

Streaming Broker Streaming core %
Pmllhm

B

LW

4. Forward message

5. Return emor

7. Annotale message

Publish annotated message

STEP 1: Consumer

]
]
]
.
" 2. Subscribe to channel errors
]
]
]
]
]
]
]
]
]
]
i
"
]
i
[}
[}
]

1
1
1
1
1
1
i
:
3. Send message
‘l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

subscribes to an output topic of a previously configured annotation channel.

STEP 2: Consumer (optionally) subscribes to an error topic of an annotation channel that was configured

previously.

STEP 3: Producer publishes a message on an input topic of a previously configured annotation channel.

STEP 4: Streaming

broker forwards the message to be annotated to the streaming core.

STEP 5: The streaming core attempts to annotate the message, following the configuration of the annotation

channel. If there are

any errors, they are forwarded to the error topic of the annotation channel.

STEP 6: If there are any errors, they are forwarded to subscribers of the error topic.

STEP 7: If the annotation was successful, the streaming core publishes it on the output topic of the annotation

channel.

STEP 8: Streaming broker distributes the annotated message to all subscribers of the annotation channels output

topic.

4.2.3.5. Implementation information

Category Status

https://assist-iot-enablers-

Link to

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator
ReadtheDocs enabler html - -

with other
enablers

Potential Additional features that could be added/extended in the future, now that we have more knowledge
features about it.

Encapsulation | A single Helm chart for the whole enabler, including all components, with alternative supplementary
readiness Docker compose file.

Integration

Can be used standalone, or connected with any other enabler that uses the supported streaming
technologies, in particular the Semantic Translation enabler.

4.2.4. Edge data broker

4.2.4.1. General specifications and features

Enabler Edge Data Broker (EDB)
Id T43E7
Owner and support ICCS

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 63 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Enabler Edge Data Broker (EDB)

Description and main
functionalities

architectures.

The Edge Data Broker enables the efficient management of data demand and data supply
among edge nodes based on a publish/subscribe schema, taking account load balancing
criteria. This enabler distributes data where it is needed for application, services and
further analysis while considered essential only in those deployments that involve IoT

Broker enabler

Key features
e Common interfaces for filtering messages

e Integration with other data brokers if needed

e Subscriptions and messages between Edge Devices through the Edge Data

e Management and distribution of messages using delivery mechanisms

Plane/s involved Data Management Plane

Requirements mapping R-C-2: Data governance

Use case mapping all UCs from Pilot 2 and 3a, and UC-P3B-1 from Pilot 3b.

All pilots make use of this enabler. Particularly, the use cases UC-P1-1 to 5 from Pilot 1,

Internal components MQTT Broker, FR-Script (Filtering & Ruling Script), Auth Database, MQTT-Explorer

4.2.4.2. Structure, components and implementation technologies

QOO

VemeMQ Cluster

FR-Script Filtering & Ruling
AFI Script Node

Postgresql
AUTH/ACL

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Other MQTT Broker

Component Description Technology/s
MQTT Broker A high-performance, distributed MQTT broker VerneMQ

. A custom script that provides the ability to filter selected topics based on
FR-Script conditions and logical operation rules defined by the user. Python
Auth Database Relational database for storing user credentials and Access Control Lists PostgreSQL
MQTT-Explorer | A GUI that provides a structured overview of MQTT topics Typescript

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 64 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

4.2.4.3. Communication interfaces

Method Endpoint Description

Subscribe to an output topic or publish to an input topic through
MQTT or MQTTS protocols

Subscribe to an output topic or publish to an input topic through
websockets (ws) or secured websockets (wss)

Pub/Sub Multiple topics (mqtt, mqtts)

Pub/Sub Multiple topics (ws, wss)

GET :8888/status Web GUI for VerneMQ’s Cluster and Node(s) status
GET :8888/metrics VerneMQ’s metric exporter for PUD’s Prometheus
Method Endpoint Description

GET :8000/metrics FR-Script’s metric exporter for PUD’s Prometheus
GET :9877/docs Display FR-Script’s Swagger GUI (Listing the bellow APIs)
GET / Get all filters & rules

POST / Create filters & rules

GET [ilters Get all filters

GET [ilter/{id} Get filter

PATCH [ilters Update filters

DELETE | /filter/{id} Delete filter

GET /rules Get rules

GET /rule/{id} Get rule

PATCH /rules Update rules

DELETE | /rule/{id} Delete rule

4.2.4.4. Enabler stories

The first enabler story describes the usage of Edge Data Broker enabler’s FR-Script and its filtering
capabilities. In this scenario’s example we have four external clients connected to EDB of which two are
publishers and two are subscribers.

STEP 1: All clients get connected to EDB’s VerneMQ cluster. FR-Script works as Publisher/Subscriber client,
subscribe to topic (#).

STEP 2: Subscribers 1 and 2 subscribe to topics “test/+/alert” and “test/+” respectively.

STEP 3: Publisher 1 publishes a message to topic “test/1”. The message(topic(test/1)) is sent to FR-Script and
subscriber 2.

STEP 4: FR-Script check its filtering statements of the corresponding topic and if the conditions set by the user,
result true FR-Script creates a new topic appending a new subtopic in the existing topic tree and publishes a
new or the same payload, depending on its configuration. In this case the conditions’ result is False, so nothing
happens.

STEP S: Publisher 2 publishes a message to topic “test/2”. The message(topic(test/2)) is sent to FR-Script and
subscriber 2.

STEP 6: FR-Script repeats STEP 4 and this time the conditions results True. FR-Script creates topic
“test/2/alert” as it is configured by the user and publishes a message.

STEP 7: The message is sent to FR-Script and Subscriber 1 subscribed to topics “#” and “test/+/alert”.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 65 of 93

o) O
S5
- p—
-+~ —
o =38
\ - O
% 2=
vy nuﬂ_ o =
% i o Q
- " S ==
b e r e e e e e e e e e e e ———— e —————————_——_———_—_—_—_—_———_——_——_— = & a
o B
|| G
.......... et e -l b bt W S)
| 1 ! A 3 a
53} = k = = =
g 2 S S 5 = 8
7] i) wr wr —
2w S & = B~
T 3 5 g g =
- g B g g % o
= £ 3 3 & B i T 53
o) c o = 2 =] =] ‘A B 5
.= 3 E———F 8 2 7 2 S 3
= a a = i i © ==
= - = = = o g
5} g 2 5 3
S ks 5 = Y
O .m g e =
=y o \/ R
. —
£ O I I I IIIIIIIIIIIIIIIIIIIIT IIIIlieeeeeed- S
.. JR— <
- 3 N A [Nz 5=
o m = = 4 @
= S g 2 . & = A g
< > y e i @ A 20 2 g o 8
= & £ Eab £ 5z a |2 50 %
S e 8 £5m 2 Ex= g £ < o
= o 5 E £ L5 2 %5 @ &2 & oo
S 8 1 H 5 5% 7 s BfE 5 2 — =
T | SR i X I [g g [Spgi=
D s w b o= 2 m =R o O
3 1 : = R g 2 &0 2
o, I o = g = S =
o a (8
2 | 13 3 2 LV 2 2
............ € __________.&2_ ¥ | . ‘= ¥ | ¥ 1L ¥ _ __ L
5| | - oI BII§IIIIIIIIIIIii EIIIIIIIIIIIIIIIII I SESE R <
—_ e 8 @ = 0
e} 5 = E] —
< 5] = =% % (=N
= e £ m
[[
o m 5
o ESENG
@) > .8
= JE
= S| g
.= vl o
= = S 2
| 5 V| «»
en | EEEE | =S
A... m ||||||||| ._F|||||||||||||| e e e e e e e a7 T T < -
a] 8| =
m |||||||||| T T L =
o | MR B 802 T = »
2
e g =(.%
< SR
S [B] =
e e - p—
> @« 2
= Q m..
] = =
(@) = o

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 66 of 93

“test/#”). Then saves the message’s topic and payload and checks if there are other defined topics in its
statements. If there are and there are no saved payloads for them, waits for a message published on the rest of

them. So, it waits.

