

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D4.3 Final Core Enablers Specification

and Implementation

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

Deliverable No. D4.3 Due Date 31-OCT-2023

Type Report Dissemination Level Public

Version 1.0 WP WP4

Description Final specification and implementation status of Smart IoT Devices, GWEN and

enablers of the horizontal planes of ASSIST-IoT.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 2 of 93

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 3 of 93

Authors
Name Partner e-mail

Alejandro Fornes P01 UPV alforlea@upv.es

Francisco Mahedero P01 UPV framabio@upv.es

Rafael Vañó P01 UPV ravagar2@upv.es

Raul Reinosa P01 UPV rreisim@upv.es

Eduardo Garro P02 PRO egarro@prodevelop.es

Juan Antonio Pavón P02 PRO jpavon@prodevelop.es

Paweł Szmeja P03 IBSPAN pawel.szmeja@ibspan.waw.pl

Piotr Sowiński P03 IBSPAN piotr.sowinski@ibspan.waw.pl

Konstantinos Flevarakis P04 CERTH kostisfl@iti.gr

Evripidis Tzionas P04 CERTH tzionasev@iti.gr

Georgios Stavropoulos P04 CERTH stavrop@iti.gr

Konstantinos Fragkos P06 INF cfragkos@infolysis.gr

Nikolaos Vrionis P06 INF nvrionis@infolysis.gr

Johan Schabbink P09 NEWAYS Johan.Schabbink@newayselectronics.com

Nasia Balakera P10 ICCS nasia.balakera@iccs.gr

Fotios Konstantinidis P10 ICCS fotios.konstantinidis@iccs.gr

Tom Papaioannou P10 ICCS thomas.papaioannou@iccs.gr

Konstantinos Routsis P10 ICCS konstantinos.routsis@iccs.gr

Zbigniew Kopertowski P15 OPL Zbigniew.Kopertowski@orange.com

Jaroslaw.Legierski P15 OPL Jaroslaw.Legierski@orange.com

History
Date Version Change

07-Feb-2023 0.1 ToC presented

30-Sep-2023 0.2 First round of contributions

11-Oct-2023 0.3 Second round of contributions

27-Oct-2023 0.9 Integration of changes from IR

31-Oct-2023 1.0 Official release, final version submitted to EC

Key Data
Keywords Enablers, GWEN, Smart IoT devices, Implementation

Lead Editor P01 UPV – Alejandro Fornés

Internal Reviewer(s) Rafael Borné (P13 - S21Sec), Katarzyna Wasielewska-Michniewska (P03 -

IBSPAN)

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 4 of 93

Executive Summary
This deliverable is written in the framework of WP4 – Core enablers design and development of ASSIST-IoT

project under Grant Agreement No. 957258. The document gathers the work and outcomes of the four tasks of

the work package in the period M18-M36, which are devoted to the design and implementation of enablers and

hardware elements required to implement the different planes of the ASSIST-IoT architecture.

The four planes of the ASSIST-IoT reference architecture are as follows: Device and edge plane, Smart network

and control plane, Data management plane and Application and services plane. This work package is devoted

to the design and implementation of the software and hardware artifacts needed to realise a system based on

such reference architecture.

This deliverable reports the final outcomes of the work package, specifically, the realisation of the project

hardware (GWEN and smart IoT devices) and the final specifications of the project enablers. For each one of

the latter, the following information is provided: table of general data, high-level component diagrams, table of

components considered and utilised realisation technologies, endpoints/interfaces, enabler stories, and table

with implementation information. Jointly with these specifications, the enablers’ code is attached and presented

along with this report.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 5 of 93

Table of contents

Table of contents ... 5

List of tables .. 6

List of figures .. 7

List of acronyms .. 10

1. About this document .. 12

1.1. Deliverable context .. 12

1.2. Outcomes of the deliverable... 12

1.3. Lessons learnt ... 13

1.4. Deviation and corrective actions .. 13

1.5. Version-specific notes .. 13

2. Introduction ... 14

3. Devices specifications ... 15

3.1. GWEN .. 15

3.2. ASSIST-IoT localisation tag .. 17

3.3. ASSIST-IoT fall arrest device .. 17

4. Horizontal enablers .. 18

4.1. Smart Network and Control enablers ... 19

4.1.1. Smart orchestrator .. 19

4.1.2. SDN Controller .. 24

4.1.3. Auto-configurable network enabler ... 28

4.1.4. Traffic classification enabler ... 30

4.1.5. Multi-link enabler .. 33

4.1.6. SD-WAN enabler ... 38

4.1.7. WAN acceleration enabler ... 42

4.1.8. VPN enabler ... 45

4.2. Data Management enablers .. 50

4.2.1. Semantic repository enabler ... 50

4.2.2. Semantic translation enabler .. 55

4.2.3. Semantic annotation enabler .. 59

4.2.4. Edge data broker .. 63

4.2.5. Long-term storage enabler ... 68

4.3. Application and Services enablers ... 73

4.3.1. Tactile dashboard ... 73

4.3.2. Business KPI reporting enabler ... 77

4.3.3. Performance and usage diagnosis enabler ... 79

4.3.4. OpenAPI management enabler .. 82

4.3.5. Video augmentation enabler .. 86

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 6 of 93

4.3.6. Mixed reality enabler ... 88

5. Enabler’s Technical Documentation and Demo Videos .. 92

6. Conclusion ... 93

List of tables

Table 1. General equipment specifications .. 15
Table 2. GWEN specifications .. 16
Table 3. Localisation tag specifications .. 17
Table 4. Fall arrest device specifications ... 17
Table 5. Template table to report the general information of the enablers .. 18
Table 6. Components and implementation of enabler x .. 18
Table 7. Template table to report the API of the enablers ... 19
Table 8. Template table to report the implementation status of the enablers .. 19
Table 9. General information of the Smart orchestrator .. 19
Table 10. Components and implementation of Smart orchestrator ... 20
Table 11. API of the Smart orchestrator .. 21
Table 12. Implementation status of the Smart orchestrator ... 24
Table 13. General information of the SDN controller ... 24
Table 14. Components and implementation of SDN controller .. 25
Table 15. API of the SDN controller ... 26
Table 16. Implementation status of the SDN controller .. 28
Table 17. General information of the Auto-configurable network enabler ... 28
Table 18. Components and implementation of Auto-configurable network enabler .. 29
Table 19. API of the Auto-configurable network enabler ... 29
Table 20. Implementation status of the Auto-configurable network enabler .. 30
Table 21. General information of the Traffic classification enabler.. 30
Table 22. Components and implementation of the Traffic classification enabler ... 31
Table 23. API of the Traffic classification enabler ... 32
Table 24. Implementation status of the Traffic classification enabler ... 33
Table 25. General information of the Multi-link enabler .. 33
Table 26. Components and implementation of the Multi-link enabler .. 34
Table 27. API of the Multi-link enabler .. 35
Table 28. Implementation status of the Multi-link enabler ... 38
Table 29. General information of the SD-WAN enabler ... 38
Table 30. Components and implementation of the SD-WAN enabler .. 39
Table 31. API of the SD-WAN enabler ... 40
Table 32. Implementation status of the SD-WAN enabler .. 42
Table 33. General information of WAN acceleration enabler ... 42
Table 34. Components and implementation of the WAN acceleration enabler .. 43
Table 35. API of the WAN acceleration enabler ... 44
Table 36. Implementation status of the WAN acceleration enabler .. 45
Table 37. General information of the VPN enabler ... 45
Table 38. Components and implementation of the VPN enabler .. 46
Table 39. API of the VPN enabler ... 46
Table 40. Communication interface (UDP) of the VPN enabler ... 46
Table 41. Implementation status of the VPN enabler .. 50
Table 42. General information of the Semantic repository enabler ... 50
Table 43. Components and implementation of the Semantic repository enabler .. 51
Table 44. API of the Semantic repository enabler ... 51
Table 45. Implementation status of the Semantic repository enabler .. 55

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 7 of 93

Table 46. General information of the Semantic translation enabler .. 55
Table 47. Components and implementation of the Semantic translation enabler ... 56
Table 48. API of the Semantic translation enabler – API Server .. 56
Table 49. Communication interfaces of the Semantic translation enabler – Streaming broker 57
Table 50. Implementation status of the Semantic translation enabler ... 58
Table 51. General information of the Semantic annotation enabler .. 59
Table 52. Components and implementation of the Semantic annotation enabler ... 60
Table 53. API of the Semantic annotation enabler – API server ... 60
Table 54. Communication interfaces of the Semantic annotation enabler – Streaming broker 61
Table 55. Implementation status of the Semantic annotation enabler ... 63
Table 56. General information of the Edge data broker .. 63
Table 57. Components and implementation of the Edge data broker .. 64
Table 58. Communication interfaces of the Edge data broker – MQTT Broker ... 65
Table 59. API of the Edge data broker – FR-Script .. 65
Table 60. Implementation status of the Edge data broker ... 68
Table 61. General information of the Long-term storage enabler ... 68
Table 62. Components and implementation of the Long-term storage enabler... 69
Table 63. User Communication interfaces of the Long-term storage enabler ... 70
Table 64. Implementation status of the Long Term storage enabler ... 73
Table 65. General information of the Tactile dashboard ... 73
Table 66. Components and implementation of the Tactile dashboard .. 74
Table 67. User Communication interfaces of the Tactile dashboard ... 74
Table 68. Implementation status of the Tactile dashboard .. 77
Table 69. General information of the Business KPI reporting enabler ... 77
Table 70. Components and implementation of the Business KPI reporting enabler ... 78
Table 71. User Communication interfaces of the Business KPI reporting enabler ... 78
Table 72. Implementation status of the Business KPI reporting enabler... 79
Table 73. General information of the Performance and usage diagnosis enabler ... 79
Table 74. Components and implementation of the Performance and usage diagnosis enabler 80
Table 75. User Communication interfaces of the Performance and usage diagnosis enabler (GUIs) 81
Table 76. API of the Performance and usage diagnosis enabler - TargetAPI ... 81
Table 77. Implementation status of the Performance and usage diagnosis enabler .. 82
Table 78. General information of the OpenAPI management enabler .. 82
Table 79. Components and implementation of the OpenAPI management enabler .. 84
Table 80. API of the OpenAPI management enabler. ... 84
Table 81. Implementation status of the OpenAPI management enabler ... 85
Table 82. General information of the Video augmentation enabler .. 86
Table 83. Components and implementation of the Video augmentation enabler .. 86
Table 84. User Communication interfaces of the Video augmentation enabler .. 87
Table 85. Implementation status of the Video augmentation enabler ... 88
Table 86. General information of the MR enabler .. 88
Table 87. Components and implementation of the MR enabler .. 89
Table 88. API of the MR enabler .. 89
Table 89. Implementation status of the MR enabler ... 91

List of figures

Figure 1. ASSIST-IoT enablers and hardware elements formalised ... 14
Figure 2. GWEN prototype ... 15
Figure 3. The heart of the module, the Qorvo DWM1001C UWB breakout board .. 17
Figure 4. Example of high-level diagram .. 18
Figure 5. High-level diagram of the Smart orchestrator .. 20
Figure 6. Smart Orchestrator enabler ES1 (add cluster) .. 22
Figure 7. Smart Orchestrator enabler ES2 (list repositories) ... 22

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 8 of 93

Figure 8. Smart Orchestrator enabler ES3 (delete repository) .. 23
Figure 9. Smart Orchestrator enabler ES4 (add enabler) ... 24
Figure 10. High-level diagram of the SDN controller ... 25
Figure 11. SDN controller ES1 (device configuration). .. 27
Figure 12. SDN controller ES2 (intent deployment) ... 27
Figure 13. SDN controller ES3 (topology discovery) ... 27
Figure 14. High-level diagram of the Auto-configurable network enabler ... 29
Figure 15. Auto-configurable network enabler ES1 (policy-based network adaptation) 30
Figure 16. High-level diagram of the Traffic classification enabler ... 31
Figure 17. Traffic classification enabler ES1 (train model) .. 32
Figure 18. Traffic classification enabler ES2 (packet classification) .. 33
Figure 19. High-level diagram of the Multi-link enabler: client side (left), server side (right)......................... 34
Figure 20. Multi-link client and server example between two hosts ... 34
Figure 21. Multi-link enabler ES1 (server-side start/stop) .. 35
Figure 22. Multi-link enabler ES2 (client-side start/stop) ... 36
Figure 23. Multi-link enabler ES3 (change bonding parameters) ... 36
Figure 24. Multi-link enabler ES4 (bring up/down tunnel interfaces) .. 37
Figure 25. Multi-link enabler ES5 (ping test) .. 37
Figure 26. Multi-link enabler ES6 (client/server status) ... 38
Figure 27. High-level diagram of the SD-WAN enabler ... 39
Figure 28. SD-WAN enabler ES1 (overlay management) .. 40
Figure 29. SD-WAN enabler ES2 (tunnel establishment) ... 41
Figure 30. SD-WAN enabler ES3 (connection of hubs with edge cluster) ... 42
Figure 31. High-level diagram of WAN acceleration enabler ... 43
Figure 32. WAN acceleration enabler ES1 (configuring/querying the CNF) ... 44
Figure 33. WAN acceleration enabler ES2 (querying the common endpoints) .. 45
Figure 34. High-level diagram of the VPN enabler ... 46
Figure 35. VPN enabler ES1 (get network interface information) .. 47
Figure 36. VPN enabler ES2 (create client) .. 47
Figure 37. VPN enabler ES3 (delete client) .. 48
Figure 38. VPN enabler ES4 (enable/disable client) ... 49
Figure 39. VPN enabler ES5 (connect client) ... 49
Figure 40. High-level diagram of the Semantic repository enabler ... 50
Figure 41. Semantic repository enabler ES1 (modify metadata) ... 52
Figure 42. Semantic repository enabler ES2 (get metadata) ... 52
Figure 43. Semantic repository enabler ES3 (upload file with model) ... 53
Figure 44. Semantic repository enabler ES4 (get file with model) ... 53
Figure 45. Semantic repository enabler ES5 (upload documentation) .. 54
Figure 46. Semantic repository enabler ES6 (check documentation job status) ... 55
Figure 47. High-level diagram of the Semantic translation enabler .. 56
Figure 48. Semantic translation enabler ES1 (store alignment) .. 57
Figure 49. Semantic translation enabler ES2 (get alignment metadata) .. 58
Figure 50. Semantic translation enabler ES3 (create stream-based translation channel) 58
Figure 51. High-level diagram of the Semantic annotation enabler .. 59
Figure 52. Semantic annotation enabler – annotation channel architecture overview 61
Figure 53. Semantic annotation enabler ES1 (batch annotation) .. 61
Figure 54. Semantic annotation enabler ES2 (configure channel for stream annotation) 62
Figure 55. Semantic annotation enabler ES3 (stream annotation) .. 63
Figure 56. High-level diagram of the Edge data broker .. 64
Figure 57. Edge data broker ES1 (filtering) .. 66
Figure 58. Edge data broker ES2 (ruling) .. 67
Figure 59. High-level diagram of the Long-term storage enabler ... 69
Figure 60. Long-term storage enabler ES1 (store NoSQL data) ... 71
Figure 61. Long-term storage enabler ES2 (get NoSQL data) .. 71
Figure 62. Long-term storage enabler ES3 (store SQL data) .. 72

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 9 of 93

Figure 63. Long-term storage enabler ES4 (get SQL data) .. 73
Figure 64. High-level diagram of the Tactile dashboard ... 74
Figure 65. Tactile dashboard ES1 (login webpage) .. 75
Figure 66. Tactile dashboard ES2 (show data managed by PUI9 database) ... 76
Figure 67. Tactile dashboard ES3 (show data not managed by PUI9 database) ... 76
Figure 68. High-level diagram of the Business KPI reporting enabler ... 77
Figure 69. Business KPI reporting enabler ES1 (generate graphs from time-series data) 79
Figure 70. High-level diagram of the Performance and usage diagnosis enabler ... 80
Figure 71. Performance and usage diagnosis enabler ES1 (metrics gathering and presentation) 82
Figure 72. High-level diagram of the OpenAPI management enabler .. 83
Figure 73. OpenAPI management enabler ES1 (get API documentation) .. 84
Figure 74. OpenAPI management enabler ES2 (publish API document) ... 85
Figure 75. OpenAPI management enabler ES3 (interact with enablers) ... 85
Figure 76. High-level diagram of the Video augmentation enabler .. 86
Figure 77. Video augmentation enabler ES1 (model training) .. 87
Figure 78. Video Augmentation enabler ES2 (video inference) ... 88
Figure 79. High-level diagram of the MR enabler .. 89
Figure 80. MR enabler ES1 (fetch and visualisation of the BIM model) .. 90
Figure 81. MR enabler ES2 (send report).. 90
Figure 82. MR enabler ES3 (receive notification) .. 91

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 10 of 93

List of acronyms

Acronym Explanation

AI Artificial Intelligence

API Application Programming Interface

BIM Building Information Model

BLE Bluetooth Low Energy

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CNF Cloud Native Network Function

CNI Container Network Interface

CNN Convolutional Neural Network

CRD Custom Definition Resource

CSV Comma-Separated Values

DB Database

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

EDB Edge Data Broker

FL Federated Learning

FR Filtering & Ruling

GUI Graphical User Interface

GWEN Gateway and Edge Node

HAL Hardware Abstraction Layer

HDMI High-Definition Multimedia Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IdM Identity Management

IoT Internet of Things

IPSec Internet Protocol Security

IPSM Inter-Platform Semantic Mediator

JSON JavaScript Object Notation

K8s Kubernetes

KPI Key Performance Indicator

LTSE Long-Term Storage Enabler

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 11 of 93

MQTT Message Queuing Telemetry Transport

ML Machine Learning

MR Mixed Reality

NB NorthBound

NGIoT Next Generation IoT

NoSQL Not only SQL

OEM Original Equipment Manufacturer

OS Operating System

OSS Operational Support System

PUD Performance and Usage Diagnosis

PUI9 Prodevelop’s User Interface

QoS Quality of Service

RDF Resource Description Framework

REST REpresentational State Transfer

RML RDF Mapping Language

RTG Rubber-Tyred Gantry

RTT Round-Trip Time

SB SouthBound

SDN Software Defined Network

SD-WAN Software Defined WAN

SIM Subscriber Identity Module

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

URL Uniform Resource Locator

VNF Virtualized Network Function

VPN Virtualized Private Network

WAN Wide Area Network

XML eXtensible Markup Language

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 12 of 93

1. About this document

Two are the main objectives of this deliverable: (i) to finalise the specifications of the horizontal enablers

designed, and (ii) to provide the final functional of the enablers developed. These enablers are the cornerstone

of the project, allowing the design and realisation of Next Generation IoT (NGIoT) systems based on the

ASSIST-IoT architecture. With them, the pilots of the project will be implemented and the outcomes, evaluated.

Apart from software enablers, D4.3 also includes the final specifications and pictures of the ASSIST-IoT’s

Gateway/Edge Node (GWEN) and the Smart IoT devices, which have been developed specifically for the

project.

This deliverable corresponds to the final document of a series of three iterations. The iterative nature of this

report was firstly due to the fact that the requirements and the reference architecture were evolving in WP3 and

a result of the interactions with WP5. Also, an agile evolution is needed and desired considering the feedback

from the integration activities of WP6, and the use of the artifacts in pilots, under WP7.

1.1. Deliverable context

Keywords Lead Editor

Objectives O2: D4.3 presents the final specifications of the enablers of the network plane and is

presented jointly with their final version.

O3: Specifications of enablers focused on data (semantics, broker, storage) are provided, as

well as their final version.

O5: Human-centric interfaces for the use cases are presented.

Work plan

Milestones This deliverable is directly related with MS7 – Integrated solution, as these enablers are,

jointly with WP5’s, the main artifacts contributing to the final, integrated solution. In any

case, integration efforts are carried out under the scope of WP6, under test in the pilots

(WP7).

Deliverables This deliverable is the natural evolution of D4.2, and receives inputs from D3.3

(requirements and use cases – second iteration) and D3.7 (architecture definition – final

iteration). Enablers stemming from this WP feed WP6 for testing, integration, distribution

and documentation, being the cornerstone of pilots’ implementations of WP7, and key part

in the technical evaluation to be performed under the scope of WP8.

