

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D6.3 - Testing and integration plan - Final

Deliverable No. D6.3 Due Date 30/04/2023

Type Report Dissemination Level Public

Version 1.0 WP WP6

Description Includes testing plan, to be followed for all components belonging. The

initial release outlines the initial plan, while second version will include

plan update and results.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 2 of 122

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 3 of 122

Authors
Name Partner e-mail

Alejandro Fornés P01 UPV alforlea@upv.es

Rafael Vañó Garcia P01 UPV ravagar@upv.es

Raúl Reinosa P01 UPV rreisim@upv.es

Juan Gascón P01 UPV juagasre@upv.es

Eduardo Garro P02 PRO egarro@prodevelop.es

Juan Antonio Pavón P02 PRO jpavon@prodevelop.es

Adrián Ramos P02 PRO aramos@prodevelop.es

Piotr Sowinski P03 IBSPAN psowinski@ibspan.waw.pl

Paweł Szmeja P03 IBSPAN pawel.szmeja@ibspan.waw.pl

Karolina Bogacka P03 IBSPAN bogacka@ibspan.waw.pl

Evripidis Tzionas P04 CERTH tzionasev@iti.gr

Iordanis Papoutsoglou P04 CERTH ipapoutsoglou@iti.gr

Anastasia Blitsi P04 CERTH akblitsi@iti.gr

Konastninos Flevarakis P04 CERTH kostisfl@iti.gr

Aggeliki Papaioannou P06 INF apapaioannou@infolysis.gr

Konstantinos Fragkos P06 INF cfragkos@infolysis.gr

Thomas Papaioannou P10 ICCS thomas.papaioannou@iccs.gr

Konstantinos Routsis P10 ICCS konstantinos.routsis@iccs.gr

Rafael Borne Jaular P13 S21Sec rborne@s21sec.com

Zbigniew Kopertowski P15 OPL zbigniew.kopertowski@orange.com

History
Date Version Change

21-Feb-2023 0.1 ToC and task assignments

14-Mar-2023 0.2 ToC updates

28-Mar-2023 0.3 First round of contribution

11-Apr-2023 0.4 Second round of contribution

05-May-2023 0.8 IR Review

09-May-2023 1.0 Submission of Final version after PIC review

Key Data
Keywords IoT, software, testing, integration, GitLab, DevSecOps

Lead Editor P04 CERTH – Evripidis Tzionas

Internal Reviewers P06 INF - Konstantinos Fragkos, P08 MOW

mailto:alforlea@upv.es
mailto:ravagar@upv.es
mailto:rreisim@upv.es
mailto:juagasre@upv.es
mailto:egarro@prodevelop.es
mailto:jpavon@prodevelop.es
mailto:aramos@prodevelop.es
mailto:psowinski@ibspan.waw.pl
mailto:pawel.szmeja@ibspan.waw.pl
mailto:bogacka@ibspan.waw.pl
mailto:tzionasev@iti.gr
mailto:ipapoutsoglou@iti.gr
mailto:akblitsi@iti.gr
mailto:kostisfl@iti.gr
mailto:apapaioannou@infolysis.gr
mailto:cfragkos@infolysis.gr
mailto:thomas.papaioannou@iccs.gr
mailto:konstantinos.routsis@iccs.gr
mailto:rborne@s21sec.com
mailto:zbigniew.kopertowski@orange.com

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 4 of 122

Executive Summary
This deliverable is written in the framework of WP6 – Testing, Integration and Support of ASSIST-IoT project

under Grant Agreement No. 957258. The deliverable is the second iteration for testing and integration within

the ASSIST-IoT project. This deliverable focuses on tools used, report of implemented testing so far, and test

plan for the developed components of the project following the DevSecOps methodology.

The document outlines the current tools used by the development team to coordinate their work, including

GitLab, GitLab CI/CD, GitLab Runner, Helm Registry, Container Registry, and Kubernetes. These tools serve

as the framework for implementing tests in ASSIST-IoT, and detailed instructions for their use are provided.

The test strategy is presented in line with the DevSecOps methodology used by the project.

The report also includes a detailed account of the tests implemented in the first three testing phases, with special

focus on functional and integration testing which are the most important in the current stage of the project.

Moreover, the document offers guidelines for conducting end-to-end, acceptance and performance testing in

accordance with WP3 requirements and WP8 KPIs.

A final deliverable will be released in M36, jointly with two other WP6 deliverables, to conclude the testing

and integration, packaging and release, and technical support documentation.

.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 5 of 122

Table of contents

1 About this document ...11

1.1 Deliverable context ...11

1.2 The rationale behind the structure ..11

1.3 Outcomes of the Deliverable ..12

1.4 Lessons Learnt ..12

1.5 Deviation and corrective actions ..12

2 Integration infrastructure and tools ...14

2.1 GitLab ...14

2.1.1 GitLab CI/CD ...14

2.1.2 GitLab Runner ..16

2.1.3 Helm registry ..22

2.1.4 Container registry ...25

2.2 ASSIST-IoT Testing Environment ...26

3 Acceptance and integration test plan ..30

3.1 Development of the Testing Methodology ...30

3.2 Integration progress in ASSIST-IoT ...33

3.3 Time plan ..33

4 Test Strategy and Results ...34

4.1 Functional testing ...34

4.1.1 Functional Testing of horizontal enablers ..34

 Smart Network and Control Plane ..34

 Data management Plane ...54

 Application and Services Plane ..62

4.1.2 Functional Testing of vertical enablers ...71

4.1.2.1 Self-* enablers ..71

4.1.2.2 Federated machine learning enablers ..78

4.1.2.3 Cybersecurity enablers ...93

4.1.2.4 DLT based enablers ..96

4.1.2.5 Manageability enablers ...99

4.2 Integration testing ...104

4.3 End-to-end testing ..109

4.3.1 Pilot 1: Port Automation ...110

4.3.1.1 Trial #1: Tracking assets in terminal yard ..110

4.3.1.2 Trial #2: Automated CHE cooperation ...110

4.3.1.3 Trial #3: RTG remote control with AR support ...111

4.3.2 Pilot 2: Smart safety of workers ...112

4.3.2.1 Trial #1: Occupational safety and health monitoring ...112

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 6 of 122

4.3.2.2 Trial #2: Fall-related incident identification ...115

4.3.2.3 Trial #3: Health and safety inspection support ...116

4.3.3 Pilot 3A: Vehicle in-service emission diagnostics ...118

4.3.3.1 Trial #1: Fleet in-service emission verification ..118

4.3.4 Pilot 3B: Vehicle exterior condition inspection and documentation119

4.3.4.1 Trial #1: Vehicle exterior condition inspection and documentation119

4.4 Acceptance testing ..120

4.5 Performance testing ..120

5 Conclusion / Future Work ..121

List of tables

Table 1: Software Test & Integration plan ...31
Table 2: Smart Orchestrator enabler's functional tests ...34
Table 3: Smart Orchestrator enabler’s functional tests 1-8 results ...35
Table 4: Smart Orchestrator enabler’s functional tests 9-14 results ...36
Table 5: SDN Controller enabler’s functional tests ..37
Table 6: SDN Controller enabler’s functional test 1 results ...37
Table 7: SDN Controller enabler’s functional test 2 results ...37
Table 8: SDN Controller enabler’s functional test 3 results ...38
Table 9: Auto-configurable network enabler's functional tests ..38
Table 10: Auto-configurable network enabler's functional test 1 results ...38
Table 11: Auto-configurable network enabler's functional test 2 results ...39
Table 12: Traffic Classification enabler's functional tests ..39
Table 13: Traffic Classification enabler's functional tests results ..40
Table 14: Multi-link enabler's functional tests ...41
Table 15: Multi-link enabler's functional tests results ..41
Table 16: SD-WAN enabler's functional tests ..42
Table 17: SD-WAN enabler's functional tests 1-15 results ..44
Table 18. SD-WAN enabler's functional tests 16-20 results ..44
Table 19. SD-WAN enabler's functional tests 21-25 results ..45
Table 20. SD-WAN enabler's functional tests 26-29 results ..46
Table 21: WAN Acceleration enabler's functional tests ...46
Table 22. WAN Acceleration enabler's functional tests 1-20 results ...48
Table 23. WAN Acceleration enabler's functional tests 21-28 results ...49
Table 24. WAN Acceleration enabler's functional tests 28-30 results ...50
Table 25: VPN enabler's functional tests ..50
Table 26: VPN enabler's functional tests 1 and 2 results ...51
Table 27: VPN enabler's functional test 3 result ..51
Table 28: VPN enabler’s functional test 4 results ..52
Table 29: VPN enabler’s functional test 5 results ..52
Table 30: VPN enabler’s functional test 6 results ..53
Table 31: VPN enabler’s functional test 7 results ..53
Table 32: Semantic Repository enabler's functional tests ..54
Table 33: Semantic Repository enabler's functional tests results ...55
Table 34: Semantic Translation enabler's functional tests ..55
Table 35: Semantic Translation enabler's functional tests results ..56
Table 36: Semantic Annotation enabler's functional tests ..57
Table 37: Semantic Annotation enabler's functional tests 1-2 results ..57
Table 38: Semantic Annotation enabler's functional tests 3-9 results ..58

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 7 of 122

Table 39: Edge Data Broker enabler's functional tests ...58
Table 40: Edge Data Broker enabler's functional tests results ...59
Table 41: Long-Term Storage enabler's functional tests ..60
Table 42: Long-Term Storage enabler's functional tests 1-3 results ..60
Table 43: Long-Term Storage enabler's functional tests 4-6 results ..61
Table 44: Tactile Dashboard enabler's functional tests ..62
Table 45: Tactile Dashboard enabler's functional test 1 results ...62
Table 46: Tactile Dashboard enabler's functional test 2 results ...63
Table 47: Tactile Dashboard enabler's functional test 3 results ...64
Table 48: Business KPI Reporting enabler's functional tests ...65
Table 49: Business KPI Reporting enabler's functional test 1 results ..65
Table 50: Business KPI Reporting enabler's functional test 2 results ..65
Table 51: PUD enabler's functional tests ..66
Table 52: PUD enabler's functional tests results ..67
Table 53: OpenAPI Management enabler's functional tests ...67
Table 54: OpenAPI Management enabler's functional tests 1-5 results ...68
Table 55: OpenAPI Management enabler's functional tests 6-7 results ...69
Table 56: Video Augmentation enabler's functional tests ..69
Table 57: Video Augmentation enabler's functional tests results ...69
Table 58: MR enabler's functional tests ...70
Table 59: MR enabler's functional tests results ..70
Table 60: Self-healing enabler's functional tests ..71
Table 61: Self-healing enabler's functional tests results ...71
Table 62: Automated Configuration enabler's functional tests ...72
Table 63: Automated Configuration enabler's functional tests results ...73
Table 64: Automated Configuration enabler's functional tests 1-4 results ...73
Table 65: Automated Configuration enabler's functional tests 5-9 results ...74
Table 66: Resource Provisioning enabler's functional tests ...74
Table 67: Resource Provisioning enabler's functional tests results ..75
Table 68: Monitoring and Notifying enabler's functional tests ..75
Table 69: Monitoring and Notifying enabler's functional tests results ...76
Table 70: Location Processing enabler's functional tests ...76
Table 71: Location Processing enabler's functional tests 1-3 results ...77
Table 72: Location Processing enabler's functional tests 4-6 results ...77
Table 73: FL Training Collector enabler's functional tests ..78
Table 74: FL Training Collector enabler's functional test 1 results ..78
Table 75: Training Collector enabler's functional test 2 results ...79
Table 76: FL Orchestrator enabler's functional tests ..79
Table 77: FL Orchestrator enabler's functional test 1 results ...80
Table 78: FL Orchestrator enabler's functional test 2 results ...81
Table 79: FL Orchestrator enabler's functional test 3 results ...82
Table 80: FL Repository enabler's functional tests ..82
Table 81: FL Repository enabler's functional test 1 results ..85
Table 82: FL Repository enabler's functional test 2 results ..86
Table 83: FL Repository enabler's functional test 3 results ..86
Table 84: FL Repository enabler's functional test 4 results ..87
Table 85: FL Repository enabler's functional test 5 results ..87
Table 86: FL Repository enabler's functional test 6 results ..88
Table 87: FL Local Operations enabler's functional tests ..88
Table 88: FL Local Operations enabler's functional test 1 results ..89
Table 89: FL Local Operations enabler's functional test 2 results ..90
Table 90: FL Local Operations enabler's functional test 3 results ..90
Table 91: FL Local Operations enabler's functional test 4 results ..90
Table 92: FL Local Operations enabler's functional test 5 results ..91
Table 93: FL Local Operations enabler's functional test 6 results ..91