STEP 1: All clients get connected to EDB’s VerneMQ cluster. FR-Script works as Publisher/Subscriber client,
STEP 4: FR-Script check its ruling statements of the corresponding topic (in our case can be ether “test/+” or

subscribe to topic(#).
STEP 3: Publisher 1 publishes a message to topic “test/1”. The message(topic(test/1)) is sent to FR-Script.

STEP 2: Subscribers 1 and 2 subscribe to topics “!action/1” and “!action/2” respectively.

publishers and two are subscribers.

assist-iot

iond1))

Connect

Connect
Subscribe(topic(lac

Subscribe
(topic(laction/2))

VemeMQ Cluster
i
|
r:'u

S)
P
—_—— e
sy
)
e
=
1
i
=
=
i
:
i
i
:
P
[
Pt
i
P
[
Pt
!
B
0
:
:
i
i
:
S0
=1

) i
i
i
:
i

—_—
]
i
H
i

—> |
)
)
:
:

i
4

[
J

Message
[result:True]
[result:True]

for topic(test2)
(topic(differentfopic))

,-%— Message(topic(test/1))

Check ruling config
for topicitest/1),
save payload and
ruling’s statement.
!

|

i

1&——— Message(iopicitest/2))

1

i

] Check nuling config

' e

i save payload and

| wait for other topics in

i ruling’s statement.

L

i

]

i

i

: Check nuling config

] for topic(differentfopic),

!

i

]

i

!

iE—

i

!

i for topic(test/2) and

{ topic(difierenttopic)

j

i

]

i

i

1

i

]

i

]

EDBE
Connect
Construct legical operation

wait for other topics in
FR-Script removes
all used topics and

Subscribe (topic(&)

Publish{fopic(test/1

1 =
] (X} [
= [ER 1] o
= S c W
......... 43— e ;
||||||||| e = 1 =,
=3
£ =
= [T
= =
o
& g
S =
o]
I
&=
2
]
a
&
=,
|| St e e e e e e e mm e e e =
-
||| e
=
=
[v8
|| B ittt

Deliverable D4.3 — Final Core Enablers Specification and Implementation

Publisher 2 publishes a message to topic “test/2”. The message(topic(test/2)) is sent to FR-Script.

Repeat STEP 4.

STEP 5

STEP 6

Publisher 3 publishes a message to topic “different/topic”. The message(topic(different/topic)) is sent

to FR-Script.

STEP 7

- Page 67 of 93

31-OCT-2023 - ASSIST-IoT

Version 1.0

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

STEP 8: FR-Script check its ruling statements of the corresponding topic. Then saves the message’s topic and
payload and checks if there are other defined topics in its statements. This time all defined topics have
corresponding payloads saved on FR-Script so it constructs a logical operation based on logic conditions set by
the user in its configuration for topics “test/1” and “different/topic”. The logical operation results True.

STEP 9: FR-Script publishes a message on topic “laction/1” (both configured by the user in FR-Script
configuration) and the message is sent to subscriber 1.

STEP 10: FR-Script constructs a logical operation based on logic conditions set by the user in its configuration
for topics “test/2” and “different/topic”. The logical operation results True.

STEP 11: FR-Script publishes a message on topic “laction/2” (both configured by the user in FR-Script
configuration) and the message is sent to subscriber 2.

STEP 12: FR-Script removes all used topics and their payloads of its memory.

4.2.4.5. Implementation information

Category Status
Link to https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal planes/datamanagement/edge data_broker
ReadtheDocs =

enabler.html
Potential One additional feature for EDB could be an Al-based ruling configuration based on resource
features constrains.
Encapsulation Two .Helm charts for the Whole enabler, including a}l components, one’specialised for ARM
readiness Architectures and Edge Devices (GWEN, Raspberry Pi, etc.) and one specialised for x64 Ubuntu

Architectures.

EDB is able to function both independently and in connection with other enablers to support
communication between enablers and enablers with Edge devices. It is also able to be bridged
with other (MQTT) Data brokers.

Integration with LTSE’s SQL Database (PostgreSQL) used as Auth Database for storing user
credentials and Access Control Lists.

Integration with
other enablers

4.2.5. Long-term storage enabler

4.2.5.1. General specifications and features

Enabler Long-term Storage Enabler
Id T43E8
Owner and support PRODEVELOP and UPV

LTSE is the main long-term storage enabler of the project, offering different storage sizes
Description and main and individual storage spaces for other enablers (which could request back when they are
functionalities being initialised in Kubernetes pods), as well as for pilots-related data.

e NoSQL storage
Key features e SQL storage
e User control access

e Single point of management by REST API endpoints

Plane/s involved Data Management Plane

Requirements mapping R-C-6, R-C-10, R-C-14, R-C-15, R-P3A-3, R-P3A-5, R-P3B-3

All pilots make use of this enabler. Particularly, UC-P1-1, UC-P2-1, UC-P2-2, UC-P2-4,
UC-P2-5, UC-P3A-1, UC-P3A-2, UC-P3B-1

Internal components LTSE Gateway, LTSE NoSQL cluster, LTSE SQL server

Use case mapping

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 68 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assis;c-iot

4.2.5.2. Structure, components, and implementation technologies

The role of the Long-Term Storage Enabler (LTSE) is to serve as secure and resilient storage, offering different
storage sizes and individual storage space for other enablers (which could request back when they are being
initialised in Kubernetes pods). Therefore, it is considered one of the ASSIST-IoT essential enablers, envisioned
to be deployed on the cloud rather than the edge. Figure 59 depicts the high-level overview of the LTSE
components, which functionalities are also described:

OpenAPI

ohg-tefm storage enabler

noSQL_Cluster

POSTATSE/nod Enabler_ID1 Enabler_ID1
Idx (Shard1) Idx (Shard3)

PUT/LTSE/ng

DELETEALTSE/m

GETATSE/ng Enabler_ID1
-«

Idx (Shard2)

Enabler_ID1
Enabler_ID2

Enabler_ID2 —

Enabler_ID2 —

nabler_ restA Idx (Shard1) [EE (D

— o LTSE

Gateway Enabler_ID2
Idx (Shard2)

Enabler_IDi

POST/LTSE|

"

Enabler_IDn Enabler_IDi Enabler_IDi

PUT/LTSH Table1 Table2

DELETE/LTSE/SQ)

GETATSI ' Enabler_IDn
Enabler_IDn jabie2
Table1

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s

The entrance gate to the LTSE, acting as a proxy from ASSIST-IoT enablers
and external services, whose data should be collected either at SQL server
databases or NoSQL cluster nodes. To do so, the LTSE Gateway is based
LTSE Gateway on REST API request, with appended SQL/NoSQL endpoints, respectively. | GinGonic
Furthermore, the LTSE access is managed by the OpenAPI endpoint
configurations, which defines which enablers and users have access to
which data stored in LTSE.

A group of one or more LTSE NoSQL node instances that are connected
together, and carry out the distribution of tasks, searching and indexing,
across all the NoSQL nodes. Every NoSQL node in the NoSQL cluster can
handle HTTP and transport traffic by default with the external enablers
through the LTSE gateway. The transport layer is used exclusively for
communication between nodes; the HTTP layer is used by REST clients. | Elasticsearch
The full hierarchy would be therefore, noSQL_Cluster > noSQL Node >
noSQL Index > noSQL document. For High Availability (HA),
noSQL _document in LTSE noSQL Index may be distributed across
multiple shards, which in turn are distributed across multiple nodes, if
configured.

LTSE NoSQL
cluster

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 69 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Component Description Technology/s

It manages the SQL databases, formed by different enablers data tables. It

performs, hence, backup database actions on behalf of the enablers. The
LTSE SQL SQL_ServeF can handle multiple concurrent connections frgm extern‘a¥ PostgreSQL,

rver enablers via the LTSE Gateway. In general, the full hierarchy is: PosteREST

serve SQL_Server > SQL_Database > SQL _schema > SQL _table > SQL _row. &

For High Availability, a master database with one or more standby servers

could be set up.