1.2. Outcomes of the deliverable
This document reports the final specifications of the hardware and software artifacts implemented during the

execution of WP4, updating the information provided in D4.1 and D4.2. Along with this document, the code of

the enablers, which jointly with the GWEN are the main outcomes of the WP4, will be published in public

repositories (and upload to EC portal, as a compressed file), so they are openly available.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 13 of 93

1.3. Lessons learnt
During the implementation phase, designs required to adapt to the actual needs of NGIoT systems, represented

by the project pilots. These are some of the lessons learnt during the last phase of WP4 activities:

 Although the GWEN was initially designed to act as a Kubernetes master, its relative low RAM made

it more suitable to act as worker of another Kubernetes master. In future designs, additional RAM will

be needed to have the ability of working as master.

 Persistency in Kubernetes can be problematic in K8s-based environments if not managed properly.

Enablers had to be tested in different cases, e.g., in case of pod deletion/restart, power down, and manual

chart uninstall.

 All the lessons learnt stated in Section 1.4 of D4.2 apply.

1.4. Deviation and corrective actions
The Consortium dedicated effort to formalise (in D4.1) and materialise (in D4.2) the artifacts of the WP4,

however, there are some deviations that have slightly altered the initial plan:

 Cilium was selected as the main K8s CNI plugin for the clusters. However, its low maturity in Yocto

systems require adapting the Smart orchestrator to work also with flannel as an alternative for Yocto-

based nodes.

 Some enablers have suffered significant design modifications, like the multi-link and the traffic

classification enabler. Additional effort had to be devoted to complete them in time.

 Initial tests of the smart orchestrator shown slow installation times, execution errors and

incompatibilities. Because of this, although the design did not change significantly, the underlying

technologies had to be changed and its code refactored to be usable.

 All the actions stated in Section 1.5 of D4.2 apply.

1.5. Version-specific notes
The following notes apply to this version:

 The final hardware artifacts of the project are now reported, including pictures.

 The specifications of the enablers have been updated, showing the final component diagrams, endpoints

and enabler stories, thus making D4.2 obsolete.

 D4.3 can be considered a self-contained document, however, some data has not been included in this

report and can be checked at D4.2, such as the rationale for technologies selection to avoid excessive

document length. This information has not been deemed important as many enablers components could

have been realised considering alternative technologies or programming languages.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 14 of 93

2. Introduction

The ASSIST-IoT architecture is based on a multidimensional approach, considering planes and verticals1.

Planes are collections of functions that can be logically layered on top of one another. Data gathered and

potentially pre-processed in the Device and edge layer, can be optimally transported in a network managed by

the Smart network and control plane, processed (routed, stored, transformed) in the Data management plane,

and consumed by the Applications and services plane. Verticals, in turn, represent inherent properties of the

system or cross-cutting to the rest of the architecture, as well as functions targeting specific NGIoT properties.

Enablers are the cornerstone of the ASSIST-IoT reference architecture. They offer specific features belonging

to the aforementioned planes and verticals. As each business scenario has its own particularities, not all the

enablers are needed in all architecture realisations, although some of them are considered essential, i.e., should

be part of any system based on ASSIST-IoT.

This deliverable reports the specifications of the enablers designed and implemented for the four planes of

the architecture. All of them (but the exceptions, like the MR enabler) are packaged and follow the

encapsulation principles of the project: they are designed as a set of microservices or micro-applications,

realised as containers, only accessible via exposed interfaces, and packaged as Helm charts following the

specifications of the project – aligned with current trends. All WP4 enablers have been finalised, and have been

published in public repositories (except OpenAPI enablers because of internal policy of the institution in charge,

see D6.8). In any case, as all software products, they can be enhanced and evolve in the future.

Figure 1. ASSIST-IoT enablers and hardware elements formalised

1 ASSIST-IoT project, D3.7 – Architecture Definition Final.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 15 of 93

3. Devices specifications

The specifications shown in Table 1 represent the environmental conditions in which the devices designed and

developed during the execution of the project (the GWEN and the Smart of IoT devices) can be operated and

stored. Some iterations are still needed before finalise the industrialisation of the hardware, but in any case

devices have been designed to be later on tested considering IEC60068-2-2(Bd) + IEC60068-2-1(Ad),

IEC60068-2-29 and IEC60068-2-6 test methods, for environmental, shock and random vibrations, respectively.

Table 1. General equipment specifications

Condition type Condition and testing methods Value

Environmental

operating

Ambient temperature range, normal operation -10 to 50 [ºC]

Relative humidity range, normal operation 20 to 90 [%] non-condensing

Environmental

storage

Storage temperature range -20 to 70 [ºC]

Storage relative humidity 5 to 95 [%] non-condensing

3.1. GWEN
The ASSIST-IoT Gateway and Edge Node (GWEN) is the edge gateway developed for the ASSIST-IoT project.

It is a demonstrator setup with flexible configuration suitable to fit all pilots with adjustable computational

power and interfaces. The specifications of the GWEN respond to the block schematic diagram shown in Figure

4 from D4.2. It is important to remind that the gateway has been tested in pilots 1, 2 and 3b, supporting the

execution of some of the enablers of the project. Having 2 GB of RAM by default, GWENs had to work clustered

with other edge devices, such as RaspberryPis, in order to provide enough processing power in those use cases

that required a large number of enablers deployed at the edge.

Figure 2. GWEN prototype

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 16 of 93

Table 2. GWEN specifications

Electronic

type

Electronic component Specification

Wired

interfaces

USB USB2.0 & USB3.0

Ethernet 2x a 1GB Ethernet port

SD card Micro SD card interface

Power Barrel connector 12VDC

HDMI Mini HDMI interface

Camera interface CSI interface for connecting a camera

Wireless

interfaces

WiFi A WiFi interface following IEEE 802.11ac is available

BLE Bluetooth Low Energy (BLE) 5.2 (IEEE 802.11ac)

Compute

power &

storage

Processing module i.MX 8M Plus. Quad core @1.8 GHz (ARM® Cortex®-A53)

RAM 2GB & 4GB LPDDR4 (2 variants were developed)

eMMC 16GB eMMC

Expansion boards

CAN Automotive CAN open module

RS485 An USB to RS485 module is available

Mobile network module A M.1 slot is reserved for 3G/4G/5G functionality. A SIM card slot is available on

the GWEN.

The firmware of the GWEN consists of an Operating System (OS) a container runtime and in addition pre-

installed software to support enablers will be used. This pre-installed software operates on top of the OS, next

to the container runtime so custom containers can use this pre-installed software. Key specifications of the Edge

node firmware are given:

 Operating System (OS): Yocto, based on Linux, is used as OS. The Yocto Project is an open

source collaboration project that helps developers creating custom Linux-based systems regardless

of the hardware architecture. The project provides a flexible set of tools and a space where

embedded developers worldwide can share technologies, software stacks, configurations, and best

practices that can be used to create tailored Linux images for embedded and IOT devices, anywhere

a customised Linux OS is needed.

 Hardware Abstraction Layer (HAL): The HAL consists of device driver as interface between the

electronics and the OS. The Yocto project supports several kinds of peripherals and provides device

drivers which implement hardware specific functionality for these peripherals. Besides, not

supported peripherals of the Edge node will need own developed device drivers. These are also part

of the HAL.

 Configuration and initialisation: The configuration and initialisation of the standard interfaces

(Ethernet, Serial, etc.), SSH and a default user will be preconfigured on the Edge node, making the

node fully functional and ready to run enablers on.

 Container runtime: For the container runtime, Docker is used. Docker is a set of platform-as-a-

service products that use OS-level virtualisation to deliver software in packages called containers.

Containers are isolated from one another and bundle their own software, libraries and configuration

files; they can communicate with each other through well-defined channels. As the enablers will be

implemented as containers, Docker will be preinstalled.

 Pre-installed software: The following supportive software will be pre-installed at the Edge node:

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 17 of 93

 Python: Python is a general-purpose programming language that will be used by many

enablers. It is used for web development, AI, machine learning, mobile application

development, etc. As Python will be used on the Edge node, it will be preinstalled.

 Kubernetes (K3s): Kubernetes automates operational tasks of container management and

includes built-in commands for deploying applications, rolling out changes to applications,

scaling applications up and down to fit changing needs, monitoring applications making it

easier to manage applications. Where K3s is a lightweight Kubernetes distribution created

by Rancher Labs, and it is fully certified by the Cloud Native Computing Foundation

(CNCF). K3s is highly available and production-ready. It has a very small binary size and

very low resource requirements.

 Wazuh: Wazuh is a free and open source platform used for threat prevention, detection, and

response. It is capable of protecting workloads across on-premises, virtualised,

containerised, and cloud-based environments.

3.2. ASSIST-IoT localisation tag

The localisation tags and anchors are build up according the following block-diagram:

Table 3. Localisation tag specifications

Electronic component Specification

UWB Transceiver Qorvo DWM1001c

Battery 16340 rechargeable battery

Micro controller STM32F072CBT6 & Nordic nRF52832

Program/Debug JTAG

Buzzer, LED, pushbutton The DEV-kit (Qorvo mdek1001c) has several built in components such as a buzzer,

2 LED’s and 2 pushbuttons which can be programmed as liked. In the pilots these

were used for operator communication and response. The DEV-kit also has a build-

in accelerometer which is used for the fall-arrest.

Figure 3. The heart of the module, the Qorvo DWM1001C UWB breakout board

3.3. ASSIST-IoT fall arrest device
Table 4. Fall arrest device specifications

Electronic component Specification

Fall arrest sensor interface digital I2C/SPI serial interface

Inertia Measurement Unit (IMU) LIS2DH12 3-axis accelerometer motion sensor

UWB Transceiver The accelerometer is part of a build in component of the Qorvo DWM1001c

breakout board.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 18 of 93

4. Horizontal enablers

All enablers will report their final specifications in the same way. In total, five sections will be included, with

the following data:

General specifications and features

Table 5. Template table to report the general information of the enablers

Enabler Name of the enabler

Id Short unique identifier/acronym

Owner and support Lead and supporting beneficiaries
Description and main

functionalities
Functional description of the enabler. Improve current descriptions!!

Key features
Bullet points for describing its features, focusing on advancements over SotA (e.g.,

improvements over Prometheus when developing the PUD, or the EDB w.r.t VerneMQ)

Plane/s involved Horizontal plane or planes on which the enabler's features are delivered

Requirements mapping List of the IDs of the requirements addressed or considered. Update 4.1 using D3.3 data

Use case mapping List of the IDs of the use cases related to this enabler. Update 4.1 using D3.3 data

Internal components List of the internal components of this enabler

Components and technologies

A high-level schema of the internal microservices or micro-applications is to be included. It should be

highlighted that, when implemented, some components can be wrapped in a single container.

Figure 4. Example of high-level diagram

The description and implementation technologies of each one of the components will be reported in a table as

the following one:

Table 6. Template to report the components and implementation technologies of the enablers

Component Description Technology/s

 It is in charge of / Id deals with / It provides …

NOTE: Apart from components of the encapsulation exceptions, Docker, K8s and Helm have been considered

for implementing all the enablers. Additional notes can be added, for complementing the information provided

or express any aspect worth to be included.

Communication interface/s

The third section reports the communication interfaces. Generally, this refers to API endpoints, following the

table below. In case that other interfaces are present (e.g., MQTT connections, VPN enabler via dedicated

TCP/UDP connection, etc.) they will be reported accordingly.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 19 of 93

Table 7. Template table to report the API of the enablers

Method Endpoint Description

GET/POST/PUT/DELETE

* Extended information can be found in the enabler documentation.

Enabler stories

This section updates the use cases in which enablers respond until a specific event or call, presenting the

interaction that happens among the components. In this deliverable, they are referred to as enabler stories, as

“use cases” could be confused with the pilot-related use cases of the project. Also, referring to them as “user

stories” would not have been correct as some actions are not triggered by users, but other enablers.

Additional information

The fifth and last section reports additional information related to documentation, encapsulation readiness,

integration with other enablers of the project, and features that could be extended in future releases.

Table 8. Template table to report the implementation status of the enablers

Category Status

Link to ReadtheDocs Link to documentation

Potential features
Additional features that could be added/extended in the future, now that more

knowledge about the enabler is available

Encapsulation readiness
Row to explain if an enabler is an encapsulation exception, and why, or if it has

a full functional Helm package ready

Integration with other enablers
Expresses if the enabler require others to offer all its functions, or if it works in

a complete standalone fashion

4.1. Smart Network and Control enablers

4.1.1. Smart orchestrator

4.1.1.1. General specifications and features

Table 9. General information of the Smart orchestrator

Enabler Smart orchestrator enabler

Id T42E1

Owner and support UPV

Description and main

functionalities

The Smart Orchestrator Enabler aims to control the lifecycle of enablers in a multi-cluster

environment. It not only serves a management function but also provides network security

and enabler instantiation automation capabilities. The Smart Orchestrator works with

Helm charts as a packaging system, which offers the following benefits:

 Simplifies the packaging of software, making it easily customisable.

 Enables seamless upgrades of enablers.

Key features

 Allows managing the enablers lifecycle.

 Introduces network security and automation capabilities.

 Eases the connection of enablers.

Plane/s involved Smart Network and Control Plane

Requirements mapping

 R-P1-20: Remote latency capabilities (it will be in charge of deploying enablers

related to network)

 R-P1-22: Multilink wireless network capabilities (it will be in charge of

deploying the related CNFs)

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 20 of 93

Enabler Smart orchestrator enabler

 R-P3A-11: Connectivity between OEM and fleet (it may/can deploy a ping-

based CNF to evaluate connection between fleet and OEM prior to an update,

and instantiate those VNFs needed for stablishing the connection)

 R-P3A-12: Edge Connectivity (it may/can deploy CNFs to support required

latencies)

Use case mapping

This enabler is inherent to an ASSIST-IoT ecosystem and therefore it should be present

at all pilots, otherwise it would not be possible to orchestrate VNFs and hence the Smart

Network and Control plane would not be present. Among the use cases of the project, the

ones with higher need of it are:

 UC-P1-6: Wireless remote RTG operation

 UC-P1-7: Target visualisation during RTG operation

 UC-P2-6: Safe navigation instructions

 UC-P3B-1: Vehicle’s exterior condition documentation

Internal components
API, Scheduler, Multi-cluster service controller, Metrics server, Orchestrator

microservices

4.1.1.2. Structure, components and implementation technologies

Figure 5. High-level diagram of the Smart orchestrator

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 10. Components and implementation of Smart orchestrator

Component Description Technology/s

API

The RESTful API serves as a central gateway to access all orchestrator

services. Its primary responsibilities include handling API requests for

adding, retrieving, and deleting clusters, repositories, and enablers.

Additionally, it incorporates a scheduler function for automating enabler

cluster scheduling.

Express

Orchestrator

Microservices

These microservices provide the orchestration functions for adding,

retrieving, and deleting clusters, repositories, and enablers.
Express

Multicluster

service controller

Replicates cloud-based services, allowing them to be accessed by edge

services using their respective DNS names
Python, Cilium

Scheduler
Provides automatic cluster election for the enablers instantiation based on

the resources available or network traffic.

Python, mck8s,

NeuralProphet

Metrics server Provide the scheduler with the resources from each of the clusters. Prometheus

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 21 of 93

4.1.1.3. Communication interfaces

Table 11. API of the Smart orchestrator

Method Endpoint Description

GET /clusters Returns the clusters that have been added.

GET /clusters/{id} Returns the cluster that has been added by id.

GET /clusters/node/{id} Returns the nodes in a cluster that have been added.

GET /clusters/cloud/find Returns the cloud cluster.

POST /clusters
When provided with a body, it attempts to establish a cluster

connection and add it into the system.

DELETE /clusters/{id} Deletes a cluster by id.

GET /repos Returns the repositories.

GET /repos/charts/{id} Returns the charts available in a specific repository.

POST /repos/public
Given an URL, description and name, incorporate a public

repository into the system.

POST /repos/private
Given an URL, description, name and user credentials, incorporate

a private repository into the system.

POST /repos/update Updates the repositories available charts in each of them.

DELETE /repos/{id} Deletes a repository by id

GET /enabler Returns the enablers installed in the clusters.

GET /enabler/cluster/{id} Returns the enablers installed in a specific cluster.

POST /enabler
When provided with a body, it installs an enabler, either manually

or automatically, by applying predefined policies.

POST /enabler/upgrade/{id}
When provided with a body, it upgrades an enabler changing the

version.

DELETE /enabler/{id} Deletes an enabler by id.

DELETE /enabler/volumes/{id} Deletes the volumes by the enabler id.

4.1.1.4. Enabler stories

Numerous enabler stories can be applicable to this particular enabler. However, it is possible to categorise some

of them into groups that share a common objective.

The first enabler story depicts how a cluster addition to the Smart Orchestrator enabler occurs. This operation

consists in a POST request where the request body includes the K8s cluster kubeconfig.

STEPS 1-2: The user sends a POST request with some data related with the credentials and additional fields

such as the name, description or the CNI installed in the cluster. These data are captured by the API and sent to

the corresponding microservice.

STEP 3: The microservice responsible for the task attempts to stablish connection with the K8s cluster. If the

connection is successful, the clustermesh is stablished and the next step is initiated.

STEP 4: After the cluster has been created, in order to enable the scheduler to work, the metrics server must

have the newly added cluster registered. Consequently, the microservice proceeds to register it.

STEP 5: If an error occurs, the response will include the error message, which is then transmitted to the user.

If no errors occur, a successful response is returned.

STEP 6-7: The microservice sends a request to the database for adding or updating the cluster and the DB is in

charge of doing it.

STEPS 8-10: If an error occurs, the response will include the error message, which is then transmitted to the

user. If no errors occur, a successful response is returned.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 22 of 93

Figure 6. Smart Orchestrator enabler ES1 (add cluster)

The second story groups all the GET requests (get clusters, get helm repositories, get enablers); in this

case the example is focused in getting the helm repositories.

Figure 7. Smart Orchestrator enabler ES2 (list repositories)

STEPS 1-2: The user sends a GET request for getting the repositories data. The request is captured by the API

and sent to the corresponding microservice.

STEPS 3-4: The microservice sends a request to the database for getting the helm chart repository and the DB

is in charge of doing it.

STEPS 5-7: If an error occurs, the response will include the error message, which is then transmitted to the

user. If no errors occur, a successful response is returned.

The third enabler story consolidates all DELETE requests (delete cluster, delete helm repository, delete

enabler), with the specific example in this case being centered around the deletion of a Helm repository.

STEPS 1-2: The user sends a DELETE request for deleting a specific repository including the ID of it. The

request is captured by the API and sent to the corresponding microservice.

STEP 3: The microservice in charge of this task deletes it from the system.

STEPS 4-5: The microservice sends a request to the database. The DB is in charge of deleting it.

STEPS 5-7: If an error occurs, the response will include the error message, which is then transmitted to the

user. If no errors occur, a successful response is returned.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 23 of 93

Figure 8. Smart Orchestrator enabler ES3 (delete repository)

The fourth story explains how an enabler is instantiated. This story may involve two variables: the utilisation

of the scheduler and the use of the multicluster service, although they are not mandatory for installing an enabler.

STEPS 1-2: The user sends a POST request with some data related with the name, helm repository and helm

chart, values and cluster (placement policy when the scheduler is used). These data are captured by the API and

sent to the corresponding microservice.

STEP 3: When the scheduler feature is activated, the microservice sends a request to fetch the available clusters,

considering both the resources within the cluster and the resources requested by the enabler.

STEPS 4-5: The scheduler sends a request to the database for getting the K8s clusters kubeconfig. The DB is

in charge of getting them.

STEP 6: If an error occurs, the response will include the error message, which is then transmitted to the user.

If no errors occur, a successful response is returned.

STEP 7: The scheduler selects the cluster by using the placement policy and the resources mentioned earlier.

STEP 8: If an error occurs, the response will include the error message, which is then transmitted to the user.

If no errors occur, a successful response is returned.

STEP 9: A microservice creates the enabler, installing it from the helm chart saved in the repository selected

and in the cluster selected by the scheduler. When an enabler is installed, if it contains an multicluster service,

triggers an event.

STEPS 10-11: The microservice sends a request to the database. The DB is in charge of creating the enabler

DB record.