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 8 of 122

Table 94: FL Local Operations enabler's functional test 7 results ..92
Table 95: FL Local Operations enabler's functional test 8 results ..92
Table 96: Identity Manager enabler's functional tests ..93
Table 97: Identity Manager enabler's functional tests results ...93
Table 98: Authorization enabler's functional tests ...94
Table 99: Authorisation enabler's functional tests results ..95
Table 100: Cybersecurity Monitoring enabler's functional tests ..95
Table 101: Cybersecurity Monitoring enabler's functional tests results ...95
Table 102: Cybersecurity Monitoring Agent enabler's functional tests ...96
Table 103: Cybersecurity Monitoring Agent enabler's functional tests results ..96
Table 104: Logging and Auditing enabler's functional tests ..96
Table 105: Logging and Auditing enabler's functional tests results ...97
Table 106: Integrity Verification enabler's functional tests ..97
Table 107: Integrity Verification enabler's functional tests results ..97
Table 108: Broker Service enabler's functional tests ..98
Table 109: Broker Service enabler's functional tests results ..98
Table 110: FL DLT enabler's functional tests ..99
Table 111: FL DLT enabler's functional tests results ...99
Table 112: Enablers’ manager functional tests ...99
Table 113: Enablers’ manager functional tests 1-5 results ...100
Table 114: Enablers’ manager functional tests 6-8 results ...100
Table 115: Composite Services manager’s functional tests ...101
Table 116: Composite Services manager’s functional tests results ..101
Table 117: Clusters and Topology manager’s functional tests ...102
Table 118: Clusters and Topology manager’s functional tests 1-3 results ...102
Table 119: Clusters and Topology manager’s functional tests 4-5 results ...103
Table 120: Clusters and Topology manager functional test 6 results ...103
Table 121: Integration progress of ASSIST-IoT enablers ..104
Table 122: End-to-end testing report final table ...109

List of figures

Figure 1. Pipelines of the repository ...15
Figure 2. Successful pipeline with the stages and jobs executed ...16
Figure 3. Merge request with successful pipeline execution, awaiting owner/maintainer approval for merging

 ..16
Figure 4. Runners path ...18
Figure 5. Runners menu ...18
Figure 6. Runners config file ..19
Figure 7. Runners verification screen ...20
Figure 8. Runner status ...20
Figure 9. Job running. Example 1...21
Figure 10. Job running. Example 2...21
Figure 11. Job running. Example 3...22
Figure 12. Generating an access token ...23
Figure 13. Instruction set for uploading an enabler’s helm chart ...23
Figure 14. Docker login and creating a secret ..24
Figure 15. Docker login and creating a secret (2) ..24
Figure 16. Container registry workflow example ...25

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 9 of 122

Figure 17. Test environment to simulate pilot site premises ..26
Figure 18. Kubernetes cluster topology ..27
Figure 19. VPN and Kubernetes cluster login ..27
Figure 20. VPN monitoring tool GUI ...28
Figure 21. Deployed enablers in ASSIST-IoT’s testing environment ..28
Figure 22. Deployed services in ASSIST-IoT’s testing environment ..29
Figure 23. DevSecOps embedded security control...31
Figure 24. ASSIST-IoT testing and integration time plan ..33
Figure 25. Architectural block diagram of Pilot 1 – Trial #1 ...110
Figure 26. Architectural block diagram of Pilot 1 – Trial #2 ...111
Figure 27. Architectural block diagram of Pilot 1 – Trial #3 ...112
Figure 28. Architectural diagram for Workers’ health and safety assurance sub-trial113
Figure 29. Architectural diagram for Geofencing boundaries enforcement sub-trial114
Figure 30. Architectural diagram for Construction site access control sub-trial ..115
Figure 31. Architectural diagram for Fall-related incident identification trial ...116
Figure 32. Architectural diagram for Safe navigation instructions sub-trial ..117
Figure 33. Architectural diagram for Health and safety inspection support sub-trial117
Figure 34. BS-P3A-1: Fleet in-service emission verification ...118
Figure 35. BS-P3A-2: Vehicle diagnostics ...118
Figure 36. Architectural diagram for Vehicle exterior condition inspection and documentation119

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 10 of 122

List of acronyms

Acronym Explanation

AC Automated Configuration

AD Active Directory

API Application Programming Interface

CI Continuous Integration

CI/CD Continuous Integration/continuous delivery

DevSecOps Development Security Operations

DLT Distributed Ledger Technology

FAT Factory Acceptance Testing

FL Federated Learning

GUI Graphical User Interface

IoT Internet of Things

IPSec Internet Protocol Security

JSON JavaScript Object Notation

K8S Kubernetes

KPI Key Performance Indicator

LDAP Lightweight Directory Access Protocol

LP Location Processing

ML Machine Learning

MQTT Message Queuing Telemetry Transport

NG-IoT Next Generation IoT

OAT Operational Acceptance Testing

PAP Policy Administration Point

PUD Performance and usage diagnosis

RAM Random Access Memory

REST Representational State Transfer

SAT Site Acceptance Testing

SD-WAN Software-defined wide area network

SSD Solid State Drive

SSO Single sign-on

UI User Interface

URL Uniform Resource Locator

VPN Virtual Private Network

Wi-Fi Wireless Fidelity

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 11 of 122

1 About this document

The key objective of this document is to extend the initial plan with details about the plan of testing and

integration for the project's final phase. The details follow the separate tests in sequence, considering the

DevSecOps methodology to allow the project's stakeholders to comply with the methodology. While this is the

final deliverable titled testing and integration, there will be another version covering WP6 on M36 due to the

extension of the project. This is also the reason that the priority of this deliverable is reporting the implemented

tests of the first phases and setting the guidelines for the remaining ones.

1.1 Deliverable context

Keywords Lead Editor

Objectives O1: The deliverable aims to guarantee the architectural structure for NG-IoT and sets tests

to facilitate the DevSecOps methodology.

O2 to O5: Each of the implementations is a subject to testing.

O6: The final testbed for the project and its validation are pilot sites using the developed

solutions.

Work plan

Milestones This deliverable does not mark any specific milestone completion. However, it contributes

to the MS6 Software structure finished (M24) and MS7 – Integrated solution (M30). The

deliverable is the basis for testing methods and integration. In any case, a final review will

be made on M36, in the final deliverable of the work package (D6.8).

Deliverables Task 6.2 – Testing and Integration efforts resulted in this current deliverable. Other

concurrent deliverables of WP6 are complementary to this deliverable, namely those

devoted to the plan for release and distribution (D6.7 [1.]) and documentation (D6.6 [2.]).

It partially draws from the D6.1 [3.] – DevSecOps methodology delivered in M6. The last

deliverable of this WP (D6.8) will contain outcomes from all the tasks, although main focus

will be on testing and integration rather than packaging, which basis and supporting CI/CD

scripts are well-established.

1.2 The rationale behind the structure
This deliverable follows a straightforward approach: Section 2 presents the infrastructure and tools available for

the project, aiming to provide a clear understanding of their functionalities, as well as to explain how to use

them effectively. Then, in Section 3, the test strategy is elaborated and the progress of enablers’ integrations is

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 12 of 122

presented. In Section 4, a detailed documentation of the implemented tests is provided, including the approach

and guidelines for the remaining phases. Finally, conclusions are drawn in Section 5, summarising the outcomes

expected in the final iteration of the current deliverable.

1.3 Outcomes of the Deliverable
The main outcome of this deliverable is the documentation of the testing and integration methodology, as well

as an overview of the infrastructure and tools used in ASSIST-IoT. The work progress of implemented tests is

reported, and the approach for the remaining testing phases is outlined, with the goal of delivering a

comprehensive solution to the pilots. This deliverable, along with D6.6 and D6.7, provides a complete solution

for testing, integration, and supporting documentation of the project.

The first section presents the GitLab tools utilised in the project for testing and integration purposes, such as

GitLab CI/CD, GitLab Runner, Helm, and container registries. The testing environment infrastructure, including

VMs, VPN enabler, and K8s clusters, is also outlined with instructions on usage.

The following section elaborates on the testing methodology developed in ASSIST-IoT, the progress made so

far, and the updated time plan due to the amendment of the project. The six testing phases agreed upon in the

GA of the project are interwoven with the DevSecOps methodology to ensure the software’s quality and

reliability.

Section 4 reports the project's testing progress, providing details on functional and integration tests

implemented, along with guidelines and methodology approach for the remaining testing phases. The successful

completion of the testing and integration phases is crucial for the success of the entire project and its impact on

the pilot sites.

As the project reaches its final stages, the verification of compliance with the gathered requirements, delivery

to the pilots, and determination of acceptance of the final product become paramount.

1.4 Lessons Learnt
During the past months, the Consortium partners have dedicated much efforts to developing the design

specifications of the enablers that will realise the ASSIST-IoT solution. Through this work, several important

insights have been gained:

 Starting software testing as early as possible during the enabler development phase can significantly

improve the efficiency of the testing process, by allowing it to proceed alongside development.

 The deployment of a unified testing environment infrastructure has greatly facilitated the integration of

enablers. Given that modern projects often require the combination of microservices to create larger

components such as ASSIST-IoT's enablers, implementing a testing environment earlier can speed up

integration and component delivery.

 In some cases, the multitude of testing phases may create unnecessary complexity due to overlaps

between them. This can make it difficult to distinguish between different testing phases and could be

streamlined to improve efficiency.

 In order to ensure a successful testing process, it is crucial that every technical partner contributes to

the testing methodology and approach, given that they each have their own tools and unique insights on

how to tackle issues that involve everyone.

 Apart from the requirements defined by pilot stakeholders, in order to ensure that the solution meets

their needs, it is essential that end users are present in the final phases of testing, to help deliver a more

satisfactory and user-friendly end product.

1.5 Deviation and corrective actions
The previous deliverable series provided a framework for implementing the testing and integration plan of the

project, however, the original plan for integration testing has deviated. The initial plan for integration testing

was to focus on the use cases reported in WP4 and WP5 deliverables and the internal components of the enablers.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 13 of 122

While it was possible to partially implement the previous plan, it was not practical as integration testing’s focus

has to be on integrating different enablers together, rather than a single enabler’s internal components. Also, the

acceptance testing approach’s focus is to verify compliance with the requirements gathered in D3.3. These tests

will be initially conducted in a laboratory environment, which will assess the readiness for delivery to the pilots.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 14 of 122

2 Integration infrastructure and tools

2.1 GitLab
The previous deliverable version pinpointed GitLab’s [5.] suitability in conducting the DevSecOps

methodology's objectives. In particular, GitLab's role as a web-based Git repository enables open and private

repositories, tracking issues, and wikis. The platform's security features align with ASSIST-IoT's methodology

and its objectives. Furthermore, it streamlines the DevSecOps procedures' automation through the established

CI pipeline's security testing.