4.2.5.3. Communication interfaces

There are a lot of REST API endpoints directly available from the ElasticSearch and PostGREST
documentation. Additional endpoints have been created for the initial management of the LTSE. They are listed

in the table below.
Method | Endpoint Description
GET /sql/schemas Lists the schemas available in the LTSE SQL server
POST /sql/schemas/{schemaname} Creates a schemaname in the LTSE SQL server
PUT /sql/schemas/{schemaname} Activates or deactivates the schema in PostGREST
POST /sql/schemas/{schemaname}/tables/{ta | Creates a table tablename into the schema schemaname of the
bleName} LTSE SQL server
PUT /sql/schemas/{schemaname}/tables/{ta | Truncates data from table tablename of the schema schemaname
bleName} of the LTSE SQL server
/sql/schemas/{schemaname}/tables/{ta | Deletes table tablename of the schema schemaname of the LTSE
DELETE
bleName} SQL server
. Inserts data into the tablename on the LTSE SQL server (from
POST /sql/api/{tablename}/ PostGREST)
. Modifies filtered or all (defined in the body) data into the
PUT /sqVapi/{tablename}/ tablename on the LTSE SQL server (from PostGREST)
DELETE /sql/api/{tablename}/ Deletes filtered or all (defined in the body) data into the
tablename on the LTSE SQL server (from PostGREST)
GET /sql/api/{tablename}/ Gets filtered or all (defined in the body) data from the tablename
on the LTSE SQL server (from PostGREST)
Creates a new index indexName in the LTSE noSQL cluster.
PUT /mosql/index/{indexName} When creating an index, you can specify the settings for the
index, mappings for fields in the index, and Index aliases
GET /nosql/index/{indexName} Returns information about indexName index from the LTSE
noSQL cluster
. . Adds a JSON document to the specified indexName index of the
PUT /nosql/index/{indexName}/document LTSE noSQL cluster
GET /mosql/index/{indexName}/document/{ | Retrieves the specified JSON document <id> from the
id} indexName of the LTSE noSQL cluster.

4.2.5.4. Enabler stories

There are 4 main enabler stories that apply in this enabler.

The first enabler story is related to the storage of NoSQL data of an authorised Enabler on a NoSQL cluster,
after provisioning an index on it. The diagram with the required steps is summarised below:

STEP 1: The Enabler IDx interacts via LTSE gateway with the LTSE, requesting to create a NoSQL storage.
STEP 2: If granted, LTSE Gateway request the generation of Enabler IDx index into LTSE noSQL_Cluster.

STEPS 3-4: LTSE noSQL _ Cluster confirms the generation of <IndexName> index and inform to LTSE
gateway, which, in turn, forwards the index details to the Enabler IDx.

STEP 5: The Enabler IDx requests ingestion of NoSQL data document to LTSE Gateway.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 70 of 93

https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html
https://postgrest.org/en/stable/references/api.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assislt-iot

STEP 6: LTSE Gateway request the ingestion of Enabler IDx NoSQL data document into <IndexName> of
the LTSE noSQL_Cluster.

STEPS 7-8: LTSE noSQL Cluster confirms the ingestion of document id into the <IndexName> index of the
LTSE noSQL_Cluster and informs to LTSE gateway, which, in turn, forwards the document details to the
Enabler IDx.

Enabler_IDx

LTSE Gateway noSQL_Cluster

1. Request storage for
allocating noSQL data

2. Request generation of a
noSAL_Index <IndexName>

| [

E 3. ACK response for the generation of <indexName=>
4. ACKresponsewith ™ — = = === ======= 5
<IndexName> o .

e

i '
3. Request ingest of documenti fo '

noSQAL_Index <IndexName= .
= o= 6. Request ingest of document to

] i noSAL_Index <IndexName=

¢+ 7.ACK response with the decument _id . |
| - into the no3CL_Index <IndexMName=
)

8. ACK response with | |«
document _id Har
P TR . mm i ™

e s e —————
h

The second enabler story is related to the retrieval of NoSQL documents with a specific <IndexName> from
the NoSQL cluster (as well as performing complex queries). The diagram and the related steps are the following:

LTSE Gateway noSQL_Cluster

' 1, Request retrieval of noSQL |
i H A
[v2 Request retrieval of noSQL document _id

: document _id from :
' noSQL_cluster/<indexName= |

i ' from noSQL_cluster/<IndexName=>

H '

Enabler_IDx

X

]
]
i
('
"
"
.

3. noSOL document _id retrieved

[LT E)

4. noSAL document _id |
L fetieved i

-
-

STEP 1: The Enabler IDx interacts via LTSE gateway with the LTSE, requesting specific data allocated into
its NoSQL storage Index.

STEP 2: If granted, LTSE Gateway request the associated information demanded into Enabler IDx
<IndexName> of LTSE noSQL_Cluster.

STEP 3-4: The LTSE gateway, in turn, forwards the document to the Enabler IDx.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 71 of 93

y Yo
o0t®
Deliverable D4.3 — Final Core Enablers Specification and Implementation ass.isltfiot

The third enabler story is related to the storage of SQL data of an authorised Enabler on a SQL server, after
provisioning the required database and table. The diagram and the related steps are the following:

Enabler_|Dx

i LTSE Gateway SQL_Server

1. Request storage for
allocating SQL data

C 3
(]

] H 2. Request generation of a
' i SQL Database :databaseMame :

3, ACK response for the

|] generation of :databaseName H |
: :(—— dygr

4. ACK response with
databaseName

SQL Table tableName

tinto Database -databaseName | :
::no alabase dalabase ame‘_‘_.s_ Request generation of a SQL Table :tableMame

into Database databaseMame

'
L
i

E 5-:? ACHK response for the generation of :lablee h.l.amgl_

8. ACK response with !
‘tableName H !

,.(........................ .-:'

9. Request ingest of data row to.
.SQL ‘databaseName/tableNama 10. Request ingest of data row
to SQL :databaseMame/:tableName

11. ACK response with the ingest of SQL data |

H] an :databaseName/ tableMame i
: ..{ -- dl:-

12. ACK response with
dataingested |

STEP 1: The Enabler IDx interacts via LTSE Gateway with the LTSE, requesting to create a SQL storage.
STEP 2: If granted, LTSE Gateway requests the generation of Enabler IDx database into LTSE SQL_Server.

STEPS 3-4: LTSE SQL_Server confirms to the LTSE Gateway the generation of :databaseName SQL database,
which, in turn, forwards the index database details to the Enabler IDx.

STEPS 5-6: Then, Enabler IDx requests to the LTSE Gateway the generation of a table into LTSE SQL_Server.
The LTSE Gateway forwards this request to the SQL server.

STEPS 7-8: LTSE SQL_Server confirms to the LTSE Gateway the generation of :tableName SQL table, which,
in turn, forwards the table details to the Enabler IDx.

STEP 9-10: The Enabler IDx requests ingestion of SQL data to LTSE Gateway, which forwards this petition
to the SQL_Server (within the table of the database provisioned).

STEPS 11-12: LTSE SQL_Server confirms the ingestion of SQL data into the :databaseName SQL database,
and :tableName SQL table of the LTSE SQL_Server and informs to LTSE gateway, which, in turn, forwards
the details to the Enabler IDx.

Finally, the fourth and last enabler story is related to the retrieval of SQL data table from a specific SQL
database of the SQL server. The diagram and the involved steps are the following:

STEP 1: The Enabler IDx interacts via LTSE gateway with the LTSE, requesting specific data allocated into
its noSQL storage Index.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 72 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

STEPS 2-3: The LTSE Gateway checks the authorisation rights of the Enabler IDx from IdM/Authorisation
enablers, which confirms or denies Enabler IDx access to the LTSE server.

STEPS 4-6: If granted, LTSE Gateway requests the associated information demanded into Enabler IDx
:tableName of :databaseName of LTSE SQL_Server, which, in turn, forwards the table to the Enabler IDx.

Enabler_IDx

5

1. Ft:equesl retrieval of SQL :tabIeNa:me
from SQL_server/.databaseName

LTSE Gateway SQL_Server

4. Request retry :*al of SQL :tableMame from SQL_sewe:f:halubaseName

5. SQAL :tableMame retrieved

L:Ei. SOL :tableName retrieved i Rt ey g
o e i O |

4.2.5.5. Implementation information

Category Status

. https://assist-iot-enablers-
Link to documentation.readthedocs.io/en/latest/horizontal planes/datamanagement/long_term_data_
ReadtheDocs

storage_enabler.html

Potential features

The enabler is considered feature-complete for the purposes of the project. However, the control

accCess

could be expanded or improved in the future.