STEPS 12-14: If an error occurs, the response will include the error message, which is then transmitted to the

user. If no errors occur, a successful response is returned.

If the multicluster service is enabled in the enabler helm chart, the task runs simultaneously to the enabler DB

creation.

STEPS 10-11: The multicluster service controller gets the K8s event and gets all the K8s kubeconfig from the

DB, except the cloud one.

STEP 12: If an error occurs, the response will include the error message and will print an error log. If no errors

occur, a successful response is returned.

STEP 13: The multicluster service controllers deploys the services in all the edge clusters by stablishing

connection with them.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 24 of 93

Figure 9. Smart Orchestrator enabler ES4 (add enabler)

4.1.1.5. Implementation information

Table 12. Implementation status of the Smart orchestrator

Category Status

Link to ReadtheDocs
https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html

Potential features

All the features for the project have been implemented. However, newer versions may

incorporate ClusterAPI for provisioning, upgrading, and managing multiple clusters

resources.

Encapsulation readiness Full functional Helm package ready

Integration with other

enablers
The enabler is integrated with the PUD to be used as the Metrics Server.

4.1.2. SDN Controller

4.1.2.1. General specifications and features

Table 13. General information of the SDN controller

Enabler SDN Controller

Id T42E2

Owner and support OPL

Description and main

functionalities

SDN Controller is the part of programmable network management system (control plane)

to control network devices i.e., software switches based on OpenFlow protocol, including

configuring, monitoring and management of packet flows. The main functionalities are

related to network management, operation and maintenance, allowing topology

management, network configuration, network control and network operations, among

other features.

Key features

 Network topology configuration,

 Monitoring of network elements,

 Packet flows configuration.

Plane/s involved Smart Network and Control Plane

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 25 of 93

Enabler SDN Controller

Requirements mapping

 R-P3A-11: Connectivity between OEM and fleet (it provide connectivity setup

and control)

 R-P3A-12: Edge Connectivity (it provides network core connectivity for edge

systems)

Use case mapping

Not applicable directly in the pilots as it requires SDN equipment. It is envisioned to any

of use cases in which SDN network or 5G virtualised edge access will be deployed as well

as for other enablers related to programmable network. Among pilot’ use cases, it would

be involved for mission critical systems:

 UC-P1-6: Wireless remote RTG operation

 UC-P2-6: Safe navigation instructions

 UC-P3B-1: Vehicle’s exterior condition documentation

 UC-P1-7: Target visualisation during RTG operation

Internal components

 GUI

 Northbound API

 Configuration, Control, Topology component

 Southbound API

4.1.2.2. Structure, components and implementation technologies

The SDN Controller is the key element of an SDN network, implementing control plane functionalities related

to network management, traffic management and monitoring. In a typical controller architecture (see high-level

architecture in Figure 10), one can distinguish core functional modules like Configuration, Control, Topology,

and Northbound (NB) and Southbound (SB) APIs.

Figure 10. High-level diagram of the SDN controller

For implementation in the project the open source ONOS controller was selected. The version for K8s

deployment with Helm chart was developed. The main components are depicted in the table below:

Table 14. Components and implementation of SDN controller

Component Description Technology/s

Northbound API

Northbound API provide REST API and new generation interfaces

using gNMI, gNOI, P4Runtime, NetDisco. It is needed for developing

applications for network control and orchestrations and can be used by

other external enablers.

Java

Southbound API

Southbound API provide protocols like NETCONF and new generation

interfaces using gNMI, gNOI, P4Runtime, NetDisco. It is needed for

network devices control provided by different vendors.

Java

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 26 of 93

Control Module
This component is responsible for network flow control and meter API.

It allows for network routing and traffic management.
Java, REST API

Configuration

Module

This component is in charge of configuration of network devices,

tracking the changes in the configuration of the network.
Java, REST API

Topology Module

This component is responsible for topology management of the

network. It manages and keeps information about the network graph and

network devices, links, and hosts.

Java, REST API

Graphic User

Interface

This component will expose the functionalities of the internal modules

of the SDN Controller for administrative purposes.
Java, REST API

4.1.2.3. Communication interfaces

Table 15. API of the SDN controller

Method URL Description

GET/POST/

PUT/DELETE

/link/ ?{device=deviceId}

{port=portNumber}

{direction=[ALL,INGRESS,EGRESS]}

Lists all infrastructure links, creates, update, deletes

device

GET/POST/

PUT/DELETE
/devices/{deviceid}/ports

Lists all infrastructure devices, creates, update, deletes

device

GET/POST/

PUT/DELETE
/hosts/{hostId}

Lists all end-stations hosts.

GET /topology/clusters/{clusterId} Gets list of topology cluster overviews.

GET/POST

/DELETE
/paths/{elementId}/{elementId}

Gets set of pre-computed shortest paths between the

specified source and destination network elements

GET/POST

/DELETE
/flows/{deviceId}/{flowId}

Creates, lists, deletes a single flow rule applied to the

specified infrastructure device

GET/POST

/DELETE
/meters/{deviceId}

Creates, lists, deletes a single meter entry applied to the

specified infrastructure device.

GET/POST

/DELETE
/intents/{app-id}/{intent-id}

Gets the details for the given Intent object. Creates,

deletes a new Intent object.

GET/POST/

PUT/DELETE
/applications/{app-name}

Gets a list of all installed applications. Activates,

deactivates the named application.

GET/POST

/DELETE
/configuration/{component}

Gets the configuration values for a single component.

Adds, removes a set of configuration values to a

component

NOTE: Extended information can be found in the enabler documentation.

4.1.2.4. Enabler stories

The usage of SDN controller enabler is envisioned in many applications and for other enablers needs that require

the network control and monitoring features. Three exemplary stories are presented below, being the flow almost

identical (the major change is on the SDN controller internal function consumed).

The first enabler story is related to the configuration of a programmable network device (switch), following

the sequence and related steps:

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the

configuration of the given device with specified parameters.

STEP 2: The NB API receives the configuration and sends the request to the configuration module for

processing and formatting.

STEP 3: Configuration module sends the configuration request to SB API in the required format.

STEP 4: SB API sends in a given format the configuration request to the selected device.

STEPS 5-7: A message of the result of the operation is returned to back to the NB API.

STEP 8: Once the process has finished, the API returns a confirmation message.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 27 of 93

Figure 11. SDN controller ES1 (device configuration).

The second enabler story shown is related to the deployment of an intent, which essentially specifies how

the network should behave in terms of policies or directives rather than specific actions. The flow and steps are

the following:

Figure 12. SDN controller ES2 (intent deployment)

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the

intent object action with specified parameters.

STEP 2: The NB API receives the request and sends it to control module for processing.

STEP 3: Control module sends request to deploy intent in the network using SB API.

STEP 4: SB API enforce the intent action in the SDN network.

STEPS 5-7: A message of the result of the operation is returned to back to the NB API.

STEP 8: Once the process has finished, the API returns a confirmation message.

The third enabler story depicted is related to topology discovery. In this case, the diagram and steps are the

ones described below:

Figure 13. SDN controller ES3 (topology discovery)

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 28 of 93

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the

topology discovery.

STEPS 2-3: The NB API receives the request and forwards it to the topology module for processing, which

then sends a request to deploy a specific action in the network using SB API.

STEP 4: The SB API asks for the needed information in the SDN network.

STEPS 5-6: Information about topology is collected by the SB API module, which sends the collected

information to the topology module.

STEPS 7-8: Once processed, the topology module sends the answer with the information to NB API module,

which returns it to the user/application/enabler.

4.1.2.5. Implementation information

Table 16. Implementation status of the SDN controller

Category Status

Link to ReadtheDocs
https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/sdn_controller.html

Potential features
This enabler could be combined with other enablers in the project and used for application

development to manage the SDN network.

Encapsulation

readiness

Controller is encapsulated in Docker images and work in a Kubernetes cluster. Helm chart

is ready to use.

Integration with other

enablers
Usage with other enablers and integrated with auto-configurable network enabler.

4.1.3. Auto-configurable network enabler

4.1.3.1. General specifications and features

Table 17. General information of the Auto-configurable network enabler

Enabler Auto-configurable network enabler

Id T42E3

Owner and support OPL

Description and main

functionalities

This enabler provides optimised network resource management using network routing

configuration capabilities of the SDN Controller. Using an AI-based solution, it improves

the performance of the network KPI’s i.e., traffic load distribution, data losses and transfer

latency.

Key features

 AI based policy rules generation,

 Monitoring of network parameters (traffic load) and QoS parameters (data losses

and latency),

 Network resources optimisation for multidimensional KPI’s

Plane/s involved Smart Network and Control Plane

Requirements mapping

 R-P1-20: Remote latency capabilities (this enabler can help prioritising

involved traffic)

 R-P3A-12: Edge Connectivity (it provides network core connectivity for edge

systems)

Use case mapping

Not applicable directly in the pilots as it requires SDN equipment. It is deployable in any

of use cases in which SDN network is applied. Among pilot’ use cases, it would be

involved for mission critical and video streaming systems:

 UC-P2-6: Safe navigation instructions

 UC-P3B-1: Vehicle’s exterior condition documentation

 UC-P3B-2: Exterior defects detection support

Internal components Policy Engine, Monitoring Module

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sdn_controller.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sdn_controller.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 29 of 93

4.1.3.2. Structure, components and implementation technologies

This enabler provides functionalities for optimising network configuration leveraging the SDN Controller in

programmable network environment. It assumes generation of the policies and enforces them using the

northbound APIs of the SDN Controllers. Polices are set automatically (using AI solutions: Ant Colony

mechanism) to improve the performance and quality of selected KPIs of the network (e.g., traffic load

distribution, data transfer losses and latency). Enabler provides three different strategies regarding KPI’s

optimisation: network resources, data transfer losses and latency of data transfer. Moreover, multidimensional

optimisation strategy taking into account all mentioned parameters was developed.

This enabler considers two components: (i) a policy engine, in charge of the creation of polices and their

execution in the SDN network for optimising the KPIs and the creation of routing paths. It obtains network

information through the SDN controller, and data traffic via (ii) a monitoring module, responsible for

collecting network traffic and QoS statistics. The internal structure is presented in figure below.

Figure 14. High-level diagram of the Auto-configurable network enabler

For the project K8s deployment with helm chart was developed. The main components are depicted in the table

below.

Table 18. Components and implementation of Auto-configurable network enabler

Component Description Technology/s

Policy Engine

This component is in charge of creation of polices and its execution in the

SDN network for optimising the network traffic and creation of routing paths.

It obtains the network information using SDN controller and data traffic and

QoS parameters using monitoring module. The optimising algorithms is

supported by AI techniques like Deep Learning and Ant Colony algorithm.

Python, Java,

REST API

Monitoring

Module

This component is responsible for collecting network traffic statistics and

QoS parameters. The monitored KPIs are: traffic load per link, data losses and

latency per link. Open source rt-sFlow tool was integrated.

Python, Java

4.1.3.3. Communication interfaces

Table 19. API of the Auto-configurable network enabler

Method URL Description

POST /enabled/{true/false} Enables/Disables the enabler

NOTE: Extended information can be found in the enabler documentation.

4.1.3.4. Enabler stories

The usage of the enabler is related to the strategies of the performance/quality parameters goal optimisation.

Three strategies were implemented, aiming at optimising traffic load optimisation, data transfer losses and

latency in the network (RTT).

A flow diagram and related steps of the enabler story is presented below, consisting in the policy-based

adaptation of the network, also considering the gathering of needed information:

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 30 of 93

Figure 15. Auto-configurable network enabler ES1 (policy-based network adaptation)

STEP 1: The policy engine requires data from the network. The monitoring module has to collect them

previously, communicating with agents present in network nodes. This will be a continuous operation once the

enabler is on.

STEP 2: The policy engine requests the selected parameters for a given purpose (optimise the load traffic, data

losses or latency) from the monitoring module.

STEPS 3-4: After data reception, the policy module generates the rules and sends them to the SDN controller.

STEP 5: SDN controller deploys the rules in the SDN network.

STEPS 6-7: Confirmation messages are sent back to the policy engine.

The policy engine works in standalone fashion, triggering itself regularly when the new flow is coming to the

network.

4.1.3.5. Implementation information

Table 20. Implementation status of the Auto-configurable network enabler

Category Status

Link to ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_

enabler.html

Potential features
This enabler can be used for other application development to optimise the SDN network

resources.

Encapsulation

readiness

Enabler is encapsulated in Docker image and work in a Kubernetes cluster. Helm chart is

ready to use.

Integration with

other enablers
Integrated with SDN controller enabler.

4.1.4. Traffic classification enabler

4.1.4.1. General specifications and features

Table 21. General information of the Traffic classification enabler

Enabler Traffic classification enabler

Id T42E4

Owner and support UPV

Description and main

functionalities

In SDN-enabled networks, a controller is responsible for controlling the underlying

switches that distribute traffic according to different rules, including sources/sinks, ports

and type of traffic. Regarding the latter, it is possible that the controller is not able to

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 31 of 93

Enabler Traffic classification enabler

acknowledge the type of traffic of a specific packet, needing a specific SDN application

to identify it on its behalf. This enabler will be in charge of this functionality, allowing:

 Training a machine learning model to classify traffic packets, based on the

combination of different algorithms.

 To infer the type of traffic of a specific packet based on different packet

parameters.

Key features
 Allows using widespread pcap files to train the models offline

 Two different types of models to train and use: CNN and Resnet

Plane/s involved Smart Network and Control Plane

Requirements mapping

Not applicable, as any pilot makes use of SDN equipment. If SDN networks were

available, it could be mapped to:

 R-P1-20: Remote latency capabilities (this enabler can help prioritising involved

traffic)

 R-P3A-12: Edge Connectivity (this enabler can prioritise traffic related to PCM

calibration updates)

Use case mapping

Not applicable, as any pilot makes use of SDN equipment. If they had, it would fit those

use cases in which a particular traffic could be prioritised by the SDN Controller. Among

pilot’ use cases, it would be involved in those that traffic of either video streams, mission

critical systems or image data have priority:

 UC-P1-7: Target visualisation during RTG operation

 UC-P2-6: Safe navigation instructions

 UC-P3B-1: Vehicle’s exterior condition documentation

 UC-P3B-2: Exterior defects detection support

Internal components API, Training module, classifier

4.1.4.2. Structure, components and implementation technologies

Figure 16. High-level diagram of the Traffic classification enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 22. Components and implementation of the Traffic classification enabler

Component Description Technology/s

API

API REST, acting as a central proxy of the operations that are

offered by the enabler. It is responsible of managing the API

calls related to starting a training and an inference process. It

also includes necessary calls for preparing data used for further

training.

Flask

Training module

It will be invoked for training the ML models, ideally when an

extended or new dataset is available (mandated by a user).

Currently, a CNN and a Resnet models are incorporated.

scapy, torch, scikit-learn

Classifier

Contains the functions in charge of executing the inference

process, taking a trained model and a set of packet features as

inputs.

scapy, torch, scikit-learn

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 32 of 93

4.1.4.3. Communication interfaces

Table 23. API of the Traffic classification enabler

Method Endpoint Description

GET /version Returns the version of the enabler.

GET /health
Returns status of the enabler (it is considered healthy if its

components are deployed and can be communicated).

GET /v1/api-export Returns the openapi specifications of the enabler.

POST /v1/preprocess
Given a set of .pcap files via volume (in ML_folder/data), these

are prepared for further training.

POST /v1/create_train_test_set

Given a set of preprocessed files (in ML_folder/preprocessed),

these are split in two sets for training and validation, and parcel

files are prepared.

POST /v1/train

Given a set of prepared files (in ML_folder/target), a training

process is started. This may take a long time depending on the

input data volume

POST /v1/cnn_inference_app
Returns the application of the packets of a .pcap file, considering a

previously trained CNN model (present in ML_folder/model).

POST /v1/cnn_inference_traffic
Returns the traffic type of the packets of a .pcap file, considering a

previously trained CNN model (present in ML_folder/model).

POST /v1/resnet_inference_app
Returns the application of the packets of a .pcap file, considering a

previously trained resnet model (present in ML_folder/model).

POST /v1/resnet_inference_traffic
Returns the traffic type of the packets of a .pcap file, considering a

previously trained resnet model (present in ML_folder/model).

4.1.4.4. Enabler stories

Two are the enabler stories that apply to this enabler. The

first enabler story will be instantiated by a user, once the

volume attached to the training module labelled samples

of data (in .pcap format) to use for this purpose. The story

has been updated to represent the different calls that a user

has to make to complete flow. Particularly, the steps

related to the first use case are:

STEPS 1-2: Before training, the .pcap files used for

training need to be pre-processed. The user starts this

process interacting with the enabler API, which forwards

this operation to the training module.

STEP 3: Once the operation has been completed, the API

is notified, informing the user.

STEPS 4-5: Afterwards, pre-processed packets have to be

separated in a training and a validation set. The user starts

this process with the respective API call, which is then

forwarded to the training module.

STEP 6: Once the operation has been completed, the API

is notified, informing the user.

STEPS 7-8: With the sets ready, the user can start the

training process, selecting the desired model.

STEP 9: Once the training has been completed, the API

is notified, informing the user.

 Figure 17. Traffic classification enabler

ES1 (train model)

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 33 of 93

The second enabler story can be initiated by a user or by the SDN controller, related to the classification of a

packet or group of packets. In this case, the next steps are followed:

STEP 1: A external entity (user or SDN Controller) starts an inference process via API command, making use

of previously-trained model. The .pcap file to process is attached.

STEP 2: The API communicates with the classifier to start a new process, forwarding the data received.

STEP 3: When the process is finished, a message with the inferred class is sent back to the API (much faster

than the training time, sub-second) and the launcher, notified.

Figure 18. Traffic classification enabler ES2 (packet classification)

4.1.4.5. Implementation information

Table 24. Implementation status of the Traffic classification enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html

Potential

features

In the current version, models are stored in a K8s’ persistent volume. In future releases, the enabler

could be enhanced by using the FL repository enabler with that end. Also, in future API versions,

calls can be transformed to be model-agnostic, passed via parameter, to allow the use of additional

models.

Encapsulation

readiness
Full functional Helm package ready

Integration with

other enablers

Any integration has been performed. In case an SDN controller needs it, it should be adapted

suitably to consume the Traffic classification API.

4.1.5. Multi-link enabler

4.1.5.1. General specifications and features

Table 25. General information of the Multi-link enabler

Enabler Multi-link enabler

Id T42E5

Owner and support UPV

Description and main

functionalities

The main goal of this enabler is to manage different wireless access networks, so in case

the configured primary link is down a second one is up without noticing (at least, not by

the user) any kind of service disruption. The enabler offers the ability to be reconfigured

in the meantime it is running.

Key features

 Allows to maintain connection between two hosts with multiple interfaces and

select them in priority order.

 Its performance could be changed to support redundancy instead of (or jointly

with) reliability.

Plane/s involved Smart Network and Control Plane

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 34 of 93

Enabler Multi-link enabler

Requirements mapping
 R-P1-22: Multilink wireless network capabilities (self-explanatory).

 R-P1-21: Remote reliability capabilities (in case one network fails, another can

take over, considering redundancy mechanisms)

Use case mapping
 UC-P1-6: Wireless remote RTG operation

 UC-P1-7: Target visualisation during RTG operation

Internal components Client/server API, Bridging component, Bonding component, VPN client/server

4.1.5.2. Structure, components and implementation technologies

Figure 19. High-level diagram of the Multi-link enabler: client side (left), server side (right)

In the next figure one can see an implementation of the Multi-link enabler between two hosts, in this case there

are two links (Ethernet and WiFi) combined by a bond in the client side and a bridge on the server side. The

bond monitors the primary link (WiFi) and in case this link fails switch to the backup link (Ethernet). If the

primary link connection is restored, it will switch to the primary link. In other words, the devices will be

communicating all the time using the primary link except when the connection of the primary link is down.

Figure 20. Multi-link client and server example between two hosts

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 26. Components and implementation of the Multi-link enabler

Component Description Technology/s

Client/server API

API REST, acting as a central proxy of the operations that are offered

by the enabler. It is responsible of managing the API calls related to

start and stop the client and server, also calls to reconfigure the

bonding component and active testing of the enabler.