The current deliverable version focuses explicitly on GitLab Runner [8.], Container Registry [9.], Helm Registry

[10.], and their respective functionalities. These tools are all part of GitLab’s platform and can be used in

conjunction with each other to enhance the software development lifecycle. GitLab Runner is used for

continuous integration and delivery, while the Container Registry and Helm Registry are used for storing and

sharing container images and Helm charts, respectively.

Overall, the GitLab platform is a convenient location to support software development throughout the different

phases. In particular, GitLab provides a central location for managing the software development lifecycle from

the initial phase of project planning to its final stage with source code management, testing, monitoring, and

security. Its features and tools can enhance collaboration between teams, shorten product lifecycles, and boost

productivity resulting in greater value for customers.

2.1.1 GitLab CI/CD

GitLab CI/CD [7.] is a tool that allows developers to automate the testing, building, and deployment of their

code changes. CI/CD stands for Continuous Integration/Continuous Deployment, which refers to the process of

automatically building and testing code changes as they are committed to a repository, and then deploying them

to a production environment if they pass all tests. With GitLab CI/CD, developers can define custom pipelines

that specify the exact steps needed to test and deploy their code changes. These pipelines can be triggered either

automatically by a commit to a specific branch or tagged in a repository, or manually by a repository’s user.

By automating the testing and deployment process, GitLab CI/CD helps to ensure that code changes are

thoroughly tested and vetted before being deployed to production, reducing the risk of errors or downtime. It

also allows for faster deployment of new features and fixes, as well as greater collaboration between developers

and operations teams.

To get started with GitLab CI/CD, these general steps are followed:

1. To create a .gitlab-ci.yml file in the root directory of your GitLab repository. This file will define

the steps and stages of your CI/CD pipeline.

2. To define the stages of your pipeline, such as "build", "test", and "deploy".

3. To define the jobs for each stage. A job is a specific task that needs to be executed within a stage, such

as "build Docker image" or "run unit tests".

4. To specify the runner that will execute the jobs. Shared runners provided by GitLab or custom runners

can be used.

5. To set up any necessary variables or environment variables needed for your jobs.

This is the main file used as the baseline for the enablers’ repositories. The partners’ development teams are

advised to leverage the current pipeline for consistency, even if they have their own valid pipelines. Generally,

the project does not mandate strictly adhering to the above pipeline, as long as the outcomes are analogous (e.g.,

static code is analysed, containerised as Docker images, packaged as Helm charts, deployed in staging

environment, tested – see Section 4.1, and released in the project registries and repositories).

Environmental variables available for all the jobs

variables:

 ENV_VAR_1: "VALUE"

 ENV_VAR_2: "VALUE"

 ENV_VAR_N: "VALUE"

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 15 of 122

stages:

 - build

 - test

 - deploy

build-code-job:

 # Environmental variables available only in this job

 variables:

 JOB_ENV_VAR_1: "VALUE"

 JOB_ENV_VAR_2: "VALUE"

 JOB_ENV_VAR_N: "VALUE"

 # Stage in which this job will be executed

 stage: build

 # Optional tag to select the desired runner to execute the job

 tags:

 - gitlab_runner_tag

 script:

 - echo "Build job

test-code-job1:

 stage: test

 script:

 - echo "Test job 1"

test-code-job2:

 stage: test

 script:

 - echo "Test job 2"

deploy-job:

 stage: deploy

 script:

 - echo "Deploy job"

6. Commit the .gitlab-ci.yml file to your GitLab repository.

7. Once the file has been committed, GitLab will automatically detect changes and start executing the

pipeline based on the configuration in the .gitlab-ci.yml file.

8. Monitor the pipeline’s progress through the GitLab web interface or command line tools.

9. Once the pipeline is complete, review the results and any logs or artifacts generated by the jobs.

Figure 1. Pipelines of the repository

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 16 of 122

Figure 2. Successful pipeline with the stages and jobs executed

10. If the pipeline is successful, the changes can be merged into the main branch of your repository and

deployed to the production environment.

Figure 3. Merge request with successful pipeline execution, awaiting owner/maintainer approval for merging

These steps provide a basic overview of how to set up and use GitLab CI/CD. However, the specific instructions

and configuration details will depend on the application and development workflow.

2.1.2 GitLab Runner

GitLab Runner [8.] is defined as an application working with GitLab CI/CD to run jobs in a pipeline and was

introduced in detail in the D6.1 DevSecOps Methodology and Tools [3.].

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 17 of 122

GitLab Runner is open-source and written in Go. It does not rely on any particular programming language and

can be run as a standalone binary. It can also run inside a Docker container or be deployed to a Kubernetes

cluster and can be installed and used on GNU/Linux, macOS, FreeBSD, and Windows:

 In a container.

 By downloading a binary manually.

 By using a repository for rpm/deb packages.

After the GitLab runner installation, individual runners must be registered (runners are the agents that run the

CI/CD jobs that come from GitLab). Once the runner has been registered, the machine set up with the runner

will be able to communicate with the ASSIST-IoT GitLab instance. They usually process jobs on the same

machine with the GitLab Runners installation. However, it can also be a runner process job in a container, in a

Kubernetes cloud or auto-scaled instances in the cloud.

After the runner is registered, an executor must be chosen. This determines the environment each job runs in.

As it is mentioned before, Gitlab runner has been introduced in ASSIST-IoT’s D6.1, and the installation instance

is the following one:

curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.deb.sh" | sudo bash

sudo apt-get install gitlab-runner

sudo gitlab-runner -version

sudo gitlab-runner status

sudo gitlab-runner start

sudo visudo

#Add the gitlab-runner user in sudoers group and set NOPASSWD as shown below

gitlab-runner ALL=(ALL:ALL) ALL

gitlab-runner ALL=(ALL) NOPASSWD: ALL

Register the runners in the GitLab server:

The registration of each individual GitLab runner follows the installation described in this section’s introduction.

The following steps guide the developers in registering their GitLab runner.

Go to Settings - CI/CD – Runner -> Expand

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 18 of 122

Figure 4. Runners path

After clicking in “Expand”, the screen shown will be similar to the one below (Figure 5).

Figure 5. Runners menu

Now in the Runners instance, runner setup must be launched with the specified URL and API key. The following

commands show how to launch the runner setup for both options (Docker, Shell):

1) Specific runner for “docker” tagged steps in CI-CD:

gitlab-runner register \

 --non-interactive \

 --url https://gitlab.assist-iot.eu/ \

 --registration-token GR13489415Ec3MtpvpMS6sef8fyxW\

 --description "s21sec-wp6-docker-runner" \

 --tag-list "docker" \

 --executor docker \

 --docker-image "docker:dind" \

 --docker-volumes /var/run/docker.sock:/var/run/docker.sock, /cache

2) Specific runner for “shell” tagged steps in CI-CD:

gitlab-runner register \

 --non-interactive \

 --url https://gitlab.assist-iot.eu/ \

 --registration-token GR13489415Ec3MtpvpMS6sef8fyxW\

 --description "s21sec-wp6-shell-runner" \

 --tag-list "shell" \

 --executor shell

Once all the previously described steps are executed, the service has to be restarted for the changes to take effect

in the GitLab.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 19 of 122

Restart the service.

sudo gitlab-runner restart

Also, if further information is needed to customise the runners, the config file is located in the following path:

/etc/gitlab-runner

And the config file that must be edited is

config.toml

An example of this config file is shown in the following figures. In this case two runners are shown for WP5

project, one in Docker and the other in shell:

Figure 6. Runners config file

The runners menu (Settings - CI/CD – Runner -> Expand) is where you can double-check that everything has

been set up correctly. The operation has been completed successfully if the runners configured in the previous

step are displayed as assigned project runners (Figure 7).

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 20 of 122

Figure 7. Runners verification screen

Once the pipeline is executed, runners will complete their allocated tasks and report back a “passed” status if

everything went as planned. The following Figure 8is a demonstration:

Figure 8. Runner status

The above outcome is verifiable through the project’s GitLab under the jobs section. If the result is different

than expected, users can examine any discrepancies by clicking on the runner's status, which will reveal all the

steps the runner took to get there. Consequently, users can mitigate the discrepancies in sequential order. The

following images serve as clarification by illustrating 3 examples of 3 different jobs (9, 10, & 11):

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 21 of 122

Figure 9. Job running. Example 1

Figure 10. Job running. Example 2

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 22 of 122

Figure 11. Job running. Example 3

2.1.3 Helm registry

Helm [11.] is a package manager for Kubernetes that simplifies the deployment and management of

applications. It uses charts, which are collections of files that describe a set of Kubernetes resources, to package

and distribute applications. Charts can be versioned, shared, and reused, which makes it easy to manage the

lifecycle of applications in Kubernetes.

To enable the distribution and discovery of Helm charts, Helm registry [10.] is used. It is a tool similar to Docker

registry or GitLab container registry but specifically designed for Helm charts [12.]. With Helm registry,

developers can store and share charts with their team or the wider community, making it easier to collaborate

on building and deploying applications on Kubernetes. The registry allows hosting and distributing charts

internally, privately, or publicly. Additionally, developers can define and manage access control policies and

manage the lifecycle of the charts. This enhances security and collaboration in the development and deployment

of applications on Kubernetes [13.].

Helm chart registries allow developers to version control their Helm charts, which is especially useful if there

are multiple environments (such as development, staging, and production). Specifically, developers can easily

keep track of different versions of their Helm charts and roll back to previous versions if needed. This ensures

consistent deployments across the Kubernetes cluster, as everyone on the team is deploying the same version of

a chart with the same configuration.

Helm chart registries provide a centralised location for managing Helm charts, making it easier to share and

collaborate on charts across multiple teams. By using a Helm chart registry, developers can save time by reusing

existing charts instead of reinventing the wheel every time there is a need for deploying a new application. This

can increase productivity and reduce the chance of errors in the deployments.

Access control is also a critical feature of Helm chart registries. Developers can control who has access to the

Helm charts by setting up authentication and authorisation for their registry. This ensures that only authorised

users can deploy charts, which is especially important for sensitive or production workloads. Additionally,

developers can define and manage access control policies to manage the lifecycle of the charts, which enhances

security and collaboration in the development and deployment of applications on Kubernetes.

An example flow of using GitLab’s Helm registry is presented below:

The first step is to create a GitLab access token, which has access to the container registry, through profile in

the upper right corner -> edit profile -> Access tokens. (Figure 12)

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 23 of 122

Figure 12. Generating an access token

In order to upload an enabler to the GitLab package registry steps depicted in Figure 13 are followed. Note that

because the project’s repository is private, the first command should include the token generated in the previous

step:

$helm repo add --username <username> --password <access_token> assist-public-repo \

https://gitlab.assist-iot.eu/api/v4/projects/85/packages/helm/stable

Figure 13. Instruction set for uploading an enabler’s helm chart

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 24 of 122

After uploading the Helm charts to the registry, developers can view them in the project’s dedicated public

repository at ASSIST-IoT’s GitLab (Figure 14).

Figure 14. Docker login and creating a secret

The final step presents how to install an enabler, whose Helm chart has been uploaded and stored in the package

registry (Figure 15).

Figure 15. Docker login and creating a secret (2)

Further information about how to use Helm registry is available in:

GitLab docs

Our dedicated GitLab repo.

https://gitlab.assist-iot.eu/enablers-registry/public/-/packages
https://docs.gitlab.com/ee/user/packages/helm_repository/
https://gitlab.assist-iot.eu/enablers-registry/public

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 25 of 122

2.1.4 Container registry

GitLab Container Registry [9.] is a powerful tool that offers a secure and private space for storing Docker

images. This feature enables teams to create, store and share Docker images that can be easily accessed by other

team members or even across different projects. The container registry allows teams to avoid the use of public

repositories that may pose a security risk by providing a private and secure space for image storage.

In addition to the private repository, the container registry also allows teams to integrate with the GitLab CI/CD

pipeline for automated builds, testing and deployment of Docker images. This integration provides the ability

to build, test and deploy Docker images in a single, streamlined workflow, while ensuring that the images are

secured and properly authenticated.