Encapsulation
readiness

A single Helm chart for the whole enabler, including all components.

Integration with
other enablers

Enabler can be used in standalone mode, without other enablers, but its integration with Business
KPI and EDB have been successfully tested.

4.3. Application and Services enablers

4.3.1. Tactile dashboard

4.3.1.1. General specifications and features

Enabler Tactile dashboard
Id T44E1
Owner and support PRODEVELOP

Description and main
functionalities

The Tactile Dashboard enabler has the capacity to represent data through meaningful
combined visualisations in real time. Therefore, it allows the creation of fully reusable
web components that can be used to create web pages (SPA) or complex web APPs. It
also provides (aggregates and homogenises) all the User Interfaces (Uls) for the
configuration of the different ASSIST-IoT enablers, and associated components. It is
based on Prodevelop’s own open source PUI9 framework.

Key features

e Modern, responsive and in some cases adaptive web-design.

Version 1.0 — 31-OCT-2023 - ASSIST-10T®- Page 73 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Enabler

Tactile dashboard

e Based on web components, which have their own HTML template
e Embedded User control access

e Gentle learning curve, but very easy to start being productive

Plane/s involved

Application and services plane

Requirements mapping

R-P3A-10, R-P3B-5, R-P3B-6

Use case mapping

It is used in all pilots. Particularly, in UC-P1-3, UC-P1-5, UC-P2-1, UC-P2-2, UC-P2-4,
UC-P3A-1, UC-P3A-2, UC-P3B-1

Internal components

Frontend, Backend, PUI9 DB

4.3.1.2. Structure, components and implementation technologies

The following figure sketches the architectural diagram of tactile dashboard components.

/

Frontend

Backend

User
Interfaces

A

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component | Description Technology/s
The tactile frontend is what the ASSIST-IoT user interacts with. Therefore, it is .
. VuelS, Vuetify,
. responsible for most of what a user actually sees, including the definition of the
Tactile . . Datatables,
structure of the web page, the look and feel of the web page, and the implementation .
frontend o . Axios, NPM,
of mechanisms for responding to user interactions (clicking buttons, entering text,
etc.). Webpack
An HTTP server that listens to the requests coming from the tactile frontend in a
. specific port number, which is always associated with the IP address of the hosting
Tactile
backend computer. Thus, the tactile backend waits for tactile frontend requests coming to that | Java 8, Spring
specific port, performs any actions stated by the request, and sends any requested data
via an HTTP response.
It is the place to store the tactile embedded information so that it can easily be (chi‘nd::ﬁ;?es
PUI9 accessed, managed, and updated. It might store information about ASSIST-IoT pilot’s with P
database users, sensors’ data, list of daily instructions, or reports. When a user requests some PostgreSQL
data to the tactile dashboard frontend webpage, the data inserted into that page comes £ ’
Oracle, SQL
from the PUI9 database.
Server)

4.3.1.3. Communication interfaces

Method Endpoint Description
POST /login/signin Default login of the tactile dashboard
POST NloginAutzIdm/signin Login to the tactile dashboard by means of the Idm
and Authz enablers
POST /component_id/{data} Inserts into the component _id the specified {data}
. Gets the component id {data} stored in the tactile
GET /component_id/{data} dashboard database

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 74 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
Method Endpoint Description
POST /login/signin Default login of the tactile dashboard
POST NloginAutzIdm/signin Login to the tactile dashboard by means of the Idm
and Authz enablers
POST /component_id/{data} Inserts into the component id the specified {data}
PUT /component_id/{data} Updates the component id {data} stored in the
tactile dashboard database
DELETE /component_id/{data} Deletes the component id {data} stored in the

tactile dashboard database

4.3.1.4. Enabler stories

Three enabler stories are envisioned for this enabler. They refer to the user login page, to the data forms listing,
and to the access to external enablers APIs.

The first enabler story will be instantiated by a user once it opens a web browser and types in the address bar
the corresponding IP address/DNS of the instantiated tactile dashboard. Automatically, the Tactile dashboard
will prompt the login webpage over which the user should introduce his/her credentials, which will be further
evaluated in the tactile dashboard backend by querying this information to the embedded database of the
application.

User

X

1 1. Access to @ web address | H '
1 containing Tactile dashboard ' :
PUI9 application

Backend

§<2_ Shows the Login webpage |

3. Types user/password

. credentials : 1 4 Forwards the typed credentials

!] to the backend v

i 5. Requests access rights of
H [: : the provided credentials '
h ' 7. Returns credentials’ access rights, |

‘) and ds to th fihe | ! o
! and proces S 0 he opening ot the i 1 6. Returns credentials’ access rights !
' ! e main webpage S bbb bbbl 1

| 8. Shows the main webpage : : . .

STEPS 1-2: The user opens a web browser and navigates to the web address containing the PUI9 application,
and then the tactile dashboard frontend prompts the login webpage, demanding users’ credentials.

STEPS 3-4: The user types his/her credentials and click on the login/submit frontend button, which forwards
the details to the tactile backend.

STEPS 5-6: The backend communicates with the PUI9 database to collect the user’s access rights? and checks
if the user has rights to access the application.

STEPS 7-8: If the user’s credentials are approved, the backend requests to the fronted to prompt the main menu
webpage of the application to the user.

The second enabler story will be instantiated also by a user once it has been logged in accordingly. The use
case is about listing a specific data requested by the user in the corresponding menu of the application. The
diagram and involved steps are summarised below:

2 The users’ access profiles can be stored within the enabler database or taken from the external, more advanced IdM and authorisation
enablers databases, accessible by means of API commands from the tactile dashboard backend (see use case 3 of the tactile dashboard).

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 75 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

1. In a specific menu webpage,
v the user may request '
'to list the data of an application ..

assist-iot

User

X

' : 2 Forwards the request

; fo the backend 3. Queries the requested data

from the list

4. Provides the queried data

STEP 1: The user opens a web form page, and request listing a specific queried data.

STEPS 2-3: The frontend gathers the query, and forwards the details to the tactile dashboard backend, which,
in turn, demands to the PUI9 database (either PostgreSQL, Oracle, or SQL Server) the user’s requested data.

STEPS 4-5: The PUI9 database receives the backend query, compiles the requested data from the user, and
provide the details back to the backend, which in turn, provides it to the fronted.

STEP 6: The tactile dashboard frontend prints in the specific web page form, the user’s queried data.

The third enabler story may (or may not) be instantiated by the user, when he/she demands additional
information which is not collected in the PUI9 database (e.g., data stored in the LTSE or EDB), or additional
graphical functionalities not supported by the tactile dashboard (e.g., charts generation from the Business KPI
enabler), but as highlighted in the examples, by other ASSIST-IoT enablers. Therefore, instead of the logical
tactile dashboard workflow (frontend — backend — PUI9 database), the backend directly communicates with the
API of the associated enabler.

User

i Backend ASSIST-loT

Enabler

1+ 1. In a specific menu webpage, the '
\ user may request to list of data
not collected in PUI9 DB, orthe |

use of another ASSIST-loT enabler '

2. Forwards the request ,

T 10 the backend 3. Queries the requested data/f
' |]) unctionalities to the external
1 i [] ASSIST-loT enabler API :
: i 5 Provides the external : 4 Provides the queried dataffunchona\ilyi
P ! ASSISTIoTstoreddata |1 o
+ B Prints the external ASSIST-loT 1 or functionalities h] '
E enabler data/functionality [bbb bbb b e == '

...............................

STEP 1: The user opens a web form page, and request listing a specific queried data/functionality not
stored/supported by the tactile dashboard.

STEPS 2-3: The frontend forwards the details to the tactile dashboard backend, which, in turn, communicates
with the external ASSIST-IoT enabler API.

STEP 4: The external ASSIST-IoT enabler proceeds internally with the request based on the API command
from the tactile dashboard backend, and provide the requested data/functionality.

STEPS 5-6: The tactile dashboard backend receives the external ASSIST-IoT enabler response, and forwards
the information to the frontend, which, finally, prints the user’s demanded data/graphical functionality.