Express

Bonding component It will be invoked to create/configure the bond interface.
Bash

Bridging component It will be invoked to create/configure the bridge interface.

VPN Client/Server
Create tunnels of layer 2 (tap) for each link that compounds the

bond/bridge.
OpenVPN

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 35 of 93

4.1.5.3. Communication interfaces

Table 27. API of the Multi-link enabler

Method Endpoint Description

GET /version Returns the version of the enabler.

GET /health
Returns status of the enabler (it is considered healthy if its

components are deployed and can be communicated).

GET /v1/api-export Returns the Open API specifications of the enabler.

GET /v1/server/key Returns the key used by the tap tunnels

GET /v1/server/status Returns if the server side is running or not

GET /v1/client/status Returns if the client side is running or not

GET
/v1/client/bond_params/{

interface}

Returns the bond configuration of the interface provided in the URL

as parameter

POST /v1/ping_test
Execute ping to the IP provided in the JSON of the request body and

returns if it was successful or not.

POST /v1/server/start
Start the server side of the multilink creating the bonding component

and the tap tunnels specified in the JSON body of the request.

POST
/v1/server/stop/{bridging

_component}

Stop the server side of the multilink deleting the bonding component

specified as parameter in the URL.

POST /v1/client/start
Start the client side of the multi-link creating the bonding component

and the tap tunnels specified in the JSON body of the request.

POST
/v1/client/stop/{bonding_

component}

Stop the client side of the multi-link deleting the bonding component

specified as parameter in the URL.

POST
/v1/client/bond_params/{

interface}
Change the configuration parameters related to the bond interface.

POST /v1/tap_up/{tap} Bring up the tunnel interface indicated as parameter in the URL.

POST /v1/tap_down/{tap} Bring down the tunnel interface indicated as parameter in the URL.

NOTE: Extended information can be found in the enabler documentation. Specially the requests available by

each side (client and server).

4.1.5.4. Enabler stories

Although there are many operations, some of them follow the same communication schema, so they will be

grouped. The first enabler story is related with the start/stop of the server side of the multi-link enabler.

With this operation it is possible to enable/disable the server side.

Figure 21. Multi-link enabler ES1 (server-side start/stop)

STEP 1: The user consumes the API of the Multilink-server to start/stop the server side. In the case of the start

operation the configuration of the client must be in the request body as JSON following the schema in the

OpenAPI. If the request is for stop the server, it is needed the name of the bridging component as a parameter

in the URL.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 36 of 93

STEP 2: The VPN server component creates/deletes the tap tunnels specified in the bond configuration and

leave this connection opened and waiting for a connection request by the client.

STEP 3: Create/delete the bridge interface with tunnels as slaves.

STEPS 4-6: If there is any error, return error response showing the error log, if everything is correct return

successful response.

The second enabler story refers to the same as the previous one but applying it to the client side (multi-link

client start-stop).

Figure 22. Multi-link enabler ES2 (client-side start/stop)

STEP 1: The user consumes the API of the Multi-link client to start/stop the client side. In the case of the start

operation the configuration of the client must be in the request body as JSON following the OpenAPI schema.

STEP 2: The VPN client component creates/deletes the tap tunnels specified in the bond configuration.

STEP 3: Request to the server side the key of the tunnels and start the tunnels connection.

STEP 4: The server key is received and stored in the client side.

STEP 5: The bond interface is created/deleted adding/removing the tap tunnels as slaves.

STEPS 6-8: If there is any error, return error response showing the error log, if everything is correct return

successful response.

The third enabler story explains how to change the bonding parameters (only client side has bonding

component). The steps are:

Figure 23. Multi-link enabler ES3 (change bonding parameters)

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 37 of 93

STEP 1: The user consumes the API of the Multi-link client to get/change the client side. In the case of changing

parameters, the configuration of the bond parameters that want to be changed must be in the request body as

JSON following the schema in the OpenAPI.

STEP 2: Apply the changes to the bonding component.

STEPS 3-4: If there is any error, return error response showing the error log, if everything is correct return

successful response.

The fourth enabler story is referred to bring up or down tunnels (tap interfaces) in the client side. It could

be interesting for test the correct behaviour of the bond, selecting the correct links in case of failures.

Figure 24. Multi-link enabler ES4 (bring up/down tunnel interfaces)

STEP 1: The user queries the API of the Multi-link client to bring up/down a tunnel interface. The tunnel

interface selected is in the URL as parameter.

STEP 2: Bring up/down the interface.

STEPS 3-4: If there is any error, return error response showing the error log, if everything is correct return

successful response.

The fifth enabler story corresponds to a procedure to check the connectivity between client or server side to

another host. This request has been implemented to test the connection between the client and server side.

Figure 25. Multi-link enabler ES5 (ping test)

STEP 1: The user queries the API of the Multi-link client to make a ping test. The IP to test the connection with

is in the request of the query.

STEP 2: Ping to the host.

STEP 3-4: If there is any error, return error response showing the error log, if everything is correct return

successful response with the ping log.

The sixth enabler story refers to the request to know the client/server status.

STEP 1: The user queries the client API to know the status of the server.

STEP 2: Check the status.

STEPS 3-4: If there is any error, return error response showing the error log, if everything is correct return

successful response with the status of the client/server (running or not).

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 38 of 93

Figure 26. Multi-link enabler ES6 (client/server status)

4.1.5.5. Implementation information

Table 28. Implementation status of the Multi-link enabler

Category Status

Link to ReadtheDocs
https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html

Potential features

In the current version, the pod that creates, configures and reconfigures the bond interface

(create-bond-and-taps) needs superuser privileges due to create, modify and delete

interfaces it’s a must and it is needed the kernel of the host to do such actions. There has

been explored the alternative of doing such actions with a Kubernetes CNI plugin. In the

test realised it has been figured it out that it is not as reliable as the actual implementation

so it could be developed in a future.

Encapsulation

readiness
Full functional Helm package ready

Integration with other

enablers
The enabler doesn’t have a direct integration with any other enabler.

4.1.6. SD-WAN enabler

4.1.6.1. General specifications and features

Table 29. General information of the SD-WAN enabler

Enabler SD-WAN enabler

Id T42E6

Owner and support UPV

Description and main

functionalities

The objective of this enabler is to provide access between nodes from different sites based

on SD-WAN technology. This enabler implements mechanisms to connect K8s clusters

via private tunnels, facilitating (i) the deployment and chaining of virtual functions to

secure connections between them and/or towards the Internet and (ii) the implementation

of functions to optimise WAN traffic (via WAN Acceleration enabler)

Key features

 Provides tunnelling feature, for securing network connections between sites.

 Facilitates the implementation of application-level QoS policies.

 Easy configuration of a complex technology

Plane/s involved
The SD-WAN enabler is in the Smart Network and Control plane of the ASSIST-IoT

architecture. It belongs to the building block related to self-contained networks, which are

the ones used for provisioning private networks over public ones.

Requirements mapping
 R-C-10: Transmission security

 R-C-11: Network optimisation

Use case mapping

This enabler will grant a secure and optimised connection for applications and services

from different sites. Since Pilot 3b, that could be the target of this enabler, has a cloud

managed by a third-party, the enabler cannot be exploited as some network prerequisites

cannot be met.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 39 of 93

Enabler SD-WAN enabler

 UC-P3B-1: Vehicle’s exterior condition documentation

 UC-P3B-2: Exterior defects detection support

Internal components

 SD-WAN controller

 Rsync

 NoSQL Database

 Etcd

4.1.6.2. Structure, components and implementation technologies

The SD-WAN enabler was initially designed with a central and (some) edge components, however, they will

be finally realised as independent enablers. This change is motivated mostly for deployment reasons, as an

SDWAN edge must be deployed independently on each cluster that will be included within the SD-WAN

managed architecture. The functionalities of the WAN optimisation enabler will be combined with the original

SD-WAN edge component. Hence, the present enabler will comprise the central elements, which will be in

charge of automatically controlling the SD-WAN edges and hubs, enabling and securing the connections. Its

structure is presented in Figure 27, consisting of the following elements:

Figure 27. High-level diagram of the SD-WAN enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 30. Components and implementation of the SD-WAN enabler

Component Description Technology/s

SD-WAN

controller

Component in charge of managing the aspects related to SD-WAN

communication, including overlays, IP provisioning, tunnels, hub registration,

connections and observation and cluster addition to be managed by it. Provides

a REST API to interact with it.

Go

Rsync

Service that receives requests from the controller and dispatch K8s resources to

the WAN Acceleration enabler and K8s resources of the involved clusters to

setup the dedicated tunnels.

Go, gRPC, K8s

customer

resources

NoSQL

Database

Stores key information regarding managed clusters, hubs, overlays, IP ranges,

etc.
MongoDB

Etcd
Internal metadata database used to exchange configuration between the

controller and rsync.
Etcd database

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 40 of 93

4.1.6.3. Communication interfaces

Table 31. API of the SD-WAN enabler

Method Endpoint Description

GET/POST/

PUT/DELETE

/overlays

Endpoint in charge of creating, modifying, deleting and

getting information regarding a set of edge clusters (and

hubs) managed by the enabler.

/overlays/{id}/proposal
Endpoint in charge of defining IPSec proposals that can be

used for tunnels in an overlay.

/overlays/{id}/hubs
Defines a traffic hub in an overlay. Requires certificate and

kubeconfig file to be able to manage it.

/overlays/{id}/ipranges Defines the overlay IP range used for the edge clusters.

/overlays/{id}/devices

Defines an edge cluster location (with WAN Acceleration

enabler). Among other input, it required kubeconfig file and

certificate information.

/overlays/{id}/hubs/{id}/devices{id} Defines a connection between a hub and an edge cluster.

4.1.6.4. Enabler stories

Although there are many operations, some of them follow the same communication schema, so they will be

grouped.

The first enabler story is related to the management of an overlay, which defines the clusters managed by

the enabler. The diagram and related steps are de following:

Figure 28. SD-WAN enabler ES1 (overlay management)

STEP 1: The user consumes the API of the SD-WAN controller to create, modify or delete an edge cluster part

of an overlay.

STEP 2: The information is stored or updated in the database.

STEP 3: The database confirms that the operation has been completed successfully.

STEP 4: Once the process has finished, the API returns a confirmation message.

NOTE: The flow is identical for the enabler stories related to definition of IP ranges to be used for the

connections, and IPSec configuration proposals for an overlay.

The second enabler story is related to the provisioning and establishment of SD-WAN tunnels for edge nodes

(and hubs) belonging to an overlay. The diagram and involved steps are the following:

STEP 1: The user consumes the API of the SD-WAN controller to create, modify or delete a SD-WAN

connection (establish a tunnel).

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 41 of 93

STEPS 2-3: The SD-WAN Controller gathers the needed information about the overlay, the IP addresses and

IPSec proposals available from the database.

STEP 4: The Controller sends the required data to the rsync component.

STEP 5: The rsync component provisions the needed manifests and interacts with the API of the target cluster.

STEPS 6-7: If the operation is performed successfully (connection established, modified or deleted,

accordingly), a confirmation message is sent back from the API of the target edge cluster to the SD-WAN

controller.

STEP 8: Once the process has finished, the Controller returns a confirmation message.

NOTE: Although not shown in the diagram, some metadata information shared between the components is

stored in the etcd database.

Figure 29. SD-WAN enabler ES2 (tunnel establishment)

The third and last enabler story is related to the connection of hubs with edge cluster. The diagram and

related steps are depicted below. It should be mentioned that the flow may be activated in alternative ways (for

instance, in the previous use case, when a tunnel with the edge cluster is established, the connection with a hub

can be indicated and be part of the flow as well).

STEP 1: The user consumes the API of the SD-WAN Controller to create, modify or delete a connection

(establish a tunnel) between a hub and an edge cluster.

STEPS 2-3: The SD-WAN Controller gathers needed information about the overlay, the IP addresses and IPSec

proposals available from the database and sends the required data to the rsync component.

STEP 4: The Controller sends the required data to the rsync component to setup the hub.

STEP 5: The rsync provisions the needed manifests and interacts with the API of the target hub cluster.

STEPS 6-7: If the operation is performed successfully (connection established, modified or deleted,

accordingly), a confirmation message is sent from the API of the target hub cluster to the SD-WAN Controller.

SETP 8: Then, the controller mandates the rsync to prepare the required K8s resources so the hub provisions

(modifies or deletes) the tunnel with the edge node.

STEPS 9-10: By means of custom K8s resources, the hub cluster sends in turn a set of K8s resources to the

edge cluster to set up (modify or delete) the secured connection between them.

STEPS 11-13: If the operation is performed successfully, a confirmation message is sent back from the API of

the target hub cluster to the SD-WAN controller.

STEP 14: Once the process has finished, the Controller returns a confirmation message. NOTE: Although not

shown in the diagram, some metadata information shared between the components is stored in the etcd database.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 42 of 93

Figure 30. SD-WAN enabler ES3 (connection of hubs with edge cluster)

4.1.6.5. Implementation information

Table 32. Implementation status of the SD-WAN enabler

Category Status

Link to ReadtheDocs
https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html

Potential features
This enabler cloud be combined with other enablers in the project to manage inter-

cluster communication.

Encapsulation readiness All components are encapsulated in a helm chart ready to deploy the enabler.

Integration with other

enablers

This enabler was specifically designed to integrate with the WAN Acceleration

enabler.

4.1.7. WAN acceleration enabler

4.1.7.1. General specifications and features

Table 33. General information of WAN acceleration enabler

Enabler WAN acceleration enabler

Id T42E7

Owner and support UPV

Description and main

functionalities

The WAN acceleration enabler will incorporate features that will improve the connections

among the clusters and/or sites managed by ASSIST-IoT, and towards the Internet. It will

be controlled by the SD-WAN enabler for establishing tunnels and will be in charge of

implementing features to support multiple WAN links, firewalling, tunnelling setups and

traffic control, including traffic shaping. Depending on its configuration (via the SD-

WAN enabler), it could act as:

 An SD-WAN Edge component, present in each K8s cluster, with a dedicated K8s

controller and a Containerised Network function (CNF) through which traffic

goes through it. The CNF will embed functions to setup aspects such related to

IPSec, firewalling, DNS, DHCP and WAN link management, whereas a Custom

Definition Resource (CRD) controller contains all the sub-controllers to create,

query and configure these features.

 A SD-WAN hub, which will act as a middleware among clusters and/or between

them and the Internet, enabling the introduction of additional CNFs related to

security, filtering, traffic shaping, etc. Once the basic features are implemented,

the incorporation of additional ones (as CNFs) will be evaluated.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 43 of 93

Enabler WAN acceleration enabler

Key features
Works jointly with the previous enabler (T42E6) to provide the same features (see table

29)

Plane/s involved

The WAN Acceleration enabler is located in the Smart Network and Control plane of the

ASSIST-IoT architecture. In particular, it belongs to the building block related to VNFs,

specifically (i) for provisioning private networks over public ones, jointly with the SD-

WAN enabler, and (ii) for supporting VNFs chaining (containerised, thus CNFs).

Requirements mapping
 R-C-10: Transmission security

 R-C-11: Network optimisation

Use case mapping

This enabler will grant a secure and optimised connection for applications and services

from different sites. Since Pilot 3b, that could be the target of this enabler, has a cloud

managed by a third-party, the enabler cannot be exploited as some network prerequisites

cannot be met.

 UC-P3B-1: Vehicle’s exterior condition documentation

 UC-P3B-2: Exterior defects detection support

Internal components

 SD-WAN CRD controller

 SD-WAN CNF

 API

4.1.7.2. Structure, components and implementation technologies

The structure diagram of the enabler is presented in the Figure 31. High-level diagram of WAN acceleration

enabler. Although the CNF exposes an API, this will be only consumed by the enabler’s dedicated K8s

controller, which will be triggered via the host’s K8s API as a response to a user command, or after a call from

the SD-WAN enabler. In addition, the enabler has an API to interact with it.

Figure 31. High-level diagram of WAN acceleration enabler

As aforementioned, the WAN Acceleration enabler is composed of three main elements, as one can see in the

figure below:

Table 34. Components and implementation of the WAN acceleration enabler

Component Description Technology/s

SD-WAN CRD

Controller

Component that will receive API calls from the K8s API of the cluster to

configure the CNF component.

ovn4nfv-k8s-

plugin, k8s

custom resource

definition

controller

SD-WAN CNF

The CNF will embed functions to setup aspects such related to IPSec,

firewalling, DNS, DHCP, and WAN link management, exposing and API to be

controller/queried.

OpenWRT,

IPSec

API

The API component contains an easy-to-use interface to create, list or delete all

configuration related to internal management, such as firewall rules or mwan3

policies. This component interacts directly with the K8s API server rather than

with other components.

Python

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 44 of 93

4.1.7.3. Communication interfaces

Table 35. API of the WAN acceleration enabler

Method Endpoint Description

GET/POST/DELETE /api/v1/firewall/zones/{zone-name}

To create, list or delete firewall zones in

which to include rules for inter-cluster

traffic.

GET/POST/DELETE
/api/v1/firewall/snats/{snat-name} To create, list or delete firewall snat for

cluster configuration.

GET/POST/DELETE /api/v1/firewall/dntas/{dnat-name} To create, list or delete firewall dnat for

cluster configuration.

GET/POST/DELETE /api/v1/firewall/forwarding/

{forwarding-name}

To create, list or delete firewall forwarding

for cluster configuration.

GET/POST/DELETE /api/v1/firewall/rules/{rule-name} To create, list or delete firewall rules for

cluster configuration.

GET/POST/DELETE /api/v1/mwan3/policies{policy-

name}

To create, list or delete mwan policies for

the cluster configuration.

GET/POST/DELETE /api/v1/mwan3/rules/{rule-name} To create, list or delete mwan rules for the

cluster configuration.

GET /api/v1/version Get version of the enabler deployment

GET /api/v1/health Get health status of the enabler deployment

GET /api/v1/api-export Get API swagger

4.1.7.4. Enabler stories

The first enabler story is related to the depicted endpoints will always follow the same flow, either for

configuring or querying the CNF components. The uses cases are related to WAN interfaces, policies, firewall

and MWAN3 as explained before and the diagram involved steps are the following:

Figure 32. WAN acceleration enabler ES1 (configuring/querying the CNF)

STEP 1: The user interacts with the WAN Acceleration API to create, list or delete firewall/mwan3 custom

resource developed for the enabler.

STEP 2: The petition is sent from the API to the CRD controller and modified accordingly.

STEP 3: The controller performs the required action, interacting with the API exposed by the CNF.

STEP 4: The WAN Acceleration enabler applies the configuration via the API edge/hub K8s cluster.

STEPS 5-8: Once the process has finished, the WAN Acceleration API will return the confirmation message,

based on the response from K8s cluster API message.

The second enabler story is related to get the version, health and API swagger of the enabler (common

endpoints). The steps are the following:

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 45 of 93

Figure 33. WAN acceleration enabler ES2 (querying the common endpoints)

STEP 1: The user sends a request to the API endpoint to receive the common endpoints data such as the versions

available, health status or API swagger information of each version.

STEP 2: The API returns the information to the user in JSON format.

4.1.7.5. Implementation information

Table 36. Implementation status of the WAN acceleration enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html

Potential features
This enabler cloud be combined with other enablers in the project to manage inter-cluster

communication.

Encapsulation

readiness
All components are encapsulated in a helm chart ready to deploy the enabler.

Integration with

other enablers
This enabler was specifically designed to integrate with the SD-WAN enabler.

4.1.8. VPN enabler

4.1.8.1. General specifications and features

Table 37. General information of the VPN enabler

Enabler VPN enabler

Id T42E8

Owner and support UPV

Description and main

functionalities

This enabler will facilitate the access to a node or device from a different network to the

site’s private network using a public network (e.g., the Internet) or a non-trusted private

network. The site’s network will be considered trusted, so VPNs will not be needed to

connect nodes or devices that belong to it.

It should be highlighted that SD-WAN enabler will be the primarily choice for connecting

sites’ networks while VPN will (primarily) connect particular external elements to the

site’s network since VPN lacks both network and application-level performance

optimisation, and it requires extensive manual effort to add different sites to the entire

WAN.