Another important aspect of security when using the GitLab Container Registry is the use of secrets in Helm

chart deployments. Without the use of secrets, images cannot be pulled from the private repository without

providing GitLab credentials, which may not be ideal from a security standpoint. With the use of secrets,

however, teams can ensure that their images are only accessible to authorised personnel, while maintaining a

high level of security throughout the development and deployment process.

An example flow looks like this:

 Create a gitlab access token, which has access to the container registry, through profile in the upper

right corner -> edit profile -> Access tokens. (pic1)

 Login to the gitlab container registry through the token that was created:

$docker login gitlab.assist-iot.eu:5050 (pic2)

 Build the images that are about to be pushed and tag them properly:

$docker build -t gitlab.assist-iot.eu:5050/wp4/applications/openapi-enabler/frontend:v1.0.0 .

 Then push them to the registry:

$docker push gitlab.assist-iot.eu:5050/wp4/applications/openapi-enabler/frontend:v1.0.0

 Create a secret:

$kubectl create secret docker-registry <your_secret> --docker-server=$docker_server --docker-

username=$docker_username --docker-password=$personal_token (pic3)

 Then the tagged container can be viewed inside the repo by accessing the sidebar at Packages and

registries -> container registry (pic4 + 5)

 Then the imagePullSecrets are added to the helm chart under the component that uses the image that

has been built in values.yaml like (pic6)

Figure 16. Container registry workflow example

For more information about how to use Container registry is available in:

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 26 of 122

GitLab docs,

Our dedicated GitLab repo.

2.2 ASSIST-IoT Testing Environment
The testing environment is the logical architecture of hardware and software for serving the purposes of

ASSIST-IoT. This section's goal is to provide a detailed explanation of the logical architecture, as well as the

criteria outlined by the project's specifications for testing and deployment.

Initially, the specifications for testing and deployment consider the needs of pilot sites and developers. These

are the subjects of testing the developed enablers and deploying them on their premises. The computing units

to be used by the pilot sites come in a variety of sizes, ranging from smaller and limited capabilities to ones with

resources to spare. Additionally, enablers are developed with the vision of diverse environments that can be

sufficiently covered by clusters of virtual machines running on separate units.

Figure 17. Test environment to simulate pilot site premises

The current infrastructure for testing is hosted on the premises of ASSIST-IoT’s partner, CERTH. The

infrastructure is composed of five units for fulfilling the project’s requirements in terms of testing in an

environment analogous to the pilot sites for future deployment. In particular, the infrastructure is composed of

three different computers accompanied by two Raspberry Pi microcontrollers that serve as the smaller units.

The machines’ hardware features are 16GB RAM and 1 TB SSD.

Virtual machines are distributed between the different computers to ensure that there is a running instance for

testing despite any inconveniences with the particular computer. Moreover, a computer running a single virtual

https://docs.gitlab.com/ee/user/packages/container_registry/
https://gitlab.assist-iot.eu/enablers-registry/public

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 27 of 122

machine is considered to provide a computer to carry out more computationally demanding tasks. Other virtual

machines vary to the allocated capabilities.

In order to execute tests on enablers, the infrastructure has been designed to be partitioned into three separate

clusters according to a logical architecture. The clusters are consisted of virtual machines that function on a

variety of different units, replicating computers that are in different locations. The first cluster created with

kubeadm is composed of three different virtual machines, representing the cloud and being directly connected

with three different K8s nodes (One master, two worker nodes). The second cluster running the K3s distribution

operates between four distinct virtual machines and it represents an edge k8s distribution with a one-to-one

connection with the K8s nodes (One master, three worker nodes). The final cluster accommodates the smaller

processing units and the two Raspberry Pis, also with one master node and three workers. The topology can be

viewed graphically through the manageability enablers (Figure 18).

Figure 18. Kubernetes cluster topology

The testing environment is connected through a VPN enabler, which includes all the virtual machines and

Raspberry Pis in the network. To access the testing environment, each user is provided with VPN credentials

by the network administrator. Once logged in, users can access the virtual machines and Raspberry Pis in the

network using SSH from a shell. The IP addresses for each machine range from 10.10.10.2 to 10.10.10.12. To

ensure the security of the network, all user connections are monitored continuously.

Figure 19. VPN and Kubernetes cluster login

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 28 of 122

To monitor the Kubernetes cluster and its users, a monitoring tool has been implemented. This tool enables the

administrator to monitor the cluster’s performance, the number of active users, and other relevant metrics, as

shown in Figure 20. By using this monitoring tool, the administrator can ensure that the cluster is performing

optimally and address any issues that arise promptly.

Figure 20. VPN monitoring tool GUI

An overview of some enablers currently working in the cluster can be viewed below in Figure 21, along with

their corresponding services in Figure 22.

Figure 21. Deployed enablers in ASSIST-IoT’s testing environment

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 29 of 122

Figure 22. Deployed services in ASSIST-IoT’s testing environment

Further information about ASSIST-IoT’s infrastructure is available in the following links:

Smart Orchestrator,

Manageability Enablers

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/manageability/index.html

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 30 of 122

3 Acceptance and integration test plan

3.1 Development of the Testing Methodology
In ASSIST-IoT’s DevSecOps methodology [14.], the testing phase can be broken down into two separated

concepts. The first involves testing software components in the form of micro-services, before they are released,

to ensure they function correctly. The second concept involves integrating and testing all software components

after release to create pilot trials or use cases in a unified environment. ASSIST-IoT intertwines the phases of

the DevSecOps methodology with the testing phases presented in D6.2 [15.]. The planning phase has already

been implemented and the process is straightforward.

The code implementation phase involves developing the internal components of an enabler, with a focus on

implementing unit tests and functional tests before committing code. No code should be committed without

proper testing, although there is some flexibility in terms of deciding when to develop tests for a new component.

GitLab and its CI/CD pipelines are used in ASSIST-IoT to embed tests into enabler deployment pipelines.

The build phase follows the code implementation phase and involves creating executables using dependency

management tools, to ensure that all necessary libraries and components are included in the build. Security

checks can also be incorporated into the build process, and integration tests can be developed to ensure optimal

interaction between an enabler's internal components. This phase also involves creating versions of the enablers

that are released, in order to incorporate new functionalities.

After building the enablers, ASSIST-IoT uses a unified testing environment to proceed to the testing phase of

the DevSecOps lifecycle. Enablers are locally tested and ready to interact with each other to create complete

use cases and pilot trials. To simulate a real IoT environment, as described in section 2.2, K8s nodes are used

to replicate cloud and edge deployments. This environment allows teams to test enablers, modify and rebuild

new versions, and develop end-to-end tests for easier debugging and fine-tuning of interacting components for

each set of pilot trials.

Following testing, the acceptance phase begins in parallel with acceptance testing to confirm that requirements

and KPIs are met. Factory acceptance testing is currently being conducted in ASSIST-IoT's testing environment,

where pilot trials are simulated and tests are performed for validation.

The deployment phase involves delivering the final product to stakeholders and beginning site acceptance

testing. ASSIST-IoT has just started this phase, and the deployments that are present in the testing environment

will now be deployed in the pilot premises, and tested to ensure that everything is functioning as expected in

the real-case scenario.

The final phase is the operation, in which the complete product of the project operates as it should in the pilot

premises and is accompanied by performance testing. This phase is crucial in ensuring that the product meets

the requirements and KPIs and performs well in the real-world environment.

Overall, the DevSecOps methodology implemented in the ASSIST-IoT project is a systematic and rigorous

approach to software development, testing, and deployment. Each phase plays a critical role in ensuring that the

final product meets the project goals and stakeholder requirements. All of the aforementioned methodology is

a hands-on attempt to interweave DevSecOps methodology (Figure 23) with ASSIST-IoT testing methodology

(Table 1).

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 31 of 122

Figure 23. DevSecOps embedded security control

The general activities, frequency and responsibilities for ASSIST-IoT testing and integration methodology is

summarised in the table below:

Table 1: Software Test & Integration plan

DevSecOps

Phase

Level of

Testing
Activities

Test

environments

Frequency of

testing

Responsible

Writing test

cases

Providing test

data
Running tests

Code

Unit

Select test cases.

Write automated

tests cases

Developer

environment

Continuous

Integration

Infrastructure

Create test before

/ while

developing.

Automated tests

run continuously

when the

component is

built on the CI

Infrastructure.

Developer Developer
Component/Unit

provider

Functional

Select test cases

according to

requirements.

Prepare demos

with test data.

Run demos.

Developer

environment

CI Infrastructure

Create tests

whenever new

functionalities are

introduced.

Run tests

continuously

when adding the

functionality to

the enabler.

Developer

Developer

Developer

Build Integration

Select test cases

Manage unit

dependencies.

Write automated

tests.

Prepare non

automated test

cases.

CI Infrastructure

Automated tests

run continuously

when binding

enablers together.

Manual testing

each time a new

enabler is

introduced to the

pipeline.

Developer

Developer /

Integration

team

Developer /

Integration team

Test End-to-end
Design and

prepare tests

CI Infrastructure

/ ASSIST-IoT

Automated tests

run continuously

Developer

Integration

Developer /

Integration
Integration team

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 32 of 122

DevSecOps

Phase

Level of

Testing
Activities

Test

environments

Frequency of

testing

Responsible

Writing test

cases

Providing test

data
Running tests

around pilot

trials.

Automate tests

and run them.

Design, prepare,

and run manual

tests.

Testing

Environment

when all the

enablers of a pilot

trial are ready.

Manual tests run

whenever a new

version of an

enabler /

component is

introduced in the

trial.

team team

Accept
Factory

Acceptance

Define test cases

according to the

pilot trials.

Prepare test data

for real time case

scenario.

Run the

integration tests

of the system.

Identify the

observations and

track the issues.

Acceptance test

review with

respect to

requirements.

ASSIST-IoT

Testing

Environment

Tests run on the

integrated /

production

platform which

will be used,

whenever a trial

is validated.

Integration

team

Pilot site

stakeholders

Integration

team

Pilot site

stakeholders

Integration team /

End users /

vendors / pilot site

stakeholders

Deploy
Site

Acceptance

Execute the tests

designed in the

previous phase.

Update, refine,

and align with

the real pilot site.

Acceptance test

review with

respect to

requirements.

Pilot Site

environment

Tess run on the

pilot site

environment

whenever a

complete trial is

validated and

deployed.

Integration

team

Pilot site

stakeholders

Integration

team

Pilot site

stakeholders

Integration team /

End users /

vendors / pilot site

stakeholders

Operate Performance

Design test cases

for scalability,

stress, load,

endurance and

extreme unlikely

scenarios.

Run the tests

along with

integration team

and pilot site

stakeholders.

Define the

boundaries that

the trials cannot

perform at their

best.

Factory / Pilot

Site environment

After the

application has

passed all test

levels, validate

the scenarios in

which the

designed

application has

the desirable

performance.

Developers

Integration

team

Pilot site

stakeholders

Developers

Integration

team

Pilot site

stakeholders

Developers

Integration team

End users

Pilot site

stakeholders

Please take note that the term “Integration team” refers to the developers responsible for developing the enablers

and integrating them together to deliver the functional final product, as detailed in section 4.3.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 33 of 122

3.2 Integration progress in ASSIST-IoT
The level of packaging, currently in M30, is completed for the vast majority of the enablers (see D6.7, released

jointly with this deliverable). There are a few exceptions already reported, hence this section is mostly for

reporting the level of enablers’ integration.

Τo monitor and track the integration progress, a comprehensive table has been developed in section 4.2 that

captures essential information. This table enables the project team to have a clear overview of the integration

progress, identify potential roadblocks or issues, cooperate and, take necessary actions to ensure the timely

delivery of the integrated platform.