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 76 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
4.3.1.5. Implementation information
Category Status
) https://assist-iot-enablers-
Link to documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard enabler.
ReadtheDocs html
Potential features | The enabler is considered feature-complete for the purposes of the project.
Encapsulation The example tactile dashboard, as well as the manageability dashboard are already containerised,
readiness and a Helm chart has been created for them.
Integration with Enabler can be used in standalone mode, without other enablers, but its integration with Business
other enablers KPI, PUD, IdM, Authz, and Manageability enablers have been successfully tested.

4.3.2. Business KPI reporting enabler

4.3.2.1. General specifications and features

Enabler Business KPI Reporting enabler
Id T44E2
Owner and support PRODEVELQOP

Description and main
functionalities

The Business KPI enabler will allow to embed time-series analytics data and Key
Performance Indicators (KPIs) desired by the end-user as User Interfaces (Uls) within the
tactile dashboard in the form of graphs, charts, pies, etc.

Key features

e Web-based visualisation graphs and templates.
e Full and seamless integration with LTSE

e Embedded development tools for testing

Plane/s involved

Application and services plane

Requirements mapping

R-C-17, R-P3A-10, R-P3B-5, R-P3B-6

Use case mapping

All pilots will implement this enabler. Particularly, UC-P1-3, UC-P2-1, UC-P2-1, UC-
P2-4, UC-P3A-1, UC-P3A-2, UC-P3B-1

Internal components

The enabler is composed of (i) a server component containing the business logic engine,
accompanied with (ii) a Ul component that defines the graphical Ul that users interact
with, and (iii) a Command Line Interface (CLI) tool especially designed for developers

4.3.2.2. Structure, components, and implementation technologies

Figure 68 presents the architectural diagram of the Business KPI reporting enabler and its internal components:

- N\

//

Plugins \ |

Discover

Lens

Custom

J/

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 77 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
Component | Description Technology/s
Busi Collects data from data collectors (e.g., tactile dashboard PUI9 database, LTSE, or EDB
Klll’sl“;:srsver enablers) into a dedicated database and provides access to it to the Ul and CLI

components via an internal REST API.

Business KPI functionalities are implemented through modular plugins (Discover, Tag,
Lens, Maps, etc.), which contain the business logic and communicate with the UI and
Plugins CLI components, based on the data collected in the Business KPI server. Furthermore,
if willing to, custom plugins can also be easily integrated if needed, thanks to having a | Kipana
modular approach.

Whenever the end-user accesses the Business KPI enabler via the Tactile Dashboard
webpage, the Ul component loads all server plugins that comprise the core

Business functionalities of the Business KPI enabler. Hence, the Ul component provides an editor
KPI UI . LT S
to create and explore interactive visualisations and a set of functionalities to arrange the
visualisations according to ASSIST-IoT end-user goals.
Business The CLI component enables custom plugins built by 3™ party developers to interact with
KlIl’Il CLI the Business KPI Server, so that it is reachable from the UI to e.g., provide new data

aggregation methods, or to visualise new chart types, colour palettes, etc.

4.3.2.3. Communication interfaces

The business KPI enabler is formed by spaces and data views, which allow to customise the webpage layout for
visualisations. All graphs in the Business KPI enabler are stored as saved-objects (basically a JSON-object that
describes which visualisations are included). Therefore, the API methods are not those which allow generating
the graphs but are, however, managed with Graphical User Interfaces that connect with a specific database.
Given Business KPI enabler is based on Kibana, all the supported REST API endpoints are available at Kibana
documentation. The most relevant ones for the initial configuration are listed in the table below.

Method Endpoint Description

POST /api/spaces/<space_name> Create a Business KPI space_name

GET /api/spaces/<space_name> Retrieve a Business KPI space _name

DELETE /api/spaces/<space_name> Delete a Business KPI space_name

POST /api/data_views/data_view Create a data view with a custom title (JSON file)
POST /api/saved_objects/data-view/my-view Update <my-view> data view (JSON file)

GET /api/data_views/data_view/my-view Retrieve the data view <my-view>

DELETE /api/data_views/data_view/my-view Delete a data view <my-view>

4.3.2.4. Enabler stories

There is a single enabler story that applies to this enabler. It is related to the generation of graphs from time-
series data stored in the LTSE of ASSIST-IoT deployments. Its diagram and the involved steps are the
following:

STEP 1: The Business KPI server connects with the LTSE in order to have access to the time-series data
produced in the ASSIST-IoT deployment.

STEPS 2-3: The Business KPI server and the Plugins provide access to the time-series data from LTSE, and
the different graph types supported by the enabler to the UI/CLI, respectively.

STEPS 4-5: The user accesses to the webpage/menu of the tactile dashboard that allocates the business KPI
enabler GUI (or connects to the CLI terminal), and selects visualising data in a specific format.

STEPS 6-8: Thanks to the plugins, the user can observe the data in the demanded format.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 78 of 93

https://www.elastic.co/guide/en/kibana/current/api.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

User

E 4. Access to the webpage
of the enabler (or
wconnects fo the CLI address)

1. Connects with the LTSE

2. Provides access to the time-series data collected in the o

LTSE of ASSI&‘T—IOT deployments

-

3. Provides access te the diﬁerenti
graph types supported by the :
Business KPI enabler

E 5. Selects the data view.
and the desired graphs

6. Ask for a specific

&. Prints the demanded
data in specific format

R, AR

data formatiing)

4.3.2.5. Implementation information

Category Status
. https://assist-iot-enablers-
Link to documentation.readthedocs.io/en/latest/horizontal _planes/application/business_kpi_reporting_
ReadtheDocs enabler.html
Potential features The enabler is considered feature-complete for the purposes of the project.
Enca.psulatmn The enabler is already encapsulated, and a Helm chart has been provided
readiness
Integration with Enabler require data collected in the LTSE noSQL cluster. Its integration with Tactile
other enablers dashboard and LTSE enablers have been successfully tested.

4.3.3. Performance and usage diagnosis enabler

4.3.3.1. General specifications and features

Enabler Performance and Usage Diagnosis (PUD)
Id T44E3
Owner and support ICCS

Description and main
functionalities

PUD enabler aims at collecting performance metrics from monitored targets by scraping
HTTP endpoints on them and highlighting potential problems in the ASSIST-IoT
platform. Supported “targets” include kube-state-metrics for monitoring every kubernetes
cluster used in the project, node-exporter metrics for monitoring hardware, OS metrics
exposed by *NIX kernels, as well as other important metrics for the rest of the enablers
used in the architecture.

Key features

e Utilising the pull model to retrieve metrics over HTTP in regular intervals from
exporters that expose their metrics on an “/metrics” endpoint.

e PromQL, a very flexible query language that can be used to query the metrics in the
Prometheus dashboard. Also, the PromQL query will be used by Prometheus UI and
Grafana to visualise those metrics.

e Exporters are libraries which converts existing metric from third-party apps to
Prometheus metrics format. There are many official and community Prometheus
exporters. One example is, Kube State metrics, a service which talks to Kubernetes

Version 1.0 — 31-OCT-2023 - ASSIST-10T®- Page 79 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html#id2

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Enabler

Performance and Usage Diagnosis (PUD)

API server to get all the details about all the API objects like deployments, pods,
daemonsets etc.

e Uses time-series database for storing all the retrieved data.

Plane/s involved

Application and Services Plane

Requirements mapping

R-C-7,R-P1-16, R-P1-5, R-P2-12, R-P2-18

Use case mapping

ALL

Internal components

Prometheus Server, Prometheus-es-adapter, TargetAPI, Kube-state-metrics, Grafana
Dashboard, Node exporter

4.3.3.2. Structure, components and implementation technologies

Set Scraping
Targeis

\

WAYRY

/

Pull Metrics

Kube-state-metrics

Prometheus-es-adapter

Read\Write

Elasficsearch Storage

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s
An open-source monitoring framework. It provides out-of-the-box
Server monitoring capabilities for the Kubernetes container orchestration | Prometheus Server

platform.