Key features

 Secure access of devices to a site’s network

 High scalability deployment for enabling the integration of a very large number

of devices

Plane/s involved Smart network and control plane

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 46 of 93

Enabler VPN enabler

Requirements mapping
 R-C-10: Transmission security

 R-C-25, Holistic security/privacy approach

Use case mapping
Project’s use cases will be executed primarily with on-site networks. However, in case

that any device with external connectivity is needed to be integrated, the VPN enabler will

be used to boost security.
Internal components API, VPN server

4.1.8.2. Structure, components and implementation technologies

Figure 34. High-level diagram of the VPN enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 38. Components and implementation of the VPN enabler

Component Description Technology/s

API
This component allows users to configure the VPN server and manage the

clients, interfaces and keys.
Node.js, Express

VPN server
Component that will setup the VPN tunnels with the clients and support the

traffic from/to the connected clients.
Wireguard

VPN client
Installed in the devices that want to connect to the network site, it has to be

compatible with the technology used for the server side.
Wireguard

NOTE: Wireguard has been selected for performance and scalability reasons, however, other technologies

could have been chosen.

4.1.8.3. Communication interfaces

Two interfaces are exposed in this enabler, the API so users can configure and manage it, and the VPN server

itself, which must be exposed to accept the connections from the external devices.

Table 39. API of the VPN enabler

Method Endpoint Description

GET /info Adds an interface to be bonded

GET /info/conf Gets a list of managed interfaces

GET /keys
Modifies the order of priority among the managed

interfaces

GET/POST/DELETE /client
Endpoint to get information about a client, eliminating

it, or activating it.

DELETE /client Returns the list of clients registered in the server

PUT /client/enable Enables a client with the specified the public key

PUT /client/disable Disables a client with the specified the public key

Table 40. Communication interface (UDP) of the VPN enabler

VPN Tunnel Dedicated port Port to connect VPN clients to the VPN enabler

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 47 of 93

4.1.8.4. Enabler stories

The enabler stories remain unchanged with respect to D4.2. The first enabler story of this enabler appears

when a user wants to obtain information about the network interface of the VPN server. Its diagram and

related steps are the following:

STEP 1: The user makes an HTTP GET request to the API to obtain the information about the VPN server

network interface.

STEP 2: The API executes interacts with the VPN server to get the information.

STEPS 3-4: The output returned by the server is sent to the user via the API, finishing the operation.

Figure 35. VPN enabler ES1 (get network interface information)

NOTE: The flow is identical for retrieving the configuration file of the network interface (in step 2, considering

another command).

The second enabler story is to generate the needed keys to create a new VPN client. The diagram and the

involved steps are the following:

Figure 36. VPN enabler ES2 (create client)

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 48 of 93

STEP 1: The user makes an HTTP GET request to the API to generate the needed keys to create a new VPN

client.

STEP 2: The API forwards the action to the VPN Server.

STEP 3: The VPN Server generates the needed keys (public, private and pre-shared) and returns them to the

API.

STEP 4: The API passes the keys to the user. With these steps, the client keys are provisioned but the client is

not enabled yet. To enable it, the following flow applies, initiated by the user:

STEP 5: A user makes an HTTP POST request to the API to create a new client, attaching the pre-shared and

the public keys in the request body.

STEP 6: The API assigns an IP address of the VPN server subnet to the new client and communicates with the

VPN server to provision the client, using the provided keys and the assigned IP.

STEP 7: The VPN server adds the new client to its configuration and to the network interface.

STEP 8: The VPN server returns the result of the operation to the API.

STEP 9: The API sends an HTTP request to the LTSE API to save the information of the new client.

STEP 10: If it is stored successfully, the LTSE returns a confirmation.

STEP 11: Finally, the API returns the necessary data (server public key, client IP, ...) to configure a client and

establish a connection to the VPN server.

The third enabler story is to delete a VPN client. The diagram and steps are the following:

Figure 37. VPN enabler ES3 (delete client)

STEP 1: The user makes an HTTP DELETE request to the API to delete the client specified by its public key.

STEP 2: The API forwards the action to the VPN Server.

STEPS 3-4: The VPN server removes the client from its configuration and from the network interface, returning

the result of the operation.

STEP 5: The API sends an HTTP request to the LTSE API to delete the client.

STEP 6: If it is deleted successfully, the LTSE returns a confirmation.

STEP 7: The API returns the result of the operation.

The fourth enabler story is to enable/disable a VPN client. The VPN server does not distinguish between

creating and enabling a client, nor deleting and disabling it. However, thanks to the LTSE, the keys and internal

IP addresses are kept in case clients are enabled or disabled. The diagram and involved steps are the following:

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 49 of 93

Figure 38. VPN enabler ES4 (enable/disable client)

STEP 1: The user makes an HTTP PUT request to the API to enable the client specified by its public key.

STEPS 2-3: The API sends an HTTP request to the LTSE API to obtain the client data, which returns it.

STEP 4-6: The API communicates with the VPN server to create or delete the user. It also adds/removes the

peer to its configuration and to the network interface, returning the result of the operation.

STEP 7-8: The API sends an HTTP request to the LTSE API to update the client (set enabled field to true). If

everything is OK, the LTSE API returns an answer to the API.

STEP 9: The API returns the result of the whole operation.

The fifth (last) enabler story is to connect to the VPN using a client. To that end, a user has to configure an

external VPN client. The diagram and involved steps are the following:

Figure 39. VPN enabler ES5 (connect client)

STEP 1: The user configures a VPN connection and starts the connection process using a client.

STEP 2: The client tries to establish a connection to the server exposed by the VPN enabler.

STEP 3: The server checks the client credentials (the keys) and, if the credentials are valid, establishes the VPN

connection.

STEPS 4-5: Information about the connection is sent to the client, which can be seen by the user.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 50 of 93

4.1.8.5. Implementation information

Table 41. Implementation status of the VPN enabler

Category Status

Link to ReadtheDocs
https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/vpn_enabler.html

Potential features Any additional feature is foreseen to improve this enabler.

Encapsulation readiness Full functional Helm package ready

Integration with other enablers
The VPN enabler can work in a standalone fashion, however, an integration with

the LTSE has been made to use it as backup of the tunnel and clients information.

4.2. Data Management enablers

4.2.1. Semantic repository enabler

4.2.1.1. General specifications and features

Table 42. General information of the Semantic repository enabler

Enabler Semantic Repository (SemRepo)

Id T43E1

Owner and support SRIPAS

Description and main

functionalities

This enabler offers a “nexus” for data models and ontologies, that can be uploaded in

different file formats, and served to users with relevant documentation. It supports files

that describe data models or data transformations, such as ontologies, schema files,

semantic alignment files, etc. Also, human-readable documentation for the models is

served. This enabler is designed as a public (i.e. network-wide) source of data models

(with metadata) to facilitate data interoperability and sharing in a semantic ecosystem.

Key features

 Versioning: different versions of data models,

 Metadata: arbitrary information about the models can be stored.

 Provision & search: data models are public and browsable,

 Documentation: automatically compiled from source files to HTML and served

to end users.

 Webhooks: notifying other actors about changes to the models.

Plane/s involved Data Management Plane

Requirements mapping R-P2-15, R-C-1, R-C-2, R-C-6, R-C-14

Use case mapping UC-P2-1, UC-P2-2, UC-P2-3, UC-P2-4, UC-P2-5, UC-P2-6

Internal components API server, database, file storage

4.2.1.2. Structure, components and implementation technologies

The Semantic repository has three components, where the API server serves as a gateway to the rest of the

enabler.

Figure 40. High-level diagram of the Semantic repository enabler

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/vpn_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/vpn_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 51 of 93

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 43. Components and implementation of the Semantic repository enabler

Component Description Technology/s

API server

Provides a high-performance streaming HTTP API for the enabler, based on

REST principles. Handles all user requests and performs background

maintenance tasks.

Scala, Akka, Akka

Streams, Java

Virtual Machine

Database
Stores the information about the models, documentation, metadata,

webhooks, and other. Highly scalable.
MongoDB

File storage Stores the actual models. Supports storage tiering and is highly scalable. MinIO

4.2.1.3. Communication interfaces

This enabler communicates through the REST API, organised by namespaces and model identifiers. Each model

(i.e. the stored piece of data) is contained within a namespace, has a version ID, and may include more than one

file format (for a single data model). Most of the endpoint URLs contain the version id fragment, which may be

for example numeric, conforming to the Semantic Versioning standard, or almost any other string. To specify

the latest available version, “latest” should be used as the version id.

As the Semantic Repository enabler has a rich API, only the most representative portion of it is presented here.

The full REST API documentation can be found in the enabler documentation: https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html

#rest-api-reference.

Table 44. API of the Semantic repository enabler

Method Endpoint Description

GET /v1/m Lists available repositories.

POST/PUT/

DELETE
/v1/m/{namespace id}

Creates (POST), updates (PATCH), or removes

(DELETE) a specified namespace and its settings.

GET /v1/m/{namespace id}
Returns the settings of the namespace and lists

models in it.

GET /v1/m/{namespace id}/{model id}
Returns the metadata of the model and lists the

available versions of the given model.

POST/PUT/DELETE
/v1/m/{namespace id}/{model

id}/{version id}

Creates (POST), updates (PATCH), or removes

(DELETE) metadata of a version of a model

(version, creation data, modification date,

description, etc.).

GET
/v1/m/{namespace id}/{model

id}/{version id}
Returns the metadata of the given model version.

POST/

DELETE

/v1/m/{namespace id}/{model

id}/{version id}/content?

format={data format}

Sets (POST) or removes (DELETE) a specified file

from the server.

GET

/v1/m/{namespace id}/{model

id}/{version id}/content?

format={data format}

Returns the specified version of a data model in a

given format.

E.g., /raul/saref/1.1/content?format=rdfxml returns a

‘saref’ model from repository ‘raul’ in version 1.1 in

file format RDF/XML

POST

/v1/m/{namespace id}/{model

id}/{version

id}/doc_gen?plugin={plugin}

Uploads source files for documentation compilation

with the specified compilation plugin.

GET
/v1/m/{namespace id}/{model

id}/{version id}/doc/{file name}
Returns the documentation for a model.

DELETE
/v1/m/{namespace id}/{model

id}/{version id}/doc
Deletes the documentation for a model.

POST /v1/doc_gen?plugin={plugin}
Requests a compilation of a set of documentation

source files in « sandbox » mode, with a given

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html%23rest-api-reference
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html%23rest-api-reference
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html%23rest-api-reference

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 52 of 93

Method Endpoint Description

compilation plugin. The ID of the new job is returned

to the user.

GET /v1/doc_gen/{job_id}
Returns the status of a documentation compilation

job with the given ID.

GET /v1/doc_gen/{job_id}/content/{file}
Returns the content of a given output file for a

documentation compilation job.

POST /v1/webhook Creates a new webhook.

GET /v1/webhook Retrieves the list of registered webhooks.

GET/DELETE /v1/webhook/{webhook_id}
Retrieves the details of a given webhook (GET) or

deletes it (DELETE).

4.2.1.4. Enabler stories

The first enabler story of this enabler is related to the modification of metadata, which allows a user to modify

the metadata of namespaces, models, model versions, and other objects in the Semantic Repository. This is

done via an HTTP REST interface, following the sequence diagram and steps specified below:

Figure 41. Semantic repository enabler ES1 (modify metadata)

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server instructs the database to update an appropriate document with the new metadata,

which returns the updated result.

STEP 4: The API server reports the update result to the user.

The second enabler story refers to the request of metadata, which allows a user to retrieve the metadata of

namespaces, models, model versions, and other objects in the Semantic repository.

Figure 42. Semantic repository enabler ES2 (get metadata)

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server requests the needed information from the database, which returns it.

STEP 4: The API server returns the metadata to the user.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 53 of 93

For each model, there can be many versions in the Repository, and for each such version there can be multiple

available formats.

The third enabler story involves allowing a user to upload a file representing a given model, with an

associated version and format. The Semantic Repository stores the file, records the upload, and automatically

triggers documentation compilation, if there is an appropriate documentation plugin available. Documentation

compilation is performed asynchronously.

Figure 43. Semantic repository enabler ES3 (upload file with model)

STEP 1: The user uploads a data model to the API server.

STEPS 2-3: The API server forwards the file stream to file storage, which acknowledges the successful upload

of the file.

STEPS 4-5: The API server requests a document update in the database, which returns an updated result.

STEP 6: The API server acknowledges the successful upload to the user and returns additional metadata (e.g.,

MD5 checksum).

The fourth enabler story is related to the downloading of data models and documentation pages via the API

server.

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server requests the needed file from file storage, which returns a stream of the requested

file.

STEP 4: The API server forwards the file stream to the user.

Figure 44. Semantic repository enabler ES4 (get file with model)

The fifth enabler story is about uploading source documentation files. The steps are the same for both

documentation assigned to a specific model and for the documentation sandbox. The only difference is in the

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 54 of 93

used API endpoints and the internal data structures in the database. Although the process described here relies

on a series of steps, in reality the system heavily uses asynchronous messaging and pipelined streams. Thus, the

whole process is very efficient and avoids caching the documentation files in memory.

Figure 45. Semantic repository enabler ES5 (upload documentation)

STEP 1: The user sends an HTTP request to the API server. The request contains the compressed source files

and instructions for which plugin to invoke.

STEPS 2-3: The source files are saved to file storage for future use.

STEPS 4-5: A new documentation compilation job is created in the database. The job is assigned a random,

unique ID.

STEP 6: The user gets the response acknowledging the start of documentation compilation. The response

includes the compilation job ID, which can later be used to check the status of the job (use case 6).

STEP 7: The API server adds the compilation job to the immediate job queue.

STEPS 8-9: The appropriate compilation plugin picks up the job from the queue and retrieves the needed files

from storage (streaming).

STEPS 10-12: The plugin compiles the documentation and streams the result to file storage.

STEPS 13-14: The status of the documentation job is updated in the database.

The last (sixth) enabler story is related to retrieving the status of a previously requested documentation

compilation job. This is applicable to both documentation associated with a specific model and the

documentation sandbox.

STEP 1: The user requests the status of a documentation job with a given ID. The ID was previously given to

the user when requesting the job (use case 5).

STEPS 2-3: The API server checks the status of the documentation job in the database.

STEP 4: The status is returned to the user, including the information on whether it is in progress, succeeded, or

failed. If the job failed, an error message is included.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 55 of 93

Figure 46. Semantic repository enabler ES6 (check documentation job status)

4.2.1.5. Implementation information

Table 45. Implementation status of the Semantic repository enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_

enabler.html

Potential features

The enabler is considered feature-complete for the purposes of the project. However, in the future

the security, interoperability and documentation pluggability mechanisms could be expanded or

improved.

Encapsulation

readiness
A single Helm chart for the whole enabler, including all components.

Integration with

other enablers
Enabler can be used in standalone mode, without other enablers.

4.2.2. Semantic translation enabler

4.2.2.1. General specifications and features

Table 46. General information of the Semantic translation enabler

Enabler Semantic translation enabler (SemTrans)

Id T43E2

Owner and support SRIPAS

Description and main

functionalities

This enabler offers a configurable service to change the contents of semantically annotated

data following translation rules (so-called “alignments”). The core use case is to translate

data semantics between ontologies (which can be thought of as data schemas or

vocabularies) that can express the same information, without changing the meaning of the

information.

Flexibility of design and expressivity of configuration files allow for other use-cases, such

as semantic reduction (removing selected information, e.g., because of privacy reasons),

further annotation (adding additional information based on data content and possibly

external variables), or even encoding or encrypting selected data items into a serialised

form.

The Semantic Translator supports RDF as the only modern standard for semantic data. By

design it supports and promotes the “core ontology” design, in which data transformations

are always unidirectional and done to, or from a central ontology, and paired into

“translation channels” to achieve bidirectional transformations. In this manner, n-to-n

translations can be easily implemented, and the cost of including a new data model in

existing deployments does not grow exponentially. Translation services are offered as a

“static” API for batch data, or through a pub-sub broker for streaming data

Key features  Transformation of semantic data

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 56 of 93

Enabler Semantic translation enabler (SemTrans)

 Uses RDF as a standard semantic file format

 Supports translation via streaming or REST API

 Flexible architecture supporting n-to-n translation

Plane/s involved Data Management Plane

Requirements mapping R-P2-1, R-P2-2, R-P2-7, R-P2-11, R-P2-15

Use case mapping UC-P2-1, UC-P2-2, UC-P2-3, UC-P2-4, UC-P2-5, UC-P2-6

Internal components List of the internal components of this enabler

4.2.2.2. Structure, components and implementation technologies

Figure 47. High-level diagram of the Semantic translation enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 47. Components and implementation of the Semantic translation enabler

Component Description Technology/s

API Server Http server for REST API Pekko Http

Alignment application core
RDF Processing core responsible for parsing

and executing alignment files over data
Apache Jena

Translation channel manager Custom messaging channels management Scala

Storage
Data Persistence for translation channels

configuration and alignment files
PostgreSQL

Streaming Broker Streaming message broker Apache Kafka + Verne MQTT

GUI Web interface Javascript

4.2.2.3. Communication interfaces

Table 48. API of the Semantic translation enabler – API Server

Component Description Technology/s

POST /alignments Upload new alignment.

GET /alignments/[{name}/{version}]
Get list of stored alignments, or retrieve a specific alignment

file.

DELETE /alignments/{name}/{version} Remove an alignment by name and version.

POST /convert
Convert IPSM-AF 1.0 XML alignment (older format) into

IPSM-AF 1.0 RDF alignment

POST /convert/TTL
Convert cells in IPSM-AF 1.0 RDF alignment file from XML

into TTL cell format.

POST/GET /channels
Create a new translation channel (POST) or list currently active

channels (GET)

DELETE /channels/{channelID} Remove a channel by ID

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 57 of 93

Component Description Technology/s

GET /logging Get logging level information

POST /logging/{level} Set logging level

POST /translation One-time translation using a sub-list of stored alignments

GET /version Get version information.

GET /swagger Display REST API summary with “try it out” options.

Table 49. Communication interfaces of the Semantic translation enabler – Streaming broker

Method Endpoint Description

Pub/Sub Multiple topics Subscribe to an output topic or publish to an input topic.

Input topic Multiple topics

Messages sent to input topic of any translation channel will enter the

streaming core to be semantically translated following the translation

channel configuration.

Output topic Multiple topics
Output topic of a translation channel contains only the translated input

message.

Monitoring topic Multiple topics
If monitoring is enabled for a translation channel, the monitoring topic will

output short timestamp information per each processed message.

4.2.2.4. Enabler stories

The first enabler story is related to the definition/storage of an alignment. Here, a user/client is able to store

(compiled) alignment data to the Storage component triggering the following steps:

Figure 48. Semantic translation enabler ES1 (store alignment)

STEP 1: The user/client sends an HTTP request containing the alignment data to the API server. The server

validates the request.

STEP 2: The API server sends the alignment data to the Alignment application core component for compilation.

STEP 3: The Alignment application core component returns the compiled alignment to the API server.

STEPS 4-5: The API server saves the compiled alignment data to the Storage component, which the alignment

metadata.

STEP 6: The API server returns the metadata to the user/client.

The second enabler story enables a user/client to read metadata of an alignment stored in the database. This

enabler story has this sequence diagram and steps:

STEP 1: The user/client sends an HTTP request to the API server.

STEP 2: The API server sends an alignment metadata request to the Storage component,

STEPS 3-4: The storage component returns it to the API. Finally, the API server returns the metadata

description to the user/client.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 58 of 93

Figure 49. Semantic translation enabler ES2 (get alignment metadata)

The third enabler story allows a user/client to define/create a streaming-based translation channel using

available (compiled) alignments.

STEP 1: The user/client sends channel creation request to the API server.

STEP 2: The API server requests the Alignment application core to retrieve alignments required by the

translation channel parameters.

STEPS 3-4: The Alignment application core retrieves the required (compiled) alignments from the Storage.

STEP 5: The Alignment application core returns the resulting translation information to the API server.

STEP 6: The API server asks the Channel manager component to create necessary topics for performing

streaming translation.

STEPS 7-8: Channel manager forwards the topic creation request to the Streaming broker, which returns

channel data.

STEP 9: The Channel manager the channel metadata to the API server.

STEP 10: The API server sends the result back to the user/client.