The importance of a unified environment has really shined in the last months, leading us to the conclusion that

the integration process is not just a mere combination of individual components, but also a complex task that

requires a systematic and organized approach. Thanks to the K8s deployment, the teams have been able to fully

test and interact with each other’s enablers, creating a solid foundation for the pilot trials. Furthermore, GitLab

has played a critical role in the integration process, providing a streamlined approach to code management and

testing with its CI/CD pipelines, the runners and the registries, allowing for continuous integration and

deployment. The project's time plan expects the rate of integration progress to remain stable as the work

transitions into establishing end-to-end testing and further enhancing our testing infrastructure.

3.3 Time plan
The time plan from the previous version of the deliverable has to be updated to include the extension period of

the project. The current deliverable is the overview of the project’s actions at the time of devising the deliverable

on M30. The project extension requires the addition of a last deliverable presenting the entirety of the work

from WP6. In other words, the last deliverable will include testing and integration along with packaging and

documentation.

Figure 24. ASSIST-IoT testing and integration time plan

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 34 of 122

4 Test Strategy and Results

As documented in D6.2 [15.], the methodology for unit testing in the ASSIST-IoT project has already been

defined. In brief, the focus of unit testing is to test individual components within enablers to ensure that they

meet the design specification requirements. The smallest testable part of each enabler’s component will be

defined as the “unit”, and unit tests should be automated and written using a unit test framework corresponding

to the programming language being used.

As unit testing is a crucial part of the software development process, it is important that all unit tests are

completed and passed before committing code into repositories. Specifically, a single test should be

implemented for each major method, function, class, or internal API of each enabler’s component. Test inputs

and outputs should be deterministic, have clear and unambiguous error messages, and have a one-to-one

relationship with the functionality being tested. Some universal testing principles also apply, such as:

 Test should be designed to run independently of other tests in a clean environment and before the main

code is invoked.

 Tests should be lightweight and easy to set up.

 Tests should be able to run in random order.

 The best strategy is to have the tests automated, without that meaning that manual tests cannot exist.

 Well-designed tests should be able to fail, meaning that by changing the input, the test may not always

pass.

While unit testing is a vital step in software development, reporting the results of each individual test can be

time-consuming and may make the document unnecessarily long. As the unit testing methodology has already

been documented in D6.2, it is not necessary to report the results of unit testing in D6.3. Instead, D6.3 should

focus on other types of testing, such as functional, integration, and end-to-end testing, as well as any

modifications made to the existing testing methodology.

4.1 Functional testing
Functional testing is part of the testing pipeline to ensure the system functionality by testing on the requirements

set by WP4 and WP5. Functional testing is treated as a black box test method where the source code is not the

main point of testing, but it is the functionality.

The current version presents updates to the initial deliverable version on the functional tests. During the time

from the previous version of the deliverable, enablers development was prone to changes. The current section

will update on the tests of enablers. In addition, it is worth noting that in order to ensure the quality and reliability

of our releases, all functional tests have to be executed, either manually or automatically, prior to any package

release.

4.1.1 Functional Testing of horizontal enablers

 Smart Network and Control Plane

Smart Orchestrator Enabler

Table 2: Smart Orchestrator enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Login

A client is authenticated by the smart

orchestrator by returning an access

token.

A set of queries are executed to the API with

right and wrong credentials. Valid returns,

or authentication error messages, should be

returned depending on the case.

Pass /

Fail

2 Add cluster

A K8s cluster is attached to the

orchestrator to allow deploying

enablers on it.

A K8s test cluster is provisioned correctly,

and a test enabler is deployed to assess that

it is working.

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 35 of 122

Nº Test Description Evaluation criteria Results

3 Get clusters
The clusters joined are returned as a

JSON.

An API call is performed, returning a JSON

with the test cluster added, or empty in case

it has not been provisioned.

Pass /

Fail

4

Get K8s

Nodes by

cluster

The worker nodes joined to a master

node are returned.

Upon executing an API call, a JSON object

is returned containing information about the

cluster's master and worker nodes.

Pass /

Fail

5 Delete cluster
A K8s cluster is removed from the

orchestrator system.

An API call is made to remove the K8s test

cluster, and it is not possible to instantiate

enablers in it anymore. It can be removed

only if any enabler is running in it.

Pass /

Fail

6
Add

repository

A Helm repository is registered in

the orchestrator system.

A Helm repository is added, and the test

enabler it contains can be instantiated.

Pass /

Fail

7 Get repository
The Helm repositories registered are

returned in JSON format.

An API call is performed, returning a JSON

with the test repository added, or empty in

case it has not been provisioned.

Pass /

Fail

8
Delete

repository

A Helm repository is removed from

the orchestrator system.

An API call is made to remove the test

repository, and it is not possible to

instantiate the test enabler from it anymore.

Pass /

Fail

9 Add enabler
An enabler is instantiated in a K8s

cluster selected by a user.

An API call is made to deploy a test enabler

in a cluster chosen, action that can be

checked with calls to the K8s API.

Pass /

Fail

10
Get enablers

in a cluster

The enablers instantiated in an

specific cluster.

An API call is executed to get the enablers

deployed in a cluster in JSON format.

Pass /

Fail

11 Get enablers
The enablers deployed and running

are returned in JSON format.

An API call is performed, returning a JSON

with the test enabler instantiated, or empty

if it was not placed and running.

Pass /

Fail

12
Terminate

enabler

An enabler is stopped and prepared

to be deleted.

An API call is made to terminate the test

enabler, which stops its execution and

cannot be accessed to perform any work.

Pass /

Fail

13

Delete

Enabler’s PV

and PVC

The PV and PVC attached to an

Enabler are deleted.

When an API call is executed, the PV

(persistent volume) and PVC (persistent

volume claim) associated with an Enabler

are removed from their respective cluster.

Pass /

Fail

14 Delete enabler
The terminated enabler is deleted

from the system.

An API call is made to delete the test

enabler, which is completely removed from

the system, leaving no traces in the cluster.

Pass /

Fail

Table 3: Smart Orchestrator enabler’s functional tests 1-8 results

Enabler Smart Orchestrator enabler (test 1-8)

Description

A functional test is conducted to assess the performance of the cluster and repositories API calls.

This initial test focuses on API calls that operate independently of one another, allowing them to be

evaluated as separate test blocks.

Approach
The test is partially automated and relies on the Swagger-OpenAPI description. To execute the test,

a JSON file containing the required parameters must be provided for retrieval and utilization.

Test tool/s
Any capable software of making HTTP request, for instance: Postman, curl or a python script with

the request library.

Pre-test conditions
The Smart Orchestrator must be installed, up and running to be able to execute the API calls. The

enabler needs some pre-requirements to make possible its functionality.

Additional

information

The JSON file provided to the Docker container must adhere to a specific format, containing all the

necessary parameters as previously outlined.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 36 of 122

Enabler Smart Orchestrator enabler (test 1-8)

Test sequence Step 1 Generate a POST request for requesting the login token.

Step 2-a

Generate a POST request for adding a cluster or a repository to the Smart

Orchestrator Enabler being identified with the token from the first step. Take the

K8s Cluster ID or the K8s repository ID assigned to the cluster/repository joined.

The kubeconfig associated with the cloud cluster can be obtained through a

dedicated API call for testing purposes.

Step 2-b
Verify the response returned is a status code of 200. If not, the script throws an

error.

Step 2-c
Check if the schema returned is equal to the schema defined. If it is, the test is

validated. If not, the script throws an error.

Step 3-a
Generate the GET and DELETE requests utilizing the parameters obtained from the

POST request and the identifier token.

Step 3-b The verification process should be conducted in accordance with steps 1-b and 1-c.

Test verdict
The script verifies the response code and schema to validate the test. The verdict is based in these

comparisons -> Passed

Additional logs/

Report (in case of

manual)

N/A

Table 4: Smart Orchestrator enabler’s functional tests 9-14 results

Enabler Smart Orchestrator enabler (test 9-14)

Description

A functional test is conducted to assess the performance of the enabler API calls. This test focuses

on API calls that depends on the other calls as the cluster and repository ones for the enabler

instantiation.

Approach
The test is partially automated and relies on the Swagger-OpenAPI description. To execute the test,

a JSON file containing the required parameters must be provided for retrieval and utilization.

Test tool/s
Any capable software of making HTTP request, for instance: Postman, curl or a python script with

the request library.

Pre-test conditions
The Smart Orchestrator must be installed, up and running to be able to execute the API calls. The

enabler needs some pre-requirements to make possible its functionality.

Additional

information

The JSON file provided to the Docker container must adhere to a specific format, containing all the

necessary parameters as previously outlined.

Test sequence Step 1 Generate a POST request for requesting the login token.

Step 2

Generate a POST request for adding a cluster or a repository to the Smart

Orchestrator Enabler being identified with the token from the first step. Take the

K8s Cluster ID or the K8s repository ID assigned to the cluster/repository joined.

The descriptive JSON should contain the "wait" option to ensure that the K8s

Cluster is fully instantiated before proceeding.

Step 3

Generate a POST request to instantiate an Enabler. From the response, the script

should extract the necessary parameters. The descriptive JSON should contain the

"wait" option to ensure that the Enabler is fully instantiated before proceeding.

Step 4
Generate the GET and DELETE requests utilizing the parameters obtained from the

POST requests and the identifier token.

Step x

For each test, the script verifies if the response returned is a status code of 200, the

script checks if the schema returned is equal to the schema defined. If it is, the test

is validated. If the code is different or the schema is not equal to the schema

defined, the script throws an error.

Test verdict
The script verifies the response code and schema to validate the test. The verdict is based in these

comparisons -> Passed

Additional logs/

Report (in case of

manual)

N/A

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 37 of 122

SDN Controller Enabler

Table 5: SDN Controller enabler’s functional tests
Nº Test Description Evaluation criteria Results

1
Network

configuration
Test of topology and network

configuration parameters.

A set of commands for network

configuration.
Pass /

Fail

2 API usage
Test of API REST commands for

network control function.
A set of REST requests for network

configuration.
Pass /

Fail

3 GUI Test of GUI interface.
Network topology shown with requested

configuration parameters.
Pass /

Fail

Table 6: SDN Controller enabler’s functional test 1 results

Enabler SDN Controller enabler (test 1)

Description Testing of network configuration parameters and network topology with CLI commands.

Approach Semi-automatic using developed scripts.

Test tool/s No additional tools required.

Pre-test conditions Installed ONOS, terminal with CLI and Mininet.

Additional

information
E.g., why a specific tool have been used; if mock tools have been needed and why;

Test sequence Step 1 Start Mininet

Step 2 Start ONOS configured with Mininet.

Step 3 Start terminal with CLI.

Step 4

Run scripts with CLI commands for network configuration proposes like:

[add-flows] [add-host-intent] [cfg] [device-remove] [device-role] [

devices] [flows] [get-stats] [host-remove] [hosts] [intents] [links] [

nodes] [paths] [ports] [remove-intent] [resource-allocations] [

resource-available] [summary] [topology]

Test verdict Evaluation of the network configuration with applied network parameters.

Additional logs/
Report (in case of

manual)
Logs from command line interface.

Table 7: SDN Controller enabler’s functional test 2 results

Enabler SDN Controller enabler (test 2)

Description
Testing of network configuration parameters and network topology with REST API

commands.

Approach Semi-automatic using developed scripts.

Test tool/s No additional tools required.

Pre-test conditions Installed ONOS, REST interface and Mininet.

Additional

information
Scripts with REST requests for network configuration and topology collection information.

Test sequence Step 1 Start Mininet

Step 2 Start ONOS configured with Mininet.