Prometheus-es-

A read and write adapter for integrating LTSE’s elastic search as Go

adapter prometheus’ persistent storage.
An API that provides the ability to add, update and delete targets for
TargetAPI PUD's PromeI:heus consumptior}ll dynamiceﬁly. ¢ Python
Dashboard(s) A GUI that provides an interactive visualisation web application | Grafana /
composed of charts, graphs and dashboards. Prometheus Ul
. A listening service that generates metrics about the state of Kubernetes
Kube-state-metrics Go

objects through leveraging the Kubernetes API

Node_exporter

An exporter for hardware and OS metrics exposed by *NIX kernels, is
installed separately in every GWEN and Ubuntu device. The | Go
node exporter is designed to monitor the host system

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 80 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html#id4

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot
4.3.3.3. Communication interfaces
Method Endpoint Description
GET 19090/ Display Prometheus Ul
GET :3000/ Display Grafana Dashboard Ul
Method Endpoint Description
GET :5000/docs Display TargetAPI’s Swagger GUI (Listing the bellow APIs)
GET / Get all target groups
GET /{id} Get target group by id
DELETE | /{id} Delete target group by id
POST / Create targets
PATCH / Update targets
GET /targets Get all targets
GET /labels Get all labels
GET /lengths Get number of targets and number of labels

4.3.3.4. Enabler stories

In the first and only PUD’s use case presents the interactions between PUD enabler’s components as well as
how the enabler should be configured and used from an admin privileged user in order to monitor the whole
ASSIST-IoT system and all of its enabler components, devices, clusters etc.

STEP 1: The user should manually install node exporter in all devices (server and edge node devices) of the
system in order to monitor hardware and OS.

STEP 2: The user should also install kube-state-metrics in other kubernetes clusters that might reside on the
system in order to monitor them along the cluster that PUD resides in which kube-state-metrics is installed by
default.

STEP 3: The user should list all available metric exporter endpoints and use the TargetAPI through its rest API
in order to add them to PUD for Prometheus consumption.

STEP 4: Prometheus server fetches the posted targets through an HTTP-based service.

STEP 5: Prometheus collects metrics from the beforementioned targets by “scraping” /metrics HTTP endpoints
implementing an HTTP Pull model.

STEP 5: Prometheus server reads and writes its data using ElasticSearch as remote persistent storage utilising
prometheus-es-adapter.

STEP 6: User accesses Prometheus Ul to check the state of the available exporter endpoints and graph the
metrics using PromQL.

STEP 6: User accesses Grafana Dashboards to import or create dashboards, tables and graphs for real time
monitoring.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 81 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

ADMIN USER

X

Install Kube-state-metrics

Install Node_expiurter to edge device

' cocecivsr.)

EDGE CLUSTER

PUDE
ENABLERS

TargetAPI Kube-state-mefrics Prometheus-es-adapter

n

<—— Pull metrics

Pull
(Prometheus)
metrics

Ins!alllande_expurter to edge device

Install Nnde_e;(pun:er to edge device

Install
__ Node_exporter
to server
devices

Update TargetAPI with
new targets

for PUDE's consumption

___ Read/Write
< = LTSE's Elasticsearch
« Fetchnew__,.
targets
Pull metrics (Kube-state-metrics)
- Pull metrl::§ (Node_exporter)

Pull metrics (Node_exporter)

Pull metrics (Nodé ‘_expurteri

Pull metrics
("/metric” endpoints)

Pull
(Prometheus)
metrics
<— Pull metrics

Read/Write
a LTSE's Elasticsearch

4.3.3.5. Implementation information

Category Status

Link to https://assist-iot-enablers-
documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and usage

ReadtheDocs

diagnosis_enabler.html

Potential features

One additional feature for PUDE could be a service that automatically search the whole cluster
for "/metric" endpoints and make them available for PUD's Prometheus consumption, without
the need of an admin user and the TargetAPI.

Encapsulation
readiness

A single Helm chart for the whole enabler, including all components, except Node exporter
which is designed to monitor host systems and requires to be installed in the host system itself.

Integration with
other enablers

PUD is able to be used standalone, and get other enablers’ metrics over HTTP utilising their
exposed metrics on an “/metrics” endpoint in order to monitor them.
Integration with LTSE’s NoSQL Database used as time-series database for storing all the data.

4.3.4. OpenAPI management enabler

4.3.4.1. General specifications and features

Enabler OpenAPI management enabler
Id T44E4
Owner and support CERTH

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 82 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Enabler

OpenAPI management enabler

Description and main
functionalities

The OpenAPI Management enabler is the enabler responsible for managing the APIs in
the Assist-IoT project by allowing the enablers of the project to publish their APIs,
monitor their lifecycles and make sure that that the needs of external third parties, as well
as applications that using the APIs, are being met. Hence, the main functionalities that it
serves are to collect all the APIs that are used by the Assist-IoT enablers in order to proxy
them through the API gateway to the external users, to be used as an API portal from
which the developers can push their OpenAPI documentations to the API-gateway,store
them in an API library and interact with them through SwaggerUI.

Key features

Allows developers to publish OpenAPI definitions through the API gateway.

Endpoints of the client are secured with IdM.

A front-end portal application acting as a library of OpenAPI definitions.

Integrated with the API publisher, enabling developers to push definitions

through the front-end.

e Provides immediate interaction with definitions through Swagger UI.

o Utilises Kong API Gateway (OSS) as the chosen OpenAPI gateway for Assist-
IoT.

e Integrates the kong-oidc open-source plugin to link Kong Gateway with IdM.

e Ensures security for registered endpoints.

e Used as an Ingress controller to proxy services outside the Kubernetes cluster.

Plane/s involved

Application and Services Plane

Requirements mapping

e R-C-7: Edge-oriented deployment

e R-P1-6: Terminal data access

e R-P1-16: Open/Accessible remote capabilities

e R-P1-17: Customisable remote desktop

e R-P2-5: Wristband pairing with other devices capability
e R-P3A-11: Connectivity between OEM and fleet

Use case mapping

This enabler is inherent to the ASSIST-IoT ecosystem and, therefore, it should be present
at all pilots without a specific use case in mind yet. Otherwise, it would not be possible to
allow external granted Open Callers to integrate and communicate their developments
with ASSIST-IoT platform.

Internal components

API Gateway, API Portal, API Publisher

4.3.4.2. Structure, components and implementation technologies

The OpenAPI management enabler consists of three main components, the OpenAPI Publisher, the OpenAPI

Portal, and the OpenAPI Gateway.

SO0

‘\

OpenAPI
Publisher

.o

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 83 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s
OpenAPI A back-end client that enables developers to securely publish OpenAPI | Python FastAPI,
Publisher definitions through the API gateway using standard HTTP methods. PostgreSQL
OpenAPI A front-end application serving as a.hbrar}.l for Opgr}API definitions, allowing Swagger UL,
developers to push and interact with their definitions through Swagger Ul
Portal . . React]S
with IdM authentication.
The OpenAPI gateway is powered by Kong API Gateway (OSS) and offers a
OvenAPI lightweight, fast, and flexible solution for managing API traffic, with
Gg teway integration capabilities for IdM and secure endpoint registration. It is used as | Kong API Gateway

an ingress controller in the Kubernetes cluster to proxy services and
components outside of it.

4.3.4.3. Communication interfaces

Method Endpoint Description
GET/POST/PUT/DELETE | /apis/{enabler_id} | Get/add/modify/delete a new API design document for an enabler.
GET /apis Return all the API design document published.

4.3.4.4. Enabler stories

The first enabler story of OpenAPI management enabler is built around an external user who wants to consult
the API documentation of a specific enabler. The following flow and steps describe the process:

Uszer

i OpenAPI Portal :
i 1.User requests a specific i '
«

e
enablersAP| documentation ==
’E E 2 The request is passed fo |

the API database o
i 13. The &Pl database returns!

[-

4 End user access the requesied L . the _
) 1 desired documentation
documentation k- --=----============as

=
i
'
i
i
'
i
i
P
P
i
P

STEP 1: An OpenAPI caller requests a specific enabler’s API documentation by communicating with the
OpenAPI portal.

STEP 2: The portal processes the request and communicates with the API database.
STEP 3: The API database returns the desired documentation.
STEP 4: The enabler outputs the requested API documentation.