4.2.2.5. Implementation information

Table 50. Implementation status of the Semantic translation enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_

enabler.html

Potential

features

Additional features that could be added/extended in the future, now that we have more knowledge

about it.

Figure 50. Semantic translation enabler ES3 (create stream-based translation channel)

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 59 of 93

Category Status

Encapsulation

readiness

A single Helm chart for the whole enabler, including all components, with alternative

supplementary Docker compose file.

Integration with

other enablers

Can be used standalone, or connected with any other enabler that uses the supported streaming

technologies, in particular the Semantic Annotation enabler.

4.2.3. Semantic annotation enabler

4.2.3.1. General specifications and features

Table 51. General information of the Semantic annotation enabler

Enabler Semantic Annotation enabler (SemAnn)

Id T43E3

Owner and support P03 IBSPAN

Description and main

functionalities

This enabler offers a syntactic transformation service, that annotates data in various

formats (JSON, CSV and XML) and lifts it into RDF. Annotation is configured using

CARML – a dialect of RML (RDF Mapping Language) designed for streaming

annotation. The core functionality is designed to be integrated into a streaming pipeline

before the Semantic Translation enabler. However, the enabler can be used by itself to

annotate data through streaming technologies, or REST API. A custom annotation channel

architecture supports quick creation of lightweight channels with optional outputs for

error and monitoring. For very constrained devices, this enabler can be used without the

persistence module reducing storage requirements, at the trade-off of not persisting

configuration between restarts.

Key features

 Annotation of JSON, CSV and XML into RDF

 Lightweight annotation channels architecture for streaming annotation

 Standalone mode that reduces storage requirements

Plane/s involved Data Management Plane

Requirements mapping R-P2-1, R-P2-2, R-P2-7, R-P2-11, R-P2-15

Use case mapping UC-P2-1, UC-P2-2, UC-P2-3, UC-P2-4, UC-P2-5, UC-P2-6

Internal components API Server, Streaming core, Streaming Broker, Configuration Persistence (database)

4.2.3.2. Structure, components and implementation technologies

Figure 51. High-level diagram of the Semantic annotation enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 60 of 93

Table 52. Components and implementation of the Semantic annotation enabler

Component Description Technology/s

Streaming

configuration

API Server

Http server for the REST API Akka Http

CARML

engine

Central component responsible for parsing and applying CARML files to

transform data
Scala + Java

Streaming core Custom component that manages the streaming channels
Scala + Akka

streams

Configuration

Persistence
Database for persisting configuration MongoDB

Streaming

Broker

Streaming Message broker. This enabler can be connected to an external

broker and works with MQTT and/or Kafka, supporting both even in a single

annotation channel (i.e. input topic and output topic do not need to use the

same streaming broker, and can be set up independently on MQTT and/or

Kafka).

VerneMQ/Kafka

4.2.3.3. Communication interfaces

The table below presents an overview of the REST interface for the Semantic Annotation Enabler. Full details

with all parameter types, example values and detailed descriptions of every endpoint are in the Swagger

documentation.

Table 53. API of the Semantic annotation enabler – API server

Method Endpoint Description

GET /swagger/ View the REST API documentation and Swagger interface.

GET /channels/({channelId})

Retrieve information about all channels, or a single channel (if the

optional channelId is provided). Additional parameters can be used to

retrieve information selectively, e.g. ?settings=true returns settings

information, ?status=true returns status. Parameters may be used

together.

POST /channels

Add a new channel definition, and optionally materialise and start the

channel. This endpoint accepts channel configuration in JSON.

Depending on initial status (written in the configuration file), the

channel may be added, but not started.

PATCH /channels/{channelId}

Updates the channel status with values provided in the channel status

object provided in the request body. With the channel status object, the

channel can be started or stopped, or error/monitoring topic settings

updated (see channel architecture below).

PATCH /channels/{channelId}/restart Stop and then start a channel.

DELETE /channels/{channelId} Stop and remove a channel.

GET /annotations/({annotationId})

Retrieve information about all annotations, or a single annotation (if

the optional annotationId is provided). Additional parameters are

supported, similar to the GET /channels endpoint.

POST /annotations Add a new annotation to storage.

DELETE /annotations/{annotationId} Remove an annotation from storage.

GET /version Returns software version information.

GET /status Returns global status, including errors, if there are any.

GET /settings Returns current global settings.

This enabler uses a streaming channel architecture that annotates the messages between a series of topics (see

figure below). Messages sent to the input topic are pushed through the channel and processed at different stages.

The first “input monitoring” stage outputs a simple message for any message that passes through in order to

confirm that a message was received. The processing and error stage attempts to transform the message using

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 61 of 93

an annotation configuration file (CARML). If unsuccessful, errors are output on the error topic. Otherwise the

annotated message passes the “output monitoring” stage (with equivalent functionality to the “input monitoring”

stage) and is finally written to the output topic. Input and output topics are always active, provided that the

channel is not stopped. Monitoring and error topics can be optionally enabled or disabled, even if the channel

is running.

Figure 52. Semantic annotation enabler – annotation channel architecture overview

Table 54. Communication interfaces of the Semantic annotation enabler – Streaming broker

Method Endpoint Description

Pub/Sub
Multiple

topics
Subscribe to an output topic or publish to an input topic.

Input topic
Multiple

topics

Messages sent to input topic of any annotation channel will enter the streaming

core to be semantically annotated following the translation channel configuration.

Output topic
Multiple

topics
Output topic of an annotation channel contains only the annotated message.

Error topic
Multiple

topics

If error topic is configured for an annotation channel, the error topic will output

information about any errors, that prevented publishing the annotated message on

the output channel, including invalid data format and other annotation errors.

Input/Output

Monitoring

topics

Multiple

topics

These topics output (independently from each other) information about received

messages (currently only timestamp).

4.2.3.4. Enabler stories

The first enabler story is related to the use of batch annotation. Using it is quite straightforward, as the service

is stateless and idempotent. All information necessary to perform annotation must be sent in a single request by

the user, who then receives the annotated result. The sequence diagram and involved steps are the following:

Figure 53. Semantic annotation enabler ES1 (batch annotation)

STEP 1: User prepares annotation rules in RML and data to be annotated and sends it to the batch API server.

STEP 2: Batch API server prepares annotation job and sends it to RML Mapper.

STEP 3: RML Mapper performs annotation using data from the request and returns results – whether annotation

was successful, or resulted in an error.

STEP 4: API server forwards annotated data and any errors to the user.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 62 of 93

Before using the streaming annotation, a channel must be configured. Channel configuration specifies

topics (input, output, and optional error topic) and annotation file to be used. Annotation files must be uploaded

beforehand, and are retrieved, using ID specified in the channel configuration information. This second enabler

story follows the next sequence diagram:

Figure 54. Semantic annotation enabler ES2 (configure channel for stream annotation)

STEP 1: User uploads RML file to be used later.

STEPS 2-3: The API server uses the Configuration persistence component to store RML file under a given ID,

returned by the latter component.

STEP 4: The API server forwards the stored RML ID to the user.

STEP 5: User sends channel configuration, that specifies the ID of the uploaded RML file.

STEPS 6-7: The API server retrieves a previously stored RML file from the persistence component, which

returns it (or an error, if there is no RML file stored under the given ID).

STEP 8: The API server sends channel configuration with RML file to the streaming core.

STEP 9: The Streaming core configures topics in the streaming broker and materialises the annotation channel,

storing RML and topic configuration in memory.

STEP 10: Streaming core confirms channel creation and returns channel ID and configuration information.

STEP 11: The API server forwards channel ID and configuration information to the user.

The third enabler story is the use of streaming annotation capabilities. This is performed via interaction

with the streaming broker, which exposes input, output, and optional error topics. A consumer may subscribe

to output topics, and optionally to error topics. In general, channels do not need to have an error topic configured,

and error topics can be shared by multiple channels so that errors are aggregated.

Any message published on an input topic passes through the streaming core and is either annotated and

published on the output topic, or an error is generated and forwarded to the error topic (if it exists for the given

channel). A consumer does not need to have been subscribed to the output topic to subscribe to the error topic.

In practice, consumers interested in handling annotation errors are not in the same group of interests, as “regular”

clients that publish or receive messages via the annotator. This enabler story has the following diagram and

involved steps:

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 63 of 93

Figure 55. Semantic annotation enabler ES3 (stream annotation)

STEP 1: Consumer subscribes to an output topic of a previously configured annotation channel.

STEP 2: Consumer (optionally) subscribes to an error topic of an annotation channel that was configured

previously.

STEP 3: Producer publishes a message on an input topic of a previously configured annotation channel.

STEP 4: Streaming broker forwards the message to be annotated to the streaming core.

STEP 5: The streaming core attempts to annotate the message, following the configuration of the annotation

channel. If there are any errors, they are forwarded to the error topic of the annotation channel.

STEP 6: If there are any errors, they are forwarded to subscribers of the error topic.

STEP 7: If the annotation was successful, the streaming core publishes it on the output topic of the annotation

channel.

STEP 8: Streaming broker distributes the annotated message to all subscribers of the annotation channels output

topic.

4.2.3.5. Implementation information

Table 55. Implementation status of the Semantic annotation enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_

enabler.html

Potential

features

Additional features that could be added/extended in the future, now that we have more knowledge

about it.

Encapsulation

readiness

A single Helm chart for the whole enabler, including all components, with alternative supplementary

Docker compose file.

Integration

with other

enablers

Can be used standalone, or connected with any other enabler that uses the supported streaming

technologies, in particular the Semantic Translation enabler.

4.2.4. Edge data broker

4.2.4.1. General specifications and features

Table 56. General information of the Edge data broker

Enabler Edge Data Broker (EDB)

Id T43E7

Owner and support ICCS

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 64 of 93

Enabler Edge Data Broker (EDB)

Description and main

functionalities

The Edge Data Broker enables the efficient management of data demand and data supply

among edge nodes based on a publish/subscribe schema, taking account load balancing

criteria. This enabler distributes data where it is needed for application, services and

further analysis while considered essential only in those deployments that involve IoT

architectures.

Key features

 Subscriptions and messages between Edge Devices through the Edge Data

Broker enabler

 Management and distribution of messages using delivery mechanisms

 Common interfaces for filtering messages

 Integration with other data brokers if needed

Plane/s involved Data Management Plane

Requirements mapping R-C-2: Data governance

Use case mapping
All pilots make use of this enabler. Particularly, the use cases UC-P1-1 to 5 from Pilot 1,

all UCs from Pilot 2 and 3a, and UC-P3B-1 from Pilot 3b.
Internal components MQTT Broker, FR-Script (Filtering & Ruling Script), Auth Database, MQTT-Explorer

4.2.4.2. Structure, components and implementation technologies

 Figure 56. High-level diagram of the Edge data broker

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 57. Components and implementation of the Edge data broker

Component Description Technology/s

MQTT Broker A high-performance, distributed MQTT broker VerneMQ

FR-Script
A custom script that provides the ability to filter selected topics based on

conditions and logical operation rules defined by the user.
Python

Auth Database Relational database for storing user credentials and Access Control Lists PostgreSQL

MQTT-Explorer A GUI that provides a structured overview of MQTT topics Typescript

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 65 of 93

4.2.4.3. Communication interfaces

Table 58. Communication interfaces of the Edge data broker – MQTT Broker

Method Endpoint Description

Pub/Sub Multiple topics (mqtt, mqtts)
Subscribe to an output topic or publish to an input topic through

MQTT or MQTTS protocols

Pub/Sub Multiple topics (ws, wss)
Subscribe to an output topic or publish to an input topic through

websockets (ws) or secured websockets (wss)

GET :8888/status Web GUI for VerneMQ’s Cluster and Node(s) status

GET :8888/metrics VerneMQ’s metric exporter for PUD’s Prometheus

Table 59. API of the Edge data broker – FR-Script

Method Endpoint Description

GET :8000/metrics FR-Script’s metric exporter for PUD’s Prometheus

GET :9877/docs Display FR-Script’s Swagger GUI (Listing the bellow APIs)

GET / Get all filters & rules

POST / Create filters & rules

GET /filters Get all filters

GET /filter/{id} Get filter

PATCH /filters Update filters

DELETE /filter/{id} Delete filter

GET /rules Get rules

GET /rule/{id} Get rule

PATCH /rules Update rules

DELETE /rule/{id} Delete rule

4.2.4.4. Enabler stories

The first enabler story describes the usage of Edge Data Broker enabler’s FR-Script and its filtering

capabilities. In this scenario’s example we have four external clients connected to EDB of which two are

publishers and two are subscribers.

STEP 1: All clients get connected to EDB’s VerneMQ cluster. FR-Script works as Publisher/Subscriber client,

subscribe to topic (#).

STEP 2: Subscribers 1 and 2 subscribe to topics “test/+/alert” and “test/+” respectively.

STEP 3: Publisher 1 publishes a message to topic “test/1”. The message(topic(test/1)) is sent to FR-Script and

subscriber 2.

STEP 4: FR-Script check its filtering statements of the corresponding topic and if the conditions set by the user,

result true FR-Script creates a new topic appending a new subtopic in the existing topic tree and publishes a

new or the same payload, depending on its configuration. In this case the conditions’ result is False, so nothing

happens.

STEP 5: Publisher 2 publishes a message to topic “test/2”. The message(topic(test/2)) is sent to FR-Script and

subscriber 2.

STEP 6: FR-Script repeats STEP 4 and this time the conditions results True. FR-Script creates topic

“test/2/alert” as it is configured by the user and publishes a message.

STEP 7: The message is sent to FR-Script and Subscriber 1 subscribed to topics “#” and “test/+/alert”.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 66 of 93

Figure 57. Edge data broker ES1 (filtering)

The second enabler story describes the usage of Edge Data Broker enabler’s FR-Script and its ruling

capabilities. In this scenario’s example we have five external clients connected to EDB of which three are

publishers and two are subscribers.

STEP 1: All clients get connected to EDB’s VerneMQ cluster. FR-Script works as Publisher/Subscriber client,

subscribe to topic(#).

STEP 2: Subscribers 1 and 2 subscribe to topics “!action/1” and “!action/2” respectively.

STEP 3: Publisher 1 publishes a message to topic “test/1”. The message(topic(test/1)) is sent to FR-Script.

STEP 4: FR-Script check its ruling statements of the corresponding topic (in our case can be ether “test/+” or

“test/#”). Then saves the message’s topic and payload and checks if there are other defined topics in its

statements. If there are and there are no saved payloads for them, waits for a message published on the rest of

them. So, it waits.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 67 of 93

Figure 58. Edge data broker ES2 (ruling)

STEP 5: Publisher 2 publishes a message to topic “test/2”. The message(topic(test/2)) is sent to FR-Script.

STEP 6: Repeat STEP 4.

STEP 7: Publisher 3 publishes a message to topic “different/topic”. The message(topic(different/topic)) is sent

to FR-Script.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 68 of 93

STEP 8: FR-Script check its ruling statements of the corresponding topic. Then saves the message’s topic and

payload and checks if there are other defined topics in its statements. This time all defined topics have

corresponding payloads saved on FR-Script so it constructs a logical operation based on logic conditions set by

the user in its configuration for topics “test/1” and “different/topic”. The logical operation results True.

STEP 9: FR-Script publishes a message on topic “!action/1” (both configured by the user in FR-Script

configuration) and the message is sent to subscriber 1.

STEP 10: FR-Script constructs a logical operation based on logic conditions set by the user in its configuration

for topics “test/2” and “different/topic”. The logical operation results True.

STEP 11: FR-Script publishes a message on topic “!action/2” (both configured by the user in FR-Script

configuration) and the message is sent to subscriber 2.

STEP 12: FR-Script removes all used topics and their payloads of its memory.

4.2.4.5. Implementation information

Table 60. Implementation status of the Edge data broker

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_

enabler.html

Potential

features

One additional feature for EDB could be an AI-based ruling configuration based on resource

constrains.

Encapsulation

readiness

Two Helm charts for the whole enabler, including all components, one specialised for ARM

Architectures and Edge Devices (GWEN, Raspberry Pi, etc.) and one specialised for x64 Ubuntu

Architectures.

Integration with

other enablers

EDB is able to function both independently and in connection with other enablers to support

communication between enablers and enablers with Edge devices. It is also able to be bridged

with other (MQTT) Data brokers.

Integration with LTSE’s SQL Database (PostgreSQL) used as Auth Database for storing user

credentials and Access Control Lists.

4.2.5. Long-term storage enabler

4.2.5.1. General specifications and features

Table 61. General information of the Long-term storage enabler

Enabler Long-term Storage Enabler

Id T43E8

Owner and support PRODEVELOP and UPV

Description and main

functionalities

LTSE is the main long-term storage enabler of the project, offering different storage sizes

and individual storage spaces for other enablers (which could request back when they are

being initialised in Kubernetes pods), as well as for pilots-related data.

Key features

 NoSQL storage

 SQL storage

 User control access

 Single point of management by REST API endpoints

Plane/s involved Data Management Plane

Requirements mapping R-C-6, R-C-10, R-C-14, R-C-15, R-P3A-3, R-P3A-5, R-P3B-3

Use case mapping
All pilots make use of this enabler. Particularly, UC-P1-1, UC-P2-1, UC-P2-2, UC-P2-4,

UC-P2-5, UC-P3A-1, UC-P3A-2, UC-P3B-1

Internal components LTSE Gateway, LTSE NoSQL cluster, LTSE SQL server

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 69 of 93

4.2.5.2. Structure, components, and implementation technologies

The role of the Long-Term Storage Enabler (LTSE) is to serve as secure and resilient storage, offering different

storage sizes and individual storage space for other enablers (which could request back when they are being

initialised in Kubernetes pods). Therefore, it is considered one of the ASSIST-IoT essential enablers, envisioned

to be deployed on the cloud rather than the edge. Figure 59 depicts the high-level overview of the LTSE

components, which functionalities are also described:

Figure 59. High-level diagram of the Long-term storage enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 62. Components and implementation of the Long-term storage enabler

Component Description Technology/s

LTSE Gateway

The entrance gate to the LTSE, acting as a proxy from ASSIST-IoT enablers

and external services, whose data should be collected either at SQL server

databases or NoSQL cluster nodes. To do so, the LTSE Gateway is based

on REST API request, with appended SQL/NoSQL endpoints, respectively.

Furthermore, the LTSE access is managed by the OpenAPI endpoint

configurations, which defines which enablers and users have access to

which data stored in LTSE.

GinGonic

LTSE NoSQL

cluster

A group of one or more LTSE NoSQL node instances that are connected

together, and carry out the distribution of tasks, searching and indexing,

across all the NoSQL nodes. Every NoSQL node in the NoSQL cluster can

handle HTTP and transport traffic by default with the external enablers

through the LTSE gateway. The transport layer is used exclusively for

communication between nodes; the HTTP layer is used by REST clients.

The full hierarchy would be therefore, noSQL_Cluster > noSQL_Node >

noSQL_Index > noSQL_document. For High Availability (HA),

noSQL_document in LTSE_noSQL_Index may be distributed across

multiple shards, which in turn are distributed across multiple nodes, if

configured.

Elasticsearch

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 70 of 93

Component Description Technology/s

LTSE SQL

server

It manages the SQL databases, formed by different enablers data tables. It

performs, hence, backup database actions on behalf of the enablers. The

SQL_Server can handle multiple concurrent connections from external

enablers via the LTSE Gateway. In general, the full hierarchy is:

SQL_Server > SQL_Database > SQL_schema > SQL_table > SQL_row.

For High Availability, a master database with one or more standby servers

could be set up.

PostgreSQL,

PostgREST

4.2.5.3. Communication interfaces

There are a lot of REST API endpoints directly available from the ElasticSearch and PostGREST

documentation. Additional endpoints have been created for the initial management of the LTSE. They are listed

in the table below.