Step 3 Start API REST interface.

https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-add-flows
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-add-host-intent
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-cfg
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-device-remove
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-device-role
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-devices
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-flows
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-get-stats
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-host-remove
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-hosts
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-intents
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-links
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-nodes
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-paths
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-ports
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-remove-intent
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-resource-allocations
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-resource-available
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-summary
https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+commands#AppendixA:CLIcommands-topology

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 38 of 122

Enabler SDN Controller enabler (test 2)

Step 4
Run selected REST commands for network configuration proposes like:

GET/POST/PUT/DELETE /devices, links, hosts, flows, intent

GET /configuration, /paths, /topology

Test verdict Evaluation of the network configuration with applied network parameters.

Additional logs/
Report (in case of

manual)
Logs from REST API requests.

Table 8: SDN Controller enabler’s functional test 3 results

Enabler SDN Controller enabler (test 3)

Description Testing of GUI interface.

Approach Semi-automatic using developed scripts.

Test tool/s No additional tools required.

Pre-test conditions Installed ONOS and Mininet.

Additional

information
Scripts with commands for network configuration and topology collection information.

Test sequence Step 1 Start Mininet

Step 2 Start ONOS configured with Mininet.

Step 3 Start browser with GUI interface.

Step 4 Run scripts for network configuration and creation.

Test verdict Evaluation of the network configuration with applied network parameters.

Additional logs/
Report (in case of

manual)
Screenshots from GUI interface.

Auto-configurable network enabler

Table 9: Auto-configurable network enabler's functional tests
Nº Test Description Evaluation criteria Results

1
Network resources

optimizations
Network resources optimization

based on overall throughput.

Network traffic distribution is

optimised according to throughput.
Pass /

Fail

2
Network quality

parameters

optimization

Network quality parameters

optimization based on losses and

latency.

Network traffic distribution is

optimized according to network QoS

parameters.

Pass /

Fail

Table 10: Auto-configurable network enabler's functional test 1 results

Enabler Auto-configurable network enabler (test 1)

Description Testing of network resources optimization based on overall throughput.

Approach Manual testing for network configuration scenarios.

Test tool/s Traffic generator tool.

Pre-test conditions Installed SDN controller enabler, Mininet, and traffic generator.

Additional

information
Scripts with commands for network configuration and topology collection information. Sflow-rt

monitoring tool installed, AI module installed.
Test sequence Step 1 Start Mininet

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 39 of 122

Enabler Auto-configurable network enabler (test 1)

Step 2
Start SDN controller enabler configured with Mininet (specified network

topology).

Step 3 Start monitoring tool.

Step 4 Start Auto-configurable network enabler (AI module).

 Step 5 Run scripts for traffic generation.

Test verdict
Evaluation of network resources optimisation (optimal traffic distribution in the network).

Additional logs/
Report (in case of

manual)
Logs from monitoring tool (throughput).

Table 11: Auto-configurable network enabler's functional test 2 results

Enabler Auto-configurable network enabler (test 2)

Description Testing of optimisation for network quality parameters based on losses and latency.

Approach Manual testing for network configuration scenarios.

Test tool/s Traffic generator tool.

Pre-test conditions Installed SDN controller enabler and Mininet, and traffic generator.

Additional

information
Scripts with commands for network configuration and topology collection information. Sflow-rt

monitoring tool installed, AI module installed.
Test sequence Step 1 Start Mininet

Step 2
Start SDN controller enabler configured with Mininet (specified network

topology).

Step 3 Start monitoring tool for losses and latency measurement.

Step 4 Start Auto-configurable network enabler (AI module).

 Step 5 Run scripts for traffic generation with specified scenarios of generation.

Test verdict
Evaluation of optimal traffic distribution in the network to achieve minimal values of QoS

parameters: packet losses and delays.
Additional logs/
Report (in case of

manual)
Logs from monitoring tool (throughput, losses, delays).

Traffic Classification Enabler

Table 12: Traffic Classification enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Preprocess

Raw .pcap files with data from

specific application and traffic types

are preprocessed correctly to be

used for training.

After the operation, compressed JSON files for

each .pcap file are generated, and a message

informing of the success is returned.

Pass /

Fail

2
Create train

and test set

Preprocess data is are separated into

training and validation, and further

prepared for training

After the operation, parquet files are split for

training and testing (80% for training), and

parquet files are generated. A message

informing of the success is returned.

Pass /

Fail

3 Train model

With a dedicated model and a

database present in the host, the

training module will be able to train

a model to classify packets.

An API call will be made to return a model with

test samples, for CNN and Resnet models, and

application and traffic specific types. A

message informing of the success is returned.

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 40 of 122

Nº Test Description Evaluation criteria Results

4
Classify

packets

The inference component will

classify packets according to

different classes.

A set of API calls will be made to validate that

the inference operation (for CNN and Resnet

models, and application and traffic specific

types) work as expected, for a .pcap file with

two email packets.

Pass /

Fail

Table 13: Traffic Classification enabler's functional tests results

Enabler Traffic classification enabler tests

Description
Formal description of functional tests. All tests follow the same steps based on the ability to self-

manage without dependencies on other enablers.

Approach Fully automatic. OpenAPI Swagger file-based pipeline integration.

Test tool/s
This enabler only requires any software capable of executing REST API calls such as POSTMAN,

Gitlab pipelines or a script with curl or similar software.

Pre-test conditions

Enabler deployed and prerequisites specified in documentation applied. This enabler also requires a

set of folder/files present in the staging environment host to test its proper performance (at least,

raw .pcap files with correct naming for the pre-processing endpoint).

Additional

information
-

Test sequence

Step 1

Send an HTTP Request (GET, POST) to each respective endpoint. In case of POST

request, it is mandatory to include a custom body specified in the swagger file.

Specifically, the involved endpoints are the following, to be executed in this order:

1. /vx/preprocess (for 2xx response, .pcap files must be present)

2. /vx/create-train-test-set

3. /vx/train (with cnn model and app type)

4. /vx/train (with cnn model and traffic type)

5. /vx/train (with resnet model and app type)

6. /vx/train (with resnet model and traffic type)

7. /vx/inference_app_cnn

8. /vx/inference_traffic_cnn

9. /vx/inference_app_resnet

10. /vx/inference_traffic_resnet

Step 2a-1 Check if an HTTP 2xx or 3xx response code is returned.

Step 2a-2 Check if response schema matches with the HTTP Request response.

Step 2a-3 If last 2 steps are successful, it returns the success of the operation.

Step 2b-1 Check if an HTTP 4xx or 5xx response code is returned.

Step 2b-2 Response log is returned.

Step 3 Go to the next endpoint assessed

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation -> Passed

Additional logs/

Report (in case of

manual)

N/A

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 41 of 122

Multi-link enabler

Table 14: Multi-link enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Start Multi-link

server

Start the multilink server,

bringing up the bridge interface

and set up the tunnels.

Successfully bringing up the interface and

tunnels of the server.

Pass /

Fail

2 Get server key
Get the key of the tunnels from

the server.

Successfully received the key of the tunnels

from the server.

Pass /

Fail

3
Start Multi-link

client

Start the multilink client,

bringing up the bond interface

and set up the tunnels.

Successfully bringing up the interface and

tunnels of the client.

Pass /

Fail

4
Check client-server

connection

Ping between the client and

server multilink’s interfaces.

The connection between the client and the

server is successfully achieved by multilink

interfaces/tunnels.

Pass /

Fail

5 Backup interface

Bring down primary interface,

the backup interface will bring

up and will be selected by the

bond.

Change the active slave in the bond to

backup interface and check the client-server

connection persists.

Pass /

Fail

6
Reselect primary

interface

. The active slave in the bond is

the backup interface, if the

primary interface brings up, the

bond changes active slave to

primary interface.

Check in the bond information that the active

slave changes to the primary interface.

Pass /

Fail

7 All interfaces down
Bring down all the interfaces

(primary and backup’s)

The connectivity between client and server

is lost.

Pass /

Fail

Table 15: Multi-link enabler's functional tests results

Enabler Multi-link Enabler tests

Description
Formal description of functional tests. All tests follow the same steps based on the ability to self-

manage without dependencies on other enablers.

Approach
Semi-automatic. The interfaces can bring up/down with API request, but it is interesting to test

losing physical channel connection like unplug Ethernet cable, turn off WiFi AP, etc.

Test tool/s
Any tool capable of executing HTTP requests. Creating a script with environment variables is a

valid option.

Pre-test conditions
Multilink server and client has to be deployed in different machines and both of them have to be

connected between them by at least two different interfaces (Ethernet and WiFi for example).

Additional

information
Check carefully the OpenAPI of the enabler and the documentation provided.

Test sequence Step 1 Start server (POST) following the schema.

Step 2 Start client (POST) following the schema.

Step 3 Connection test (POST) following the schema.

Step 4 Bring down* primary interface (GET) following the schema.

Step 5 Check backup interface as active slave in bond (GET) following the schema

Step 6 Check connection like in Step 3

Step 7 Bring down* backup interface (GET) following the schema

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 42 of 122

Enabler Multi-link Enabler tests

Step 8
Check connection like in Step 3. In this step the connection has to be lost http

response (4xx)

Step 9 Bring up* backup interface (GET) following the schema

Step 10 Apply steps 5 and 6

Step 11 Bring up* primary interface (GET) following the schema

Step 12 Apply steps 5 and 6

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation -> Passed

Additional logs/

Report (in case of

manual)

 In error case, the logs are showed in display output line.

*It is recommended that the up/down shifting of the interfaces was done in the physical connection channel,

like unplug the ethernet cable from the interface or disconnecting the WiFI AP.

**This test is valid for the actual implementation but it will be evaluate the implementation of a solution cloud-

native approach with respect to the existing (host level)

SD-WAN enabler

All information on acronyms and objects description is available on the official documentation page:

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html

Table 16: SD-WAN enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Create an overlay
Register new overlay to manage an

environment

Relational information from new

overlay is received.
Pass / Fail

2 Get all overlays
Get information from all overlays

available.

Relational information from all overlays

available is received.
Pass / Fail

3 Get specific overlay
Get information from a specific

overlay.

Relational information from a specific

overlay is received.
Pass / Fail

4
Update already created

overlay

Update information from a specific

overlay.

Overlay’s information with the new

changes is received.
Pass / Fail

5 Delete an overlay Delete an existing overlay.
Output doesn’t show any issue related

with the deletion operation.
Pass / Fail

6 Create a proposal
Register new proposal to define

type of communications encryption

Relational information from new

proposal is received.
Pass / Fail

7 Get all proposals
Get information from all proposals

available.

Relational information from all

proposals available are received.
Pass / Fail

8 Get specific proposal
Get information from a specific

proposal.

Relational information from a specific

proposal is received.
Pass / Fail

9
Update already created

proposal

Update information from a specific

proposal.

Proposal’s information with the new

changes is received.
Pass / Fail

10 Delete a proposal Delete an existing proposal.
Output doesn’t show any issue related

with the deletion operation.
Pass / Fail

11
Create subnet range for

edge virtual IPs.

Register new IPRange for an

existing overlay

Relational information from new

IPRange is received
Pass / Fail

12
Get all IPRanges from an

existing Overlay

Get IPRanges created and available

from an existing Overlay.

Relational information from IPRanges is

received.
Pass / Fail

13

Get specific IPRange

already created from an

existing Overlay

Get information from a specific

IPRange from an existing Overlay.

Relational information from an IPRange

object is correctly received.
Pass / Fail

14
Update already created

IPRange from an Overlay

Update information or subnet range

from a specific IPRange linked to

an existing Overlay.

IPRange’s information with the new

changes is correctly received.
Pass / Fail

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 43 of 122

Nº Test Description Evaluation criteria Results

15
Delete an IPRange from an

Overlay.

Delete an existing IPRange linked

to an available Overlay.

Output doesn’t show any issue related

with the deletion operation.
Pass / Fail

16 Register new hub

Configuring the hub environment

passing specific information and

kubeconfig

Relational information from new hub is

correctly received or display some issues

relation with bad configuration or bad

kubeconfig

Pass / Fail

17
Get all hubs already

registered

Get information from all hubs

deployed and configured correctly.