The second enabler story is about an ASSIST-IoT admin/developer who wants to publish a newly designed
API document. The enabler process is described below:

STEP 1: An ASSIST-IoT admin designs an API document and wants to publish it, starting a communication
with the OpenAPI Publisher.

STEP 2: The request is then pushed from the OpenAPI Publisher to the OpenAPI Portal.
STEP 3: The Portal registers the document in the database.
STEPS 4-5: After registering the document, this can be shown in the portal.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 84 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

STEP 6: Finally, the user receives an acknowledgement that the document has been published (or an error
message, if an error has occurred).

User
OpenAPI
_ OpenAPl Portal
fi Publisher pe
E H . 1]
' 1.Adeveloper designs an AP i 2.The OpenAPI publisher ! !
i and publishes the document ! pushes the request fo | 3 The Portal registers |
! o the OpenAP| portal : the document i
: o T tothe APl database !
. [] ;
" P b
() . . H
E ! 1 5. After registering the document,;, | 4 Ret
: ' itcan be shown in the partal i -~ e
: 6. Return i S TR Al
B by r :

First and second stories are demonstrating the use of the API Portal and publishers as isolated components. The
third enabler story involves an external entity who wants to interact with an ASSIST-IoT enabler. This
enabler story is also showing the integration between the OpenAPI gateway and the IdM and the use of Kong
as a Kubernetes Ingress Controller in the ASSIST-IoT cluster. The figure and steps below describe the flow for
being redirected to the correct enabler:

OpenAPI Gateway P i \
OpenAPI Portal (Kong Ingress (Kerdmll . Zﬁﬁg
Controller)
! _ Gateway send the P L

1. An external user wants to i . . : - &
communicate with an ASSISTIoT ¢ 2'U5t"r:r§ jegtt:: Cger?;”t'a'- Credentials to laM for
Enabler > 9 p introspection

User

>o

-

-
>

5. Unauthorized. (no
access to the enabler

4. Introspection
response

-
i
i
i
'

L]
'
'
'
i
i
'
|
1

A

7. Portal displays the

enabler's documentation

6. Success. Gateway gives access the enabler
| —

Assist-loT Deployment
HTTPsecurity

A 4
jrm ey

8. After the connection is established,

user ean consume the AP of the enabler

&
o+

jrmmm e s s ey

A

<

STEP 1: An user starts a connection with the OpenAPI portal to interact with an ASSIST-IoT enabler.
STEPS 2-3: The Portal gets user’s credentials and send them to IdM through the OpenAPI Gateway.
STEP 4: IdM introspects credentials and sends back its response.

STEPS 5: If user’s credentials are not correct, user is unauthorised to access Assist-IoT enablers.

STEPS 6-7: Successful connection. The OpenAPI Gateway is proxying enabler’s API outside of the cluster and
the Portal displays the OpenAPI documentation of the enabler.

STEP 8: User consumes the API of the enabler.

4.3.4.5. Implementation information

Category Status

https://assist-iot-enablers-
Link to ReadtheDoes | documentation.readthedocs.io/en/latest/horizontal planes/application/openapi_management_
enabler.html

Potential features The enabler has all the required features to meet the project’s objectives.

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 85 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation

assist-iot

Category Status
Encapsulation The enabler has a working Helm Chart version that will be updated continuously until the end
readiness of the project.

Integration with
other enablers

Integrated with IdM.

4.3.5. Video augmentation enabler

4.3.5.1. General specifications and features

Enabler Video Augmentation enabler
Id T44E5
Owner and support PRODEVELOP

Description and main
functionalities

This enabler receives images or video captured either from ASSIST-IoT Edge nodes, or
from ASSIST-IoT databases, and using Machine Learning Computer Vision
functionalities, performs object detection/ recognition of particular end-user assets (e.g.,
cargo containers, cars’ damages). It should be noticed that in order to carry out the proper
object recognition in an operation, an appropriate annotated dataset should be ready and
available for training and testing.

Key features

e Support of ML-based object detection and recognition models.
e Flexible configuration of GPU/CPU computing

e Easy-to-use API management

Plane/s involved

Application and services plane

Requirements mapping

R-P1-5, R-P1-23, R-P3A-13, R-P3B-1, R-P3B-2, R-P3B-13

Use case mapping

UC-P1-7, UC-P2-2, UC-P3A-2

Internal components

REST API, ML trainer service, Inference engine

4.3.5.2. Structure, components, and implementation technologies

The following figure presents the architectural diagram of the Video augmentation enabler and its internal

components:

Streaming from IP
address of a device

Video/lmage from
local storage

\

Inference Engine

)

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component | Description Technology/s

The entrance gate to the video augmentation enabler. It provides a set of restful API
API endpoints, over which the user can easily interact with the enabler to e.g., run an ML | Fast API
training process, run an ML inference, or get the status of the current training process.

ML._trainer

An ML model is a function with learnable parameters that maps an input to the desired | Tensorflow
output. The optimal parameters are obtained by training the model on data. ML Trainer | OpenCV

Version 1.0 — 31-OCT-2023 - ASSIST-1oT® - Page 86 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Component | Description Technology/s

will carry out the process of feeding the network with millions of training data points
so that it systematically adjusts the knobs close to the correct values. Although the video
augmentation ML trainer already supports some ML models, additional ML models can
be installed. Since the training process of images/videos may be computationally
intensive, as the data can be passed through Neural Network with several training
rounds, it is recommended to be performed on a GPU.

The Inference engine provides the process of running a trained ML over a specific input
Inference through an interpreter. The interpreter, based on TensorFlow, is designed to be lean and
engine fast, and uses a static graph ordering and a custom (less-dynamic) memory allocator to
ensure minimal load, initialisation, and execution latency.

4.3.5.3. Communication interfaces

Method Endpoint Description

Executes a training session over the annotated data
POST /train/{model id} in the Video Augmentation data folder with the ML
model {model id}.

GET /train_status Provides the status

Performs inference or validate process over the
POST /inference local/{model id} stored data (video or image) with the trained model
model id.

Performs inference or validate process over the

POST /inference_streaming/{IP_address,model_id} | video being streamed at IP_address with the trained
model model id.

4.3.5.4. Enabler stories

The two main enabler stories of the Video Augmentation enabler are related to the training and the inference
process of a computer vision ML model over a local or streaming image/video set.

The first enabler story, i.e., the training process, will be initiated by a user, once the labelled data is updated
and allocated in the corresponding local folder.

User

51. Starts a new training of the |
ML model H

2. Confirms ML training E
process has started !

% ________________________ { 3. Starts a new training
! i of the ML model
B T
& :
[L]
'L L]
- ;
H ;
= ;
' '{'d Returns trained ML model location ! !
! 5 Returns ML model H
{ de!

STEP 1: The user starts a new training process via APl command, once the properly annotated data is present
in a folder accessible by the training module.

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 87 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

STEPS 2-3: The API communicates with the ML trainer in order to start a new training of either new or pre-
trained ML model available in its framework. And confirms to the user that the ML model training has started.

STEPS 4-5: When the training process is finished, the ML model is stored in the ML trainer database, and
notified to the user where it can be downloaded.

The second enabler story is related to the inferencing of new video set (either stored in local folder or received
via an HTTP streaming service) with a trained ML model. In this case, the following steps and diagram apply:

User

% Video player n Inference engine

1. Starts a new |nference process over
a specified data (either local or streaming)

: ' : 12. Informs about the inference process
' ' : (data to be inference, and ML model |d)

| : 3. Returns inferenced data :

' o ' 4. Returns inferenced data | 1€r === mmmm e mm et T
| 5. Visualizes inferenced data v(----------------------------- ! :

E(with the ML model selected ! '

STEP 1: The user starts an inference process via APl command, making use of model trained previously by the
dedicated module. The video format over which the Video Augmentation enabler will perform the inference
(local or streaming) is also included in the body of the API endpoint.

STEP 2: The API informs to the Inference engine to start the new process.

STEPS 3-4: The Inference engine starts the process and sends the output video files to a video player user
application (outside of the scope of Video Augmentation enabler).

STEP 5: The video player reproduces the inferenced filed in order to be visualised by the user.