Table 63. User Communication interfaces of the Long-term storage enabler

Method Endpoint Description

GET /sql/schemas Lists the schemas available in the LTSE SQL server

POST /sql/schemas/{schemaname} Creates a schemaname in the LTSE SQL server

PUT /sql/schemas/{schemaname} Activates or deactivates the schema in PostGREST

POST
/sql/schemas/{schemaname}/tables/{ta

bleName}

Creates a table tablename into the schema schemaname of the

LTSE SQL server

PUT
/sql/schemas/{schemaname}/tables/{ta

bleName}

Truncates data from table tablename of the schema schemaname

of the LTSE SQL server

DELETE
/sql/schemas/{schemaname}/tables/{ta

bleName}

Deletes table tablename of the schema schemaname of the LTSE

SQL server

POST /sql/api/{tablename}/
Inserts data into the tablename on the LTSE SQL server (from

PostGREST)

PUT /sql/api/{tablename}/
Modifies filtered or all (defined in the body) data into the

tablename on the LTSE SQL server (from PostGREST)

DELETE
/sql/api/{tablename}/ Deletes filtered or all (defined in the body) data into the

tablename on the LTSE SQL server (from PostGREST)

GET
/sql/api/{tablename}/ Gets filtered or all (defined in the body) data from the tablename

on the LTSE SQL server (from PostGREST)

PUT /nosql/index/{indexName}

Creates a new index indexName in the LTSE noSQL cluster.

When creating an index, you can specify the settings for the

index, mappings for fields in the index, and Index aliases

GET /nosql/index/{indexName}
Returns information about indexName index from the LTSE

noSQL cluster

PUT /nosql/index/{indexName}/document
Adds a JSON document to the specified indexName index of the

LTSE noSQL cluster

GET
/nosql/index/{indexName}/document/{

id}

Retrieves the specified JSON document <id> from the

indexName of the LTSE noSQL cluster.

4.2.5.4. Enabler stories

There are 4 main enabler stories that apply in this enabler.

The first enabler story is related to the storage of NoSQL data of an authorised Enabler on a NoSQL cluster,

after provisioning an index on it. The diagram with the required steps is summarised below:

STEP 1: The Enabler_IDx interacts via LTSE gateway with the LTSE, requesting to create a NoSQL storage.

STEP 2: If granted, LTSE Gateway request the generation of Enabler_IDx index into LTSE noSQL_Cluster.

STEPS 3-4: LTSE noSQL_Cluster confirms the generation of <IndexName> index and inform to LTSE

gateway, which, in turn, forwards the index details to the Enabler_IDx.

STEP 5: The Enabler_IDx requests ingestion of NoSQL data document to LTSE Gateway.

https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html
https://postgrest.org/en/stable/references/api.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 71 of 93

STEP 6: LTSE Gateway request the ingestion of Enabler_IDx NoSQL data document into <IndexName> of

the LTSE noSQL_Cluster.

STEPS 7-8: LTSE noSQL_Cluster confirms the ingestion of document _id into the <IndexName> index of the

LTSE noSQL_Cluster and informs to LTSE gateway, which, in turn, forwards the document details to the

Enabler_IDx.

Figure 60. Long-term storage enabler ES1 (store NoSQL data)

The second enabler story is related to the retrieval of NoSQL documents with a specific <IndexName> from

the NoSQL cluster (as well as performing complex queries). The diagram and the related steps are the following:

Figure 61. Long-term storage enabler ES2 (get NoSQL data)

STEP 1: The Enabler_IDx interacts via LTSE gateway with the LTSE, requesting specific data allocated into

its NoSQL storage Index.

STEP 2: If granted, LTSE Gateway request the associated information demanded into Enabler_IDx

<IndexName> of LTSE noSQL_Cluster.

STEP 3-4: The LTSE gateway, in turn, forwards the document to the Enabler_IDx.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 72 of 93

The third enabler story is related to the storage of SQL data of an authorised Enabler on a SQL server, after

provisioning the required database and table. The diagram and the related steps are the following:

Figure 62. Long-term storage enabler ES3 (store SQL data)

STEP 1: The Enabler_IDx interacts via LTSE Gateway with the LTSE, requesting to create a SQL storage.

STEP 2: If granted, LTSE Gateway requests the generation of Enabler_IDx database into LTSE SQL_Server.

STEPS 3-4: LTSE SQL_Server confirms to the LTSE Gateway the generation of :databaseName SQL database,

which, in turn, forwards the index database details to the Enabler_IDx.

STEPS 5-6: Then, Enabler_IDx requests to the LTSE Gateway the generation of a table into LTSE SQL_Server.

The LTSE Gateway forwards this request to the SQL server.

STEPS 7-8: LTSE SQL_Server confirms to the LTSE Gateway the generation of :tableName SQL table, which,

in turn, forwards the table details to the Enabler_IDx.

STEP 9-10: The Enabler_IDx requests ingestion of SQL data to LTSE Gateway, which forwards this petition

to the SQL_Server (within the table of the database provisioned).

STEPS 11-12: LTSE SQL_Server confirms the ingestion of SQL data into the :databaseName SQL database,

and :tableName SQL table of the LTSE SQL_Server and informs to LTSE gateway, which, in turn, forwards

the details to the Enabler_IDx.

Finally, the fourth and last enabler story is related to the retrieval of SQL data table from a specific SQL

database of the SQL server. The diagram and the involved steps are the following:

STEP 1: The Enabler_IDx interacts via LTSE gateway with the LTSE, requesting specific data allocated into

its noSQL storage Index.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 73 of 93

STEPS 2-3: The LTSE Gateway checks the authorisation rights of the Enabler_IDx from IdM/Authorisation

enablers, which confirms or denies Enabler_IDx access to the LTSE server.

STEPS 4-6: If granted, LTSE Gateway requests the associated information demanded into Enabler_IDx

:tableName of :databaseName of LTSE SQL_Server, which, in turn, forwards the table to the Enabler_IDx.

Figure 63. Long-term storage enabler ES4 (get SQL data)

4.2.5.5. Implementation information

Table 64. Implementation status of the Long Term storage enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_

storage_enabler.html

Potential features
The enabler is considered feature-complete for the purposes of the project. However, the control

access could be expanded or improved in the future.

Encapsulation

readiness
A single Helm chart for the whole enabler, including all components.

Integration with

other enablers

Enabler can be used in standalone mode, without other enablers, but its integration with Business

KPI and EDB have been successfully tested.

4.3. Application and Services enablers

4.3.1. Tactile dashboard

4.3.1.1. General specifications and features

Table 65. General information of the Tactile dashboard

Enabler Tactile dashboard

Id T44E1

Owner and support PRODEVELOP

Description and main

functionalities

The Tactile Dashboard enabler has the capacity to represent data through meaningful

combined visualisations in real time. Therefore, it allows the creation of fully reusable

web components that can be used to create web pages (SPA) or complex web APPs. It

also provides (aggregates and homogenises) all the User Interfaces (UIs) for the

configuration of the different ASSIST-IoT enablers, and associated components. It is

based on Prodevelop’s own open source PUI9 framework.

Key features  Modern, responsive and in some cases adaptive web-design.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 74 of 93

Enabler Tactile dashboard

 Based on web components, which have their own HTML template

 Embedded User control access

 Gentle learning curve, but very easy to start being productive

Plane/s involved Application and services plane

Requirements mapping R-P3A-10, R-P3B-5, R-P3B-6

Use case mapping
It is used in all pilots. Particularly, in UC-P1-3, UC-P1-5, UC-P2-1, UC-P2-2, UC-P2-4,

UC-P3A-1, UC-P3A-2, UC-P3B-1

Internal components Frontend, Backend, PUI9 DB

4.3.1.2. Structure, components and implementation technologies

The following figure sketches the architectural diagram of tactile dashboard components.

Figure 64. High-level diagram of the Tactile dashboard

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 66. Components and implementation of the Tactile dashboard

Component Description Technology/s

Tactile

frontend

The tactile frontend is what the ASSIST-IoT user interacts with. Therefore, it is

responsible for most of what a user actually sees, including the definition of the

structure of the web page, the look and feel of the web page, and the implementation

of mechanisms for responding to user interactions (clicking buttons, entering text,

etc.).

VueJS, Vuetify,

Datatables,

Axios, NPM,

Webpack

Tactile

backend

An HTTP server that listens to the requests coming from the tactile frontend in a

specific port number, which is always associated with the IP address of the hosting

computer. Thus, the tactile backend waits for tactile frontend requests coming to that

specific port, performs any actions stated by the request, and sends any requested data

via an HTTP response.

Java 8, Spring

PUI9

database

It is the place to store the tactile embedded information so that it can easily be

accessed, managed, and updated. It might store information about ASSIST-IoT pilot’s

users, sensors’ data, list of daily instructions, or reports. When a user requests some

data to the tactile dashboard frontend webpage, the data inserted into that page comes

from the PUI9 database.

SQL databases

(compatible

with

PostgreSQL,

Oracle, SQL

Server)

4.3.1.3. Communication interfaces

Table 67. User Communication interfaces of the Tactile dashboard

Method Endpoint Description

POST /login/signin Default login of the tactile dashboard

POST /loginAutzIdm/signin
Login to the tactile dashboard by means of the Idm

and Authz enablers

POST /component_id/{data} Inserts into the component_id the specified {data}

GET /component_id/{data}
Gets the component_id {data} stored in the tactile

dashboard database

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 75 of 93

Method Endpoint Description

POST /login/signin Default login of the tactile dashboard

POST /loginAutzIdm/signin
Login to the tactile dashboard by means of the Idm

and Authz enablers

POST /component_id/{data} Inserts into the component_id the specified {data}

PUT
/component_id/{data} Updates the component_id {data} stored in the

tactile dashboard database

DELETE /component_id/{data}
Deletes the component_id {data} stored in the

tactile dashboard database

4.3.1.4. Enabler stories

Three enabler stories are envisioned for this enabler. They refer to the user login page, to the data forms listing,

and to the access to external enablers APIs.

The first enabler story will be instantiated by a user once it opens a web browser and types in the address bar

the corresponding IP address/DNS of the instantiated tactile dashboard. Automatically, the Tactile dashboard

will prompt the login webpage over which the user should introduce his/her credentials, which will be further

evaluated in the tactile dashboard backend by querying this information to the embedded database of the

application.

Figure 65. Tactile dashboard ES1 (login webpage)

STEPS 1-2: The user opens a web browser and navigates to the web address containing the PUI9 application,

and then the tactile dashboard frontend prompts the login webpage, demanding users’ credentials.

STEPS 3-4: The user types his/her credentials and click on the login/submit frontend button, which forwards

the details to the tactile backend.

STEPS 5-6: The backend communicates with the PUI9 database to collect the user’s access rights2 and checks

if the user has rights to access the application.

STEPS 7-8: If the user’s credentials are approved, the backend requests to the fronted to prompt the main menu

webpage of the application to the user.

The second enabler story will be instantiated also by a user once it has been logged in accordingly. The use

case is about listing a specific data requested by the user in the corresponding menu of the application. The

diagram and involved steps are summarised below:

2 The users’ access profiles can be stored within the enabler database or taken from the external, more advanced IdM and authorisation

enablers databases, accessible by means of API commands from the tactile dashboard backend (see use case 3 of the tactile dashboard).

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 76 of 93

Figure 66. Tactile dashboard ES2 (show data managed by PUI9 database)

STEP 1: The user opens a web form page, and request listing a specific queried data.

STEPS 2-3: The frontend gathers the query, and forwards the details to the tactile dashboard backend, which,

in turn, demands to the PUI9 database (either PostgreSQL, Oracle, or SQL Server) the user’s requested data.

STEPS 4-5: The PUI9 database receives the backend query, compiles the requested data from the user, and

provide the details back to the backend, which in turn, provides it to the fronted.

STEP 6: The tactile dashboard frontend prints in the specific web page form, the user’s queried data.

The third enabler story may (or may not) be instantiated by the user, when he/she demands additional

information which is not collected in the PUI9 database (e.g., data stored in the LTSE or EDB), or additional

graphical functionalities not supported by the tactile dashboard (e.g., charts generation from the Business KPI

enabler), but as highlighted in the examples, by other ASSIST-IoT enablers. Therefore, instead of the logical

tactile dashboard workflow (frontend – backend – PUI9 database), the backend directly communicates with the

API of the associated enabler.

Figure 67. Tactile dashboard ES3 (show data not managed by PUI9 database)

STEP 1: The user opens a web form page, and request listing a specific queried data/functionality not

stored/supported by the tactile dashboard.

STEPS 2-3: The frontend forwards the details to the tactile dashboard backend, which, in turn, communicates

with the external ASSIST-IoT enabler API.

STEP 4: The external ASSIST-IoT enabler proceeds internally with the request based on the API command

from the tactile dashboard backend, and provide the requested data/functionality.

STEPS 5-6: The tactile dashboard backend receives the external ASSIST-IoT enabler response, and forwards

the information to the frontend, which, finally, prints the user’s demanded data/graphical functionality.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 77 of 93

4.3.1.5. Implementation information

Table 68. Implementation status of the Tactile dashboard

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.

html

Potential features The enabler is considered feature-complete for the purposes of the project.

Encapsulation

readiness

The example tactile dashboard, as well as the manageability dashboard are already containerised,

and a Helm chart has been created for them.

Integration with

other enablers

Enabler can be used in standalone mode, without other enablers, but its integration with Business

KPI, PUD, IdM, Authz, and Manageability enablers have been successfully tested.

4.3.2. Business KPI reporting enabler

4.3.2.1. General specifications and features

Table 69. General information of the Business KPI reporting enabler

Enabler Business KPI Reporting enabler

Id T44E2

Owner and support PRODEVELOP

Description and main

functionalities

The Business KPI enabler will allow to embed time-series analytics data and Key

Performance Indicators (KPIs) desired by the end-user as User Interfaces (UIs) within the

tactile dashboard in the form of graphs, charts, pies, etc.

Key features

 Web-based visualisation graphs and templates.

 Full and seamless integration with LTSE

 Embedded development tools for testing

Plane/s involved Application and services plane

Requirements mapping R-C-17, R-P3A-10, R-P3B-5, R-P3B-6

Use case mapping
All pilots will implement this enabler. Particularly, UC-P1-3, UC-P2-1, UC-P2-1, UC-

P2-4, UC-P3A-1, UC-P3A-2, UC-P3B-1

Internal components
The enabler is composed of (i) a server component containing the business logic engine,

accompanied with (ii) a UI component that defines the graphical UI that users interact

with, and (iii) a Command Line Interface (CLI) tool especially designed for developers

4.3.2.2. Structure, components, and implementation technologies

Figure 68 presents the architectural diagram of the Business KPI reporting enabler and its internal components:

Figure 68. High-level diagram of the Business KPI reporting enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 78 of 93

Table 70. Components and implementation of the Business KPI reporting enabler

Component Description Technology/s

Business

KPI Server

Collects data from data collectors (e.g., tactile dashboard PUI9 database, LTSE, or EDB

enablers) into a dedicated database and provides access to it to the UI and CLI

components via an internal REST API.

Kibana
Plugins

Business KPI functionalities are implemented through modular plugins (Discover, Tag,

Lens, Maps, etc.), which contain the business logic and communicate with the UI and

CLI components, based on the data collected in the Business KPI server. Furthermore,

if willing to, custom plugins can also be easily integrated if needed, thanks to having a

modular approach.

Business

KPI UI

Whenever the end-user accesses the Business KPI enabler via the Tactile Dashboard

webpage, the UI component loads all server plugins that comprise the core

functionalities of the Business KPI enabler. Hence, the UI component provides an editor

to create and explore interactive visualisations and a set of functionalities to arrange the

visualisations according to ASSIST-IoT end-user goals.

Business

KPI CLI

The CLI component enables custom plugins built by 3rd party developers to interact with

the Business KPI Server, so that it is reachable from the UI to e.g., provide new data

aggregation methods, or to visualise new chart types, colour palettes, etc.

4.3.2.3. Communication interfaces

The business KPI enabler is formed by spaces and data views, which allow to customise the webpage layout for

visualisations. All graphs in the Business KPI enabler are stored as saved-objects (basically a JSON-object that

describes which visualisations are included). Therefore, the API methods are not those which allow generating

the graphs but are, however, managed with Graphical User Interfaces that connect with a specific database.

Given Business KPI enabler is based on Kibana, all the supported REST API endpoints are available at Kibana

documentation. The most relevant ones for the initial configuration are listed in the table below.

Table 71. User Communication interfaces of the Business KPI reporting enabler

Method Endpoint Description

POST /api/spaces/<space_name> Create a Business KPI space_name

GET /api/spaces/<space_name> Retrieve a Business KPI space_name

DELETE /api/spaces/<space_name> Delete a Business KPI space_name

POST /api/data_views/data_view Create a data view with a custom title (JSON file)

POST /api/saved_objects/data-view/my-view Update <my-view> data view (JSON file)

GET /api/data_views/data_view/my-view Retrieve the data view <my-view>

DELETE /api/data_views/data_view/my-view Delete a data view <my-view>

4.3.2.4. Enabler stories

There is a single enabler story that applies to this enabler. It is related to the generation of graphs from time-

series data stored in the LTSE of ASSIST-IoT deployments. Its diagram and the involved steps are the

following:

STEP 1: The Business KPI server connects with the LTSE in order to have access to the time-series data

produced in the ASSIST-IoT deployment.

STEPS 2-3: The Business KPI server and the Plugins provide access to the time-series data from LTSE, and

the different graph types supported by the enabler to the UI/CLI, respectively.

STEPS 4-5: The user accesses to the webpage/menu of the tactile dashboard that allocates the business KPI

enabler GUI (or connects to the CLI terminal), and selects visualising data in a specific format.

STEPS 6-8: Thanks to the plugins, the user can observe the data in the demanded format.

https://www.elastic.co/guide/en/kibana/current/api.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 79 of 93

Figure 69. Business KPI reporting enabler ES1 (generate graphs from time-series data)

4.3.2.5. Implementation information

Table 72. Implementation status of the Business KPI reporting enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_

enabler.html

Potential features The enabler is considered feature-complete for the purposes of the project.

Encapsulation

readiness
The enabler is already encapsulated, and a Helm chart has been provided

Integration with

other enablers

Enabler require data collected in the LTSE noSQL cluster. Its integration with Tactile

dashboard and LTSE enablers have been successfully tested.

4.3.3. Performance and usage diagnosis enabler

4.3.3.1. General specifications and features

Table 73. General information of the Performance and usage diagnosis enabler

Enabler Performance and Usage Diagnosis (PUD)

Id T44E3

Owner and support ICCS

Description and main

functionalities

PUD enabler aims at collecting performance metrics from monitored targets by scraping

HTTP endpoints on them and highlighting potential problems in the ASSIST-IoT

platform. Supported “targets” include kube-state-metrics for monitoring every kubernetes

cluster used in the project, node-exporter metrics for monitoring hardware, OS metrics

exposed by *NIX kernels, as well as other important metrics for the rest of the enablers

used in the architecture.

Key features

 Utilising the pull model to retrieve metrics over HTTP in regular intervals from

exporters that expose their metrics on an “/metrics” endpoint.

 PromQL, a very flexible query language that can be used to query the metrics in the

Prometheus dashboard. Also, the PromQL query will be used by Prometheus UI and

Grafana to visualise those metrics.

 Exporters are libraries which converts existing metric from third-party apps to

Prometheus metrics format. There are many official and community Prometheus

exporters. One example is, Kube State metrics, a service which talks to Kubernetes

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html#id2

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 80 of 93

Enabler Performance and Usage Diagnosis (PUD)

API server to get all the details about all the API objects like deployments, pods,

daemonsets etc.

 Uses time-series database for storing all the retrieved data.

Plane/s involved Application and Services Plane

Requirements mapping R-C-7, R-P1-16, R-P1-5, R-P2-12, R-P2-18

Use case mapping ALL

Internal components
Prometheus Server, Prometheus-es-adapter, TargetAPI, Kube-state-metrics, Grafana

Dashboard, Node_exporter

4.3.3.2. Structure, components and implementation technologies

Figure 70. High-level diagram of the Performance and usage diagnosis enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 74. Components and implementation of the Performance and usage diagnosis enabler

Component Description Technology/s

Server

Αn open-source monitoring framework. It provides out-of-the-box

monitoring capabilities for the Kubernetes container orchestration

platform.

Prometheus Server

Prometheus-es-

adapter

Α read and write adapter for integrating LTSE’s elastic search as

prometheus’ persistent storage.
Go

TargetAPI
An API that provides the ability to add, update and delete targets for

PUD's Prometheus consumption dynamically.
Python

Dashboard(s)
A GUI that provides an interactive visualisation web application

composed of charts, graphs and dashboards.