Relational information from hubs

available in a specific Overlay is

correctly received.

Pass / Fail

18

Get specific hub already

registered in specific

Overlay

Get information from a specific

deployed and configured hub in a

specific Overlay.

Relational information from a specific

hub available in specific Overlay is

correctly received.

Pass / Fail

19

Update already available

hub from a specific Overlay

environment.

Update information (no

kubeconfig) about an existed and

deployed hub from and available

Overlay

Hub’s information with the new changes

is received.
Pass / Fail

20 Delete existing hub
Delete an existing hub linked to and

available Overlay.

Output doesn’t show any issue related

with the deletion operation or problems

derivative with the communication with

the hub.

Pass / Fail

21 Register new edge device

Configuring the edge device

environment passing specific

information and kubeconfig

Relational information from new edge

device is correctly received or display

some issues relation with bad

configuration or bad kubeconfig

Pass / Fail

22
Get all edge devices

already registered

Get information from all edge

devices deployed and configured

correctly.

Relational information from edge

devices available in a specific Overlay is

correctly received.

Pass / Fail

23

Get specific edge device

already registered in

specific Overlay

Get information from a specific

deployed and configured edge

device in a specific Overlay.

Relational information from a specific

edge device available in specific Overlay

is correctly received.

Pass / Fail

24

Update already available

edge from a specific

Overlay environment.

Update information (no

kubeconfig) about an existed and

deployed edge device from and

available Overlay

Edge device’s information with the new

changes is received.
Pass / Fail

25 Delete existing edge device
Delete an existing edge device

linked to and available Overlay.

Output doesn’t show any issue related

with the deletion operation or problems

derived with the communication with

the edge device.

Pass / Fail

26

Create a connection

between a hub and an edge

device

Set up a new connection between

existing and deployed hub and

device edge. Create a new virtual

IP and corresponding tunnels

between them.

Relational information from connection

is correctly received.
Pass / Fail

27

Get all connections between

all edge devices in a

specific hub from a specific

Overlay environment.

Get information derived by hub’s

connections with the edge devices

with the virtual IPs correctly

assigned and the status of

connection.

Relational information from connections

is correctly received.
Pass / Fail

28

Delete connection between

an existing and deployed

hub and device edge.

Delete the connection already done

deleting all the configurations

realised previously in the edge

device like the virtual IP assigned,

etc.

Output doesn’t show any issue related

the operation or problems derived with

the communication with the hub or edge

device.

Pass / Fail

29

Get device connections in

an environment currently

working.

Display the edge devices with their

virtual IPs assigned in an

environment by a specific Overlay.

Relational information from connection

between edge devices is correctly

received.

Pass / Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 44 of 122

Table 17: SD-WAN enabler's functional tests 1-15 results

Table 18. SD-WAN enabler's functional tests 16-20 results

Enabler SD-WAN Enabler (test 1-15)

Description

The following tests can be run to create a specific environment for interconnecting clusters using

SD-WAN technology. For these tests, it is not necessary to have a real environment, but can be

considered the preconditions for creating successful connections.

Approach

Semi-automatic. In fact, this test can be run fully automatically using, for example, a Gitlab

pipeline. However, there is little use in automatically conducting this test if there is no clear

relation between the environment and a specific future scenario.

Test tool/s
Any tool capable of executing HTTP requests. Creating a script with environment variables is a

valid option.

Pre-test conditions
For this test it is not mandatory to have the wan-acceleration enabler deployed. In the case of simply

testing, having an environment with Kubernetes and helm software is sufficient.

Additional

information
It is recommended to have the wan acceleration enabler previously installed in the environment.

Test sequence Step 1-a Create (POST) an overlay following the schema.

Step 1-b Get the list of full created overlays.

Step 1-c Get a specific overlay previously created.

Step 1-d Update description or some relevant information of overlay.

Step 1-e Delete the overlay previously created.

Step 1-x
For each test 1-(a-e) check the success of the operation by observing the response

code and the displayed output.

Step 2 Recreate an overlay like ‘Step 1-a’

Step 2-a Create (POST) a proposal following the schema.

Step 2-b Get the list of full created proposals.

Step 2-c Get a specific proposal previously created.

Step 2-d Update description or some relevant information of overlay.

Step 2-e Delete the proposal previously created.

Step 2-x
For each test 2-(a-e) check the success of the operation by observing the response

code and the displayed output.

Step 3 Recreate a proposal like ‘Step 2-a’.

Step 3-a Create (POST) an IPRange following the schema.

Step 3-b Get the list of full created IPRanges.

Step 3-c Get a specific IPRange previously created.

Step 3-d Update description or some relevant information of IPRange.

Step 3-e Delete the IPRange previously created

Step 3-f Repeat ‘Step 3-a’

Step 3-x
For each test 3-(a-f) check the success of the operation by observing the response

code and the displayed output.

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation. -> Pass

Additional logs/

Report (in case of

manual)

In error case, the logs are showed in display output line.

Enabler SD-WAN Enabler (test 16-20)

Description
For realise this test it is needed a cluster acting as a hub. Central nodus is created to manage and

redirect SD-WAN communications.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 45 of 122

Table 19. SD-WAN enabler's functional tests 21-25 results

Approach
Fully manual. All pertinent cluster information (IPs, Kubeconfig, etc.) must be known in advance

for this test.

Test tool/s Any tool capable of executing HTTP requests.

Pre-test conditions

 Cluster with Calico CNI installed.

 Kubernetes and helm software deployed.

 WAN-Acceleration Enabler deployed and configured with its respective networks.

 Test 1-15 passed and Overlay, proposal and IPRange successfully created.

Additional

information
It is highly recommended to have read all the relevant documentation to execute this test.

Test sequence Step 1 Get cluster Kubeconfig and encrypt in base64.

Step 2 Get public IPs of the CNF (generated by WAN-Acceleration Enabler).

Step 3 Test connection between SD-WAN environment and the future HUB Cluster.

Step 4-a Create (POST) a HUB registration following the schema.

Step 4-b Get the list of full created and configured HUBs.

Step 4-c Get a specific information about registered HUB.

Step 4-d Update description or some secondary data of registered HUB

Step 4-e Delete HUB configuration previously created.

Step 4-x
For each test 4-(a-e) check the success of the operation by observing the response

code and the displayed output.

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation. -> Passed

Additional logs/

Report (in case of

manual)

In error case, the logs are showed in display output line.

Enabler SD-WAN Enabler (test 21-25)

Description
For realise this test it is needed a cluster acting as an edge node. Device edge node is created to be

managed and having SD-WAN communications.

Approach
Fully manual. All pertinent cluster information (IPs, Kubeconfig, etc.) must be known in advance

for this test.

Test tool/s Any tool capable of executing HTTP requests.

Pre-test conditions

 Cluster with Calico CNI installed.

 Kubernetes and helm software deployed.

 WAN-Acceleration Enabler deployed and configured with its respective networks.

 Test 1-15 passed and Overlay, proposal and IPRange successfully created.

Additional

information
It is highly recommended to have read all the relevant documentation to execute this test.

Test sequence Step 1 Get cluster kubeconfig and encrypt in base64.

Step 2 Get public IPs of the CNF (generated by WAN-Acceleration Enabler).

Step 3 Test connection between SD-WAN environment and the future Edge Cluster.

Step 4-a Create (POST) a Device registration following the schema.

Step 4-b Get the list of full created and configured Devices.

Step 4-c Get a specific information about registered Device.

Step 4-d Update description or some secondary data of registered Device

Step 4-e Delete Device configuration previously created.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 46 of 122

Table 20. SD-WAN enabler's functional tests 26-29 results

WAN Acceleration enabler

All information on acronyms and objects description is available on the official documentation page for WAN

Acceleration enabler’s Readthedocs.

Table 21: WAN Acceleration enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Create

firewall zone

Configure new firewall zone in an

existing edge device

Relational information from new firewall zone

created is correctly received.
Pass/Fail

Step 4-x
For each test 4-(a-e) check the success of the operation by observing the response

code and the displayed output.

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation. -> Passed

Additional logs/

Report (in case of

manual)

In error case, the logs are showed in display output line.

Enabler SD-WAN Enabler (test 26-29)

Description

Once the information about the overlays, proposals, IPRange and the clusters that will act as HUB

and those that will act as Edge nodes or Devices have been configured. The connection that will

create the SD-WAN communication environment will be made.

Approach
Fully manual. In order to conduct this test, the devices and hubs to communicate with one another

must be defined.

Test tool/s Any tool capable of executing HTTP requests.

Pre-test conditions

 Cluster with Calico CNI installed.

 Kubernetes and helm software deployed.

 WAN-Acceleration Enabler deployed and configured with its respective networks.

 Test 1-15 passed and Overlay, proposal and IPRange successfully created.

 Test 16-20 passed and successfully created HUB configuration.

 Test 21-25 passed and successfully created Devices configurations.

Additional

information
It is highly recommended to have read all the relevant documentation to execute this test.

Test sequence
Step 1

Once the HUB has been determined, the devices requiring the interconnection

between them will be assigned. The hub will act as a central node.

Step 2 Create (POST) a HUB-Device registration following the schema.

Step 3
Test connection between HUB and Device/edge by new OVN network. This test

can be done by ICMP requests. This step is repeated by all the devices.

Step 4 Get the list of full connections in a HUB cluster.

Step 5
Test connection between DEVICES using the new OVN network. This test can be

done by ICMP request.

Step 6

Check that the 'ipsecsite' manifests in the HUB cluster and the 'ipsechost' manifests

in the DEVICE clusters have been successfully created. It is also possible to check

this within the CNF in the IPSEC section.

Step 7
Delete connections between HUB and DEVICEs. All the configurations should be

eliminated.

Step X
For each test 1-7 check the success of the operation by observing the response code

and the displayed output.

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation. -> Passed

Additional logs/

Report (in case of

manual)

In error case, the logs are showed in display output line.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 47 of 122

Nº Test Description Evaluation criteria Results

2 Get firewalls

zones

Display all firewall zones applied

in an existing edge device

Relational information from firewall zones

applied is correctly received.

Pass /

Fail

3 Get specific

firewall zone

Display a specific firewall zone in

an existing edge device

Relational information from a firewall zone

applied is correctly received.

Pass /

Fail

4
Delete

firewall zone

Delete existing firewall zone in an

existing edge device

Output doesn’t show any issue related the

operation or problems derived with the

communication with the edge device chosen.

Pass /

Fail

5 Create

firewall

SNAT

Configure new firewall SNAT in

an existing edge device

Relational information from new firewall SNAT

created is correctly received.

Pass /

Fail

6 Get firewalls

SNATs

Display all firewall SNAT applied

in an existing edge device

Relational information from firewall SNATs

applied is correctly received.

Pass /

Fail

7 Get specific

firewall

SNAT

Display a specific firewall SNAT

applied in an existing edge device

Relational information from a specific firewall

SNAT applied is correctly received

Pass /

Fail

8 Delete

firewall

SNAT

Delete existing firewall SNAT in

an existing edge device

Output doesn’t show any issue related the

operation or problems derived with the

communication with the edge device chosen.

Pass /

Fail

9 Create

firewall

DNAT

Configure new firewall DNAT in

an existing edge device

Relational information from new firewall

DNAT created is correctly received.

Pass /

Fail

10 Get firewalls

DNATs

Display all firewall DNAT applied

in an existing edge device

Relational information from firewall DNATs

applied is correctly received.

Pass /

Fail

11 Get specific

firewall

DNAT

Display a specific firewall DNAT

applied in an existing edge device

Relational information from a specific firewall

DNAT

Pass /

Fail

12 Delete

firewall

DNAT

Delete existing firewall DNAT in

an existing edge device

Output doesn’t show any issue related the

operation or problems derived with the

communication with the edge device chosen.