4.3.5.5. Implementation information

Category Status

. https://assist-iot-enablers-
Link to documentation.readthedocs.io/en/latest/horizontal _planes/application/video_augmentation_
ReadtheDocs enabler.html

The enabler is considered feature-complete for the purposes of the project. Additional features

Potential features foreseen in the future include the support of inference solutions for streaming videos.

Encapsulation
readiness
Integration with
other enablers

The enabler is already encapsulated, and a Helm chart has been provided

Enabler can be used in standalone mode, without other enablers.

4.3.6. Mixed reality enabler

4.3.6.1. General specifications and features

Enabler Mixed Reality (MR) enabler
Id T44E6
Owner and support ICCS
The MR Enabler processes data, coming from other enablers, adapting it into a format
Description and main optimised for immersive visualisation using head-mounted Mixed Reality (MR) devices.
functionalities Data, which may come from long-term storage or real-time data streams, are requested
according to its relevance to the user. The MR Enabler ensures that authorised users are

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 88 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

Enabler Mixed Reality (MR) enabler

presented with pertinent data through their MR devices, allowing for a personalised and
secure experience. Furthermore, the enabler supports user interaction with the virtual
content and view customisation.

e Visualises the model of the construction site through the head-mounted MR
devices, along with the danger zones of the site. The model of the site and all its
related data come from the long-term storage

e Visualises the location of the workers of the construction site, along with their
Key features crucial information

e Receives alert message from real-time data streams and display their details to
the user

e Provides the ability to create and send new reports

e Captures and stores media files in order to include them in a report

Plane/s involved Application and Services Plane

Requirements mapping UC-P2-7
Use case mapping Pilot 2
Configuration MR, Data Integration and Data Visualisation

Internal components

4.3.6.2. Structure, components and implementation technologies

SO0

Configuration MR

Data Integration

-
»>

/

Data
Visualisation
_

Specifically, a description of each one of the components depicted is provided in the table below, along with
the technologies used for implementing them:

Component Description Technology/s
f/lolilﬁguratlon Receives current IoT ecosystem configurations through REST API C#

Data Deserialises the information coming from different enablers through REST cH

Integration API and MQTT protocols.

Data . . Lo . .
Visualisation Displays properly the incoming information to the user Unity / MRTK2

4.3.6.3. Communication interfaces

Method Endpoint Description

GET /metrics Receive MR enabler’s metrics

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 89 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

4.3.6.4. Enabler stories

The first enabler story is related to the examination of the BIM model of the construction site. Here, the
user is able to view and inspect the BIM model by following the steps bellow:

Assist loT : o
Platform Data Integration Data Visualization
User

1. Get BIM das :
f L]
| | H
|
g
I 2. B=nd BIM data H
L 'I : 3. Process Bimdsta
I
I | —
[4. Send visualzaton data

|
& -
L4 L
|
|
|
|

|

|

I

|
5. Visusle=BIM dsta

.

STEP 1: The MR enabler sends an HTTP request to receive the BIM model file from the Assist-IoT Platform.
STEP 2: The Assist-IoT Platform sends the data of the BIM model back to the MR enabler.

STEP 3: The MR enabler process the data and creates a 3D presentation of the data.

STEP 4: The BIM model presentation is being sent to the GUI of the user.

STEP 5: The user inspects the BIM model.

The second enabler story enables users to send a report to the database. It has this sequence diagram and

steps:
AssistloT : e
Data Integration Data Visualization

Usgr
=
|
|
|
|

1. Fill report

-

2_Send report data y

| =
'

| 3. Serialize report data

|

|

|
4_Sendreport data b

1

STEP 1: The user fulfills a report through the Graphical User Interface of the MR enabler.

STEP 2: The report is being sent to the Data Integration component for preparation.

STEP 3: The MR enabler serialises properly the fields of the report.

STEP 4: The MR enabler sends the report through a REST API request to the Assist-lIoT Platform.

Version 1.0 — 31-OCT-2023 - ASSIST-10T® - Page 90 of 93

Deliverable D4.3 — Final Core Enablers Specification and Implementation assist-iot

The third and final enabler story allows a user to receive a real-time alert while using the MR enabler and

learn more information about the alert from the GUI, by following those steps:

Assist-loT
Platform

Data Visualization

Data Integration

User

1. Subscribe to topic

_-L"“ s
A

2. Send alert natification

e =
.___

3. Process alert notification H :

4 Send visualization data

____!l____‘LL"_-

5. Show visual netification

N

6. Action

- EBERESE - - -
- _._
v

A
-

STEP 1: The MR enabler subscribes to an alert topic of the corresponding enabler, utilising MQTT protocols.
STEP 2: The MR enabler receives a real-time notification through the Assist-IoT Platform.

STEP 3: The MR enabler process the alert notification.

STEP 4: The MR enabler creates a visual component to notify the user.

STEP 5: The MR enabler shows the new notification to the user.

STEP 6: The user can use the Graphical User Interface of the MR enabler to read more details about the

incoming alert.

4.3.6.5. Implementation information

Category Status

Link to https://assist-iot-enablers-

ReadtheDocs | documentation.readthedocs.io/en/latest/horizontal planes/application/mr_enabler.html

Potential An additional feature to the MR enabler could involve harnessing point cloud data, empowering better
features interaction between virtual objects and the physical world.

Enca.psulatlon Excluded (D3.7 - ASSIST-IoT Architecture Definition — Final, page 63)

readiness

Integration MR enabler is not able to be used as standalone and depends on connecting with other enablers (Edge
with other Data Broker, Semantic, Long Term Storage enablers) to be fully functional inside the ASSIST-IoT
enablers ecosystem.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 91 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html

)
o0
Deliverable D4.3 — Final Core Enablers Specification and Implementation ass‘is;cfio ;

5. Enabler’s Technical Documentation and Demo Videos

The Technical Documentation (https://assist-iot-enablers-documentation.readthedocs.io/en/latest/) for all the
aforementioned enablers is available on the Read the Docs platform. This documentation is encapsulated in the
final Deliverable D6.6 — Technical and Support Documentation — Final, which represents a comprehensive
analysis of the provided documentation (updates are also provided through the final WP6 deliverable D6.8). Its
primary objective is to furnish users with essential information concerning the deployment and utilisation of
ASSIST-IoT enablers across both the horizontal and vertical facets of the ASSIST-IoT architecture. The
Technical Documentation is thoughtfully structured around the overarching ASSIST-IoT architecture, adhering
to a general approach encompassing the following key sections: Introduction, Features, Placement within the
Architecture, User Guide, Prerequisites, Installation, Configuration Options, Developer Guide, Version Control
and Release, Licensing, and Notices.

Selected enablers are also showcased through videos available on the official YouTube channel of the ASSIST-
IoT project (https://www.youtube.com/(@assist-iot). The primary objective of this endeavour is twofold: firstly,
to illustrate the accomplishments achieved and to provide external audiences with insights into the technical
intricacies implemented within the project at enablers level, thereby expanding our YouTube channel views and
subscribers base. Secondly, these videos aim to highlight the consortium's preparations for the final pilot trials
and the practical execution of pilot work, bridging the gap between theory and application. Ultimately, these
videos serve as a testament on how these enablers can be integrated into other components, projects or even
within a commercial service/product context.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 92 of 93

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/
https://assist-iot.eu/wp-content/uploads/2023/05/D6.6_Technical_Support_Documentation_Final_v1.0.pdf
https://www.youtube.com/@assist-iot

)
o0
Deliverable D4.3 — Final Core Enablers Specification and Implementation ass‘islt?io ;

6. Conclusion

With this report and the code of the enablers developed conclude the activities of WP4. It is worth mentioning
that additional information of the enablers in terms of installation, usage, integration with other enablers etc.
can be found in the official documentation of the project, available in the ReadTheDocs page. Also, highlighting
that the intention has been to produce a self-contained document, so that there is no need to consult previous
iterations of the deliverable (D4.1, D4.2).

In any case, rather than in updating the enablers’ specifications, major effort has been put in finalizing the
features of the enablers (as well as manufacturing and delivering to the pilots), which code can be found in the
official project repositories.

Version 1.0 — 31-OCT-2023 - ASSIST-IoT®- Page 93 of 93