Grafana /

Prometheus UI

Kube-state-metrics
Α listening service that generates metrics about the state of Kubernetes

objects through leveraging the Kubernetes API
Go

Node_exporter

An exporter for hardware and OS metrics exposed by *NIX kernels, is

installed separately in every GWEN and Ubuntu device. The

node_exporter is designed to monitor the host system

Go

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html#id4

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 81 of 93

4.3.3.3. Communication interfaces

Table 75. User Communication interfaces of the Performance and usage diagnosis enabler (GUIs)

Method Endpoint Description

GET :9090/ Display Prometheus UI

GET :3000/ Display Grafana Dashboard UI

Table 76. API of the Performance and usage diagnosis enabler - TargetAPI

Method Endpoint Description

GET :5000/docs Display TargetAPI’s Swagger GUI (Listing the bellow APIs)

GET / Get all target groups

GET /{id} Get target group by id

DELETE /{id} Delete target group by id

POST / Create targets

PATCH / Update targets

GET /targets Get all targets

GET /labels Get all labels

GET /lengths Get number of targets and number of labels

4.3.3.4. Enabler stories

In the first and only PUD’s use case presents the interactions between PUD enabler’s components as well as

how the enabler should be configured and used frοm an admin privileged user in order to monitor the whole

ASSIST-IoT system and all of its enabler components, devices, clusters etc.

STEP 1: The user should manually install node_exporter in all devices (server and edge node devices) of the

system in order to monitor hardware and OS.

STEP 2: The user should also install kube-state-metrics in other kubernetes clusters that might reside on the

system in order to monitor them along the cluster that PUD resides in which kube-state-metrics is installed by

default.

STEP 3: The user should list all available metric exporter endpoints and use the TargetAPI through its rest API

in order to add them to PUD for Prometheus consumption.

STEP 4: Prometheus server fetches the posted targets through an HTTP-based service.

STEP 5: Prometheus collects metrics from the beforementioned targets by “scraping” /metrics HTTP endpoints

implementing an HTTP Pull model.

STEP 5: Prometheus server reads and writes its data using ElasticSearch as remote persistent storage utilising

prometheus-es-adapter.

STEP 6: User accesses Prometheus UI to check the state of the available exporter endpoints and graph the

metrics using PromQL.

STEP 6: User accesses Grafana Dashboards to import or create dashboards, tables and graphs for real time

monitoring.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 82 of 93

Figure 71. Performance and usage diagnosis enabler ES1 (metrics gathering and presentation)

4.3.3.5. Implementation information

Table 77. Implementation status of the Performance and usage diagnosis enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_

diagnosis_enabler.html

Potential features

One additional feature for PUDE could be a service that automatically search the whole cluster

for "/metric" endpoints and make them available for PUD's Prometheus consumption, without

the need of an admin user and the TargetAPI.

Encapsulation

readiness

A single Helm chart for the whole enabler, including all components, except Node_exporter

which is designed to monitor host systems and requires to be installed in the host system itself.

Integration with

other enablers

PUD is able to be used standalone, and get other enablers’ metrics over HTTP utilising their

exposed metrics on an “/metrics” endpoint in order to monitor them.

Integration with LTSE’s NoSQL Database used as time-series database for storing all the data.

4.3.4. OpenAPI management enabler

4.3.4.1. General specifications and features

Table 78. General information of the OpenAPI management enabler

Enabler OpenAPI management enabler

Id T44E4

Owner and support CERTH

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 83 of 93

Enabler OpenAPI management enabler

Description and main

functionalities

The OpenAPI Management enabler is the enabler responsible for managing the APIs in

the Assist-IoT project by allowing the enablers of the project to publish their APIs,

monitor their lifecycles and make sure that that the needs of external third parties, as well

as applications that using the APIs, are being met. Hence, the main functionalities that it

serves are to collect all the APIs that are used by the Assist-IoT enablers in order to proxy

them through the API gateway to the external users, to be used as an API portal from

which the developers can push their OpenAPI documentations to the API-gateway,store

them in an API library and interact with them through SwaggerUI.

Key features

 Allows developers to publish OpenAPI definitions through the API gateway.

 Endpoints of the client are secured with IdM.

 A front-end portal application acting as a library of OpenAPI definitions.

 Integrated with the API publisher, enabling developers to push definitions

through the front-end.

 Provides immediate interaction with definitions through Swagger UI.

 Utilises Kong API Gateway (OSS) as the chosen OpenAPI gateway for Assist-

IoT.

 Integrates the kong-oidc open-source plugin to link Kong Gateway with IdM.

 Ensures security for registered endpoints.

 Used as an Ingress controller to proxy services outside the Kubernetes cluster.

Plane/s involved Application and Services Plane

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-P1-6: Terminal data access

 R-P1-16: Open/Accessible remote capabilities

 R-P1-17: Customisable remote desktop

 R-P2-5: Wristband pairing with other devices capability

 R-P3A-11: Connectivity between OEM and fleet

Use case mapping

This enabler is inherent to the ASSIST-IoT ecosystem and, therefore, it should be present

at all pilots without a specific use case in mind yet. Otherwise, it would not be possible to

allow external granted Open Callers to integrate and communicate their developments

with ASSIST-IoT platform.
Internal components API Gateway, API Portal, API Publisher

4.3.4.2. Structure, components and implementation technologies

The OpenAPI management enabler consists of three main components, the OpenAPI Publisher, the OpenAPI

Portal, and the OpenAPI Gateway.

Figure 72. High-level diagram of the OpenAPI management enabler

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 84 of 93

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 79. Components and implementation of the OpenAPI management enabler

Component Description Technology/s

OpenAPI

Publisher

A back-end client that enables developers to securely publish OpenAPI

definitions through the API gateway using standard HTTP methods.

Python FastAPI,

PostgreSQL

OpenAPI

Portal

A front-end application serving as a library for OpenAPI definitions, allowing

developers to push and interact with their definitions through Swagger UI

with IdM authentication.

Swagger UI,

ReactJS

OpenAPI

Gateway

The OpenAPI gateway is powered by Kong API Gateway (OSS) and offers a

lightweight, fast, and flexible solution for managing API traffic, with

integration capabilities for IdM and secure endpoint registration. It is used as

an ingress controller in the Kubernetes cluster to proxy services and

components outside of it.

Kong API Gateway

4.3.4.3. Communication interfaces

Table 80. API of the OpenAPI management enabler.

Method Endpoint Description

GET/POST/PUT/DELETE /apis/{enabler_id} Get/add/modify/delete a new API design document for an enabler.

GET /apis Return all the API design document published.

4.3.4.4. Enabler stories

The first enabler story of OpenAPI management enabler is built around an external user who wants to consult

the API documentation of a specific enabler. The following flow and steps describe the process:

Figure 73. OpenAPI management enabler ES1 (get API documentation)

STEP 1: An OpenAPI caller requests a specific enabler’s API documentation by communicating with the

OpenAPI portal.

STEP 2: The portal processes the request and communicates with the API database.

STEP 3: The API database returns the desired documentation.

STEP 4: The enabler outputs the requested API documentation.

The second enabler story is about an ASSIST-IoT admin/developer who wants to publish a newly designed

API document. The enabler process is described below:

STEP 1: An ASSIST-IoT admin designs an API document and wants to publish it, starting a communication

with the OpenAPI Publisher.

STEP 2: The request is then pushed from the OpenAPI Publisher to the OpenAPI Portal.

STEP 3: The Portal registers the document in the database.

STEPS 4-5: After registering the document, this can be shown in the portal.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 85 of 93

STEP 6: Finally, the user receives an acknowledgement that the document has been published (or an error

message, if an error has occurred).

Figure 74. OpenAPI management enabler ES2 (publish API document)

First and second stories are demonstrating the use of the API Portal and publishers as isolated components. The

third enabler story involves an external entity who wants to interact with an ASSIST-IoT enabler. This

enabler story is also showing the integration between the OpenAPI gateway and the IdM and the use of Kong

as a Kubernetes Ingress Controller in the ASSIST-IoT cluster. The figure and steps below describe the flow for

being redirected to the correct enabler:

Figure 75. OpenAPI management enabler ES3 (interact with enablers)

STEP 1: An user starts a connection with the OpenAPI portal to interact with an ASSIST-IoT enabler.

STEPS 2-3: The Portal gets user’s credentials and send them to IdM through the OpenAPI Gateway.

STEP 4: IdM introspects credentials and sends back its response.

STEPS 5: If user’s credentials are not correct, user is unauthorised to access Assist-IoT enablers.

STEPS 6-7: Successful connection. The OpenAPI Gateway is proxying enabler’s API outside of the cluster and

the Portal displays the OpenAPI documentation of the enabler.

STEP 8: User consumes the API of the enabler.

4.3.4.5. Implementation information

Table 81. Implementation status of the OpenAPI management enabler

Category Status

Link to ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_

enabler.html

Potential features The enabler has all the required features to meet the project’s objectives.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 86 of 93

Category Status

Encapsulation

readiness

The enabler has a working Helm Chart version that will be updated continuously until the end

of the project.

Integration with

other enablers
Integrated with IdM.

4.3.5. Video augmentation enabler

4.3.5.1. General specifications and features

Table 82. General information of the Video augmentation enabler

Enabler Video Augmentation enabler

Id T44E5

Owner and support PRODEVELOP

Description and main

functionalities

This enabler receives images or video captured either from ASSIST-IoT Edge nodes, or

from ASSIST-IoT databases, and using Machine Learning Computer Vision

functionalities, performs object detection/ recognition of particular end-user assets (e.g.,

cargo containers, cars’ damages). It should be noticed that in order to carry out the proper

object recognition in an operation, an appropriate annotated dataset should be ready and

available for training and testing.

Key features

 Support of ML-based object detection and recognition models.

 Flexible configuration of GPU/CPU computing

 Easy-to-use API management

Plane/s involved Application and services plane

Requirements mapping R-P1-5, R-P1-23, R-P3A-13, R-P3B-1, R-P3B-2, R-P3B-13

Use case mapping UC-P1-7, UC-P2-2, UC-P3A-2

Internal components REST API, ML trainer service, Inference engine

4.3.5.2. Structure, components, and implementation technologies

The following figure presents the architectural diagram of the Video augmentation enabler and its internal

components:

Figure 76. High-level diagram of the Video augmentation enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 83. Components and implementation of the Video augmentation enabler

Component Description Technology/s

API

The entrance gate to the video augmentation enabler. It provides a set of restful API

endpoints, over which the user can easily interact with the enabler to e.g., run an ML

training process, run an ML inference, or get the status of the current training process.

Fast API

ML_trainer
An ML model is a function with learnable parameters that maps an input to the desired

output. The optimal parameters are obtained by training the model on data. ML Trainer

Tensorflow

OpenCV

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 87 of 93

Component Description Technology/s

will carry out the process of feeding the network with millions of training data points

so that it systematically adjusts the knobs close to the correct values. Although the video

augmentation ML trainer already supports some ML models, additional ML models can

be installed. Since the training process of images/videos may be computationally

intensive, as the data can be passed through Neural Network with several training

rounds, it is recommended to be performed on a GPU.

Inference

engine

The Inference engine provides the process of running a trained ML over a specific input

through an interpreter. The interpreter, based on TensorFlow, is designed to be lean and

fast, and uses a static graph ordering and a custom (less-dynamic) memory allocator to

ensure minimal load, initialisation, and execution latency.

4.3.5.3. Communication interfaces

Table 84. User Communication interfaces of the Video augmentation enabler

Method Endpoint Description

POST /train/{model_id}

Executes a training session over the annotated data

in the Video Augmentation data folder with the ML

model {model_id}.

GET /train_status Provides the status

POST /inference_local/{model_id}

Performs inference or validate process over the

stored data (video or image) with the trained model

model_id.

POST /inference_streaming/{IP_address,model_id}

Performs inference or validate process over the

video being streamed at IP_address with the trained

model model_id.

4.3.5.4. Enabler stories

The two main enabler stories of the Video Augmentation enabler are related to the training and the inference

process of a computer vision ML model over a local or streaming image/video set.

The first enabler story, i.e., the training process, will be initiated by a user, once the labelled data is updated

and allocated in the corresponding local folder.

Figure 77. Video augmentation enabler ES1 (model training)

STEP 1: The user starts a new training process via API command, once the properly annotated data is present

in a folder accessible by the training module.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 88 of 93

STEPS 2-3: The API communicates with the ML trainer in order to start a new training of either new or pre-

trained ML model available in its framework. And confirms to the user that the ML model training has started.

STEPS 4-5: When the training process is finished, the ML model is stored in the ML trainer database, and

notified to the user where it can be downloaded.

The second enabler story is related to the inferencing of new video set (either stored in local folder or received

via an HTTP streaming service) with a trained ML model. In this case, the following steps and diagram apply:

Figure 78. Video Augmentation enabler ES2 (video inference)

STEP 1: The user starts an inference process via API command, making use of model trained previously by the

dedicated module. The video format over which the Video Augmentation enabler will perform the inference

(local or streaming) is also included in the body of the API endpoint.

STEP 2: The API informs to the Inference engine to start the new process.

STEPS 3-4: The Inference engine starts the process and sends the output video files to a video player user

application (outside of the scope of Video Augmentation enabler).

STEP 5: The video player reproduces the inferenced filed in order to be visualised by the user.

4.3.5.5. Implementation information

Table 85. Implementation status of the Video augmentation enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_

enabler.html

Potential features
The enabler is considered feature-complete for the purposes of the project. Additional features

foreseen in the future include the support of inference solutions for streaming videos.

Encapsulation

readiness
The enabler is already encapsulated, and a Helm chart has been provided

Integration with

other enablers
Enabler can be used in standalone mode, without other enablers.

4.3.6. Mixed reality enabler

4.3.6.1. General specifications and features

Table 86. General information of the MR enabler

Enabler Mixed Reality (MR) enabler

Id T44E6

Owner and support ICCS

Description and main

functionalities

The MR Enabler processes data, coming from other enablers, adapting it into a format

optimised for immersive visualisation using head-mounted Mixed Reality (MR) devices.

Data, which may come from long-term storage or real-time data streams, are requested

according to its relevance to the user. The MR Enabler ensures that authorised users are

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 89 of 93

Enabler Mixed Reality (MR) enabler

presented with pertinent data through their MR devices, allowing for a personalised and

secure experience. Furthermore, the enabler supports user interaction with the virtual

content and view customisation.

Key features

 Visualises the model of the construction site through the head-mounted MR

devices, along with the danger zones of the site. The model of the site and all its

related data come from the long-term storage

 Visualises the location of the workers of the construction site, along with their

crucial information

 Receives alert message from real-time data streams and display their details to

the user

 Provides the ability to create and send new reports

 Captures and stores media files in order to include them in a report

Plane/s involved Application and Services Plane

Requirements mapping UC-P2-7

Use case mapping Pilot 2

Internal components Configuration MR, Data Integration and Data Visualisation

4.3.6.2. Structure, components and implementation technologies

Figure 79. High-level diagram of the MR enabler

Specifically, a description of each one of the components depicted is provided in the table below, along with

the technologies used for implementing them:

Table 87. Components and implementation of the MR enabler

Component Description Technology/s

Configuration

MR
Receives current IoT ecosystem configurations through REST API C#

Data

Integration

Deserialises the information coming from different enablers through REST

API and MQTT protocols.
C#

Data

Visualisation
Displays properly the incoming information to the user Unity / MRTK2

4.3.6.3. Communication interfaces

Table 88. API of the MR enabler

Method Endpoint Description

GET /metrics Receive MR enabler’s metrics

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 90 of 93

4.3.6.4. Enabler stories

The first enabler story is related to the examination of the BIM model of the construction site. Here, the

user is able to view and inspect the BIM model by following the steps bellow:

Figure 80. MR enabler ES1 (fetch and visualisation of the BIM model)

STEP 1: The MR enabler sends an HTTP request to receive the BIM model file from the Assist-IoT Platform.

STEP 2: The Assist-IoT Platform sends the data of the BIM model back to the MR enabler.

STEP 3: The MR enabler process the data and creates a 3D presentation of the data.

STEP 4: The BIM model presentation is being sent to the GUI of the user.

STEP 5: The user inspects the BIM model.

The second enabler story enables users to send a report to the database. It has this sequence diagram and

steps:

Figure 81. MR enabler ES2 (send report)

STEP 1: The user fulfills a report through the Graphical User Interface of the MR enabler.

STEP 2: The report is being sent to the Data Integration component for preparation.

STEP 3: The MR enabler serialises properly the fields of the report.

STEP 4: The MR enabler sends the report through a REST API request to the Assist-IoT Platform.

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 91 of 93

The third and final enabler story allows a user to receive a real-time alert while using the MR enabler and

learn more information about the alert from the GUI, by following those steps:

Figure 82. MR enabler ES3 (receive notification)

STEP 1: The MR enabler subscribes to an alert topic of the corresponding enabler, utilising MQTT protocols.

STEP 2: The MR enabler receives a real-time notification through the Assist-IoT Platform.

STEP 3: The MR enabler process the alert notification.

STEP 4: The MR enabler creates a visual component to notify the user.

STEP 5: The MR enabler shows the new notification to the user.

STEP 6: The user can use the Graphical User Interface of the MR enabler to read more details about the

incoming alert.

4.3.6.5. Implementation information

Table 89. Implementation status of the MR enabler

Category Status

Link to

ReadtheDocs

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html

Potential

features

An additional feature to the MR enabler could involve harnessing point cloud data, empowering better

interaction between virtual objects and the physical world.

Encapsulation

readiness
Excluded (D3.7 - ASSIST-IoT Architecture Definition – Final, page 63)

Integration

with other

enablers

MR enabler is not able to be used as standalone and depends on connecting with other enablers (Edge

Data Broker, Semantic, Long Term Storage enablers) to be fully functional inside the ASSIST-IoT

ecosystem.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 92 of 93

5. Enabler’s Technical Documentation and Demo Videos

The Technical Documentation (https://assist-iot-enablers-documentation.readthedocs.io/en/latest/) for all the

aforementioned enablers is available on the Read the Docs platform. This documentation is encapsulated in the

final Deliverable D6.6 – Technical and Support Documentation – Final, which represents a comprehensive

analysis of the provided documentation (updates are also provided through the final WP6 deliverable D6.8). Its

primary objective is to furnish users with essential information concerning the deployment and utilisation of

ASSIST-IoT enablers across both the horizontal and vertical facets of the ASSIST-IoT architecture. The

Technical Documentation is thoughtfully structured around the overarching ASSIST-IoT architecture, adhering

to a general approach encompassing the following key sections: Introduction, Features, Placement within the

Architecture, User Guide, Prerequisites, Installation, Configuration Options, Developer Guide, Version Control

and Release, Licensing, and Notices.

Selected enablers are also showcased through videos available on the official YouTube channel of the ASSIST-

IoT project (https://www.youtube.com/@assist-iot). The primary objective of this endeavour is twofold: firstly,

to illustrate the accomplishments achieved and to provide external audiences with insights into the technical

intricacies implemented within the project at enablers level, thereby expanding our YouTube channel views and

subscribers base. Secondly, these videos aim to highlight the consortium's preparations for the final pilot trials

and the practical execution of pilot work, bridging the gap between theory and application. Ultimately, these

videos serve as a testament on how these enablers can be integrated into other components, projects or even

within a commercial service/product context.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/
https://assist-iot.eu/wp-content/uploads/2023/05/D6.6_Technical_Support_Documentation_Final_v1.0.pdf
https://www.youtube.com/@assist-iot

Deliverable D4.3 – Final Core Enablers Specification and Implementation

Version 1.0 – 31-OCT-2023 - ASSIST-IoT© - Page 93 of 93

6. Conclusion

With this report and the code of the enablers developed conclude the activities of WP4. It is worth mentioning

that additional information of the enablers in terms of installation, usage, integration with other enablers etc.

can be found in the official documentation of the project, available in the ReadTheDocs page. Also, highlighting

that the intention has been to produce a self-contained document, so that there is no need to consult previous

iterations of the deliverable (D4.1, D4.2).

In any case, rather than in updating the enablers’ specifications, major effort has been put in finalizing the

features of the enablers (as well as manufacturing and delivering to the pilots), which code can be found in the

official project repositories.