Pass /

Fail

13 Create

firewall

forwarding

Configure new firewall forwarding

in an existing edge device

Relational information from new firewall

forwarding created is correctly received.

Pass /

Fail

14 Get firewalls

forwarding

Display all firewall forwarding

applied in an existing edge device

Relational information from firewall forwarding

applied is correctly received.

Pass /

Fail

15 Get specific

firewall

forwarding

Display a specific firewall

forwarding applied in an existing

edge device

Relational information from a specific firewall

forwarding is correctly received.

Pass /

Fail

16 Delete

firewall

forwarding

Delete existing firewall forwarding

in an existing edge device

Output doesn’t show any issue related the

operation or problems derived with the

communication with the edge device chosen.

Pass /

Fail

17 Create

firewall rule

Configure new firewall rule in an

existing edge device

Relational information from new firewall rule

created is correctly received.

Pass /

Fail

18 Get firewall

rules

Display all firewall rule applied in

an existing edge device

Relational information from firewall rules

applied is correctly received.

Pass /

Fail

19 Get specific

firewall rule

Display a specific firewall rule

applied in an existing edge device

Relational information from a specific firewall

rule is correctly received.

Pass /

Fail

20
Delete

firewall rule

Delete existing firewall rule in an

existing edge device

Output doesn’t show any issue related the

operation or problems derived with the

communication with the edge device chosen.

Pass /

Fail

21 Create

mwan3

policy

Configure new mwan3 policy in an

existing edge device

Relational information from new mwan3 policy

created is correctly received.

Pass /

Fail

22 Get mwan3

policies

Display all mwan3 policy applied

in an existing edge device

Relational information from mwan3 policies

applied is correctly received.

Pass /

Fail

23 Get specific

mwan3

policy

Display existing mwan3 policy

applied in an existing edge device

Relational information from a specific mwan3

policy applied is correctly received

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 48 of 122

Nº Test Description Evaluation criteria Results

24 Delete

mwan3

policy

Delete existing mwan3 policy in an

existing edge device

Output doesn’t show any issue related the

operation or problems derived with the

communication with the edge device chosen.

Pass /

Fail

25 Create

mwan3 rule

Configure new mwan3 rule in an

existing edge device

Relational information from new mwan3 rule

created is correctly received.

Pass /

Fail

26 Get mwan3

rules

Display all mwan3 rule applied in

an existing edge device

Relational information from mwan3 rules

applied is correctly received.

Pass /

Fail

27 Get specific

mwan3 rule

Display existing mwan3 rule in an

existing edge device

Relational information from a specific mwan3

rule is correctly received.

Pass /

Fail

28
Delete

mwan3 rule

Delete existing mwan3 rules in an

existing edge device

Output doesn’t show any issue related the

operation or problems derived with the

communication with the edge device chosen.

Pass /

Fail

39
Get version Display enabler version The correct version string is correctly display

Pass /

Fail

30
Get health

Display health status of the

environment

The current enabler environment is healthy or

not.

Pass /

Fail

Table 22. WAN Acceleration enabler's functional tests 1-20 results

Enabler WAN Acceleration Enabler (test 1-20)

Description

The following test can be run to create/configure a specific environment to implement firewall rules

applied in the CNF for each cluster. This test checks the connection and behaviour between the

cluster components. In addition, it allows outputs and inputs connections of other components to

other clusters via SD-WAN communications.

Approach

Fully manual, for this test, we need to create some manifests via API REST and test the success of

the operation in creation and implementation with specific components not integrated in the own

enabler (like nginx or httpbin component/pod).

Test tool/s Any tool capable of executing HTTP requests.

Pre-test conditions

 Cluster with Calico CNI installed.

 Kubernetes and helm software deployed.

 WAN-Acceleration Enabler deployed and configured with its respective networks and

prerequisites.

 Some test components capable to interact with the CNF via OVN networks.

Additional

information
It is highly recommended to have read all the relevant documentation to execute this test.

Test sequence Step 1 Get information about networks already created

Step 2-a Create (POST) firewall zone following the schema.

Step 2-b Get the specific firewall zone previously created.

Step 2-c Delete firewall zone

Step 2-d Recreate firewall zone like ‘Step 2-1’

Step 2-x
For each test 2-(a-d) check the success of the operation by observing the response

code, displayed output and firewall zone CRDS successfully created and deleted.

Step 3-a
Create (POST) firewall SNAT following the schema with the specific firewall zone

and virtual IP assigned for CNF.

Step 3-b Get the specific firewall SNAT previously created.

Step 3-c Delete firewall SNAT

Step 3-x
For each test 3-(a-c) check the success of the operation by observing the response

code, displayed output and firewall SNAT CRDS successfully created and deleted.

Step 4
Get information about components already created and configured with OVN

networks.

Step 5-a
Create (POST) firewall DNAT following the schema with the specific firewall

zone, virtual IP assigned for CNF and OVN network assigned to the specific

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 49 of 122

Enabler WAN Acceleration Enabler (test 1-20)

component.

Step 5-b Get the specific firewall DNAT previously created.

Step 5-c Delete firewall DNAT

Step 5-x
For each test 5-(a-c) check the success of the operation by observing the response

code, displayed output and firewall DNAT CRDS successfully created and deleted.

Step 6-a

With the information obtained in ‘Step 4’, create (POST) firewall forwarding

following the schema with the specific firewall zone, virtual IP assigned for CNF

and port desired.

Step 6-b Get the specific firewall forwarding previously created.

Step 6-c Delete firewall forwarding

Step 6-x
For each test 6-(a-c) check success of the operation by observing the response code,

displayed output and firewall forwarding CRDS successfully created and deleted.

Step 7-a
With the information obtained in ‘Step 4’, create (POST) firewall rule following the

schema with the specific firewall zone.

Step 7-b Get the specific firewall rule previously created.

Step 7-c Delete firewall rule

Step 7-x
For each test 7-(a-c) check success of the operation by observing the response code,

displayed output and firewall rules CRDS successfully created and deleted.

Step 8 Delete firewall zone.

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation -> Passed

Additional logs/

Report (in case of

manual)

In error case, the logs are showed in display output line.

Table 23. WAN Acceleration enabler's functional tests 21-28 results

Enabler WAN Acceleration Enabler (test 21-28)

Description

The following test can be run to create/configure a specific environment to implement mwan3

policy and rules applied in the CNF for each cluster. This test checks the connection and behaviour

between the cluster components. In addition, it allows outputs and inputs connections of other

components to other clusters via SD-WAN communications.

Approach
Fully manual, for this test, we need to create some manifests via API REST and test the success of

the operation in creation and implementation.

Test tool/s Any tool capable of executing HTTP requests.

Pre-test conditions

 Cluster with Calico CNI installed.

 Kubernetes and helm software deployed.

 WAN-Acceleration Enabler deployed and configured with its respective networks and

prerequisites.

 Some test components capable to interact with the CNF via OVN networks.

Additional

information
It is highly recommended to have read all the relevant documentation to execute this test.

Test sequence Step 1 Get information about networks already created

Step 2-a Create (POST) mwan3 policy following the schema.

Step 2-b Get the specific mwan3 policy previously created.

Step 2-c Delete mwan3 policy

Step 2-d Recreate mwan3 policy like ‘Step 2-a’

Step 2-x
For each test 2-(a-d) check the success of the operation by observing the response

code, displayed output and mwan3 policy CRDS successfully created and deleted.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 50 of 122

Enabler WAN Acceleration Enabler (test 21-28)

Step 3-a
Create (POST) mwan3 rule following the schema with the specific mwan3 policy

for each network created.

Step 3-b Get the specific mwan3 rule previously created.

Step 3-c Delete mwan3 rule.

Step 3-x
For each test 3-(a-c) check the success of the operation by observing the response

code, displayed output and mwan3 rule CRDS successfully created and deleted.

Step 4 Delete mwan3 policy.

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation -> Passed

Additional logs/

Report (in case of

manual)

In error case, the logs are showed in display output line.

Table 24. WAN Acceleration enabler's functional tests 28-30 results

Enabler WAN Acceleration Enabler (test 28-30)

Description Get version and health (common endpoint) of WAN Acceleration Enabler.

Approach
Fully automatic. In fact, these two endpoints are the only ones you can test fully automatic in this

enabler.

Test tool/s Any tool capable of executing HTTP requests. GitLab pipeline functional testing is also possible.

Pre-test conditions

 Cluster with Calico CNI installed.

 Kubernetes and helm software deployed.

 WAN-Acceleration Enabler deployed and configured with its respective networks and

prerequisites.

Additional

information
It is highly recommended to have read all the relevant documentation to execute this test.

Test sequence Step 1 Get version

Step 2 Get health

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation -> Passed

Additional logs/

Report (in case of

manual)

In error case, the logs are showed in display output line.

VPN Enabler

The tests related to the management of VPN clients (generation of keys, provisioning, enabling, disabling and

deleting them) are those stated for the VPN enabler, and have to be passed also under the scope of this enabler

as the underlying technology is different. Also, the following tests have to be passed:

Table 25: VPN enabler's functional tests

Nº Test Description Evaluation criteria Results

1

Network

Interface

info

The enabler returns the information

about the network interface of the

VPN server

The information about the network interface of

the VPN server successfully obtained and is not

empty.

Pass /

Fail

2
Generate

keys

The enabler generates the needed

keys (public, private and pre-shared)

to create a new VPN client.

The generated keys are successfully generated

and are obtained in JSON format.

Pass /

Fail

3 Create client
The enabler creates a new VPN

client.
The client is listed in the information about the

network interface of the VPN server and a VPN

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 51 of 122

Nº Test Description Evaluation criteria Results

connection can be stablished using the

generated client (test #7).

4 Delete client The enabler deletes a VPN client.

The client is not listed in the information about

the network interface of the VPN server and a

VPN connection cannot be stablished using the

generated client (test #7).

Pass /

Fail

5
Enable

client

A VPN client is enabled (that was

previously disabled).

The client is listed in the information about the

network interface of the VPN server and a VPN

connection can be stablished using the enabled

client (test #7).

Pass /

Fail

6
Disable

client

A VPN client is disabled (not

eliminated).

The client is not listed in the information about

the network interface of the VPN server and a

VPN connection cannot be stablished using the

disabled client (test #7).

Pass /

Fail

7
Connect to

VPN

A user connects to the VPN using a

VPN client program configured with

a previously created client.

Make a ping to the IP address of the VPN server

network interface and, depending on the VPN

network configuration, to other hosts and

services that are only accessible via the VPN.

Furthermore, the VPN client program provides

information about the VPN connection status.

Pass /

Fail

Table 26: VPN enabler's functional tests 1 and 2 results

Enabler VPN Enabler (tests 1-2)

Description Functional tests 1 and 2 for the VPN enabler that only involve the API component of the enabler.

Approach Semi-automatic

Test tool/s REST API client (e.g., Postman or cURL)

Pre-test conditions The enabler itself must be deployed.

Additional

information
N/A

Test sequence Step 1 Send an HTTP GET request to the /info, /info/conf and /keys endpoints

Step 2
Check if an HTTP 200 code, the expected information about the network interface of

the VPN server and the generated keys are returned respectively.

Test verdict
The test only passes if it is returned an HTTP 200 code and the expected information about the

network interface of the VPN. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Table 27: VPN enabler's functional test 3 result

Enabler VPN Enabler (test 3)

Description
Functional test 3 for the VPN enabler that involves the VPN Server and API components of the

enabler.

Approach
Fully manual because the connection to the VPN must be performed manually from a machine located

in another network where the VPN enabler is deployed.

Test tool/s
 REST API client (e.g., Postman or cURL)

 WireGuard VPN client (TunSafe for Windows and WireGuard CLI for Linux)

Pre-test conditions
The enabler itself must be deployed and the VPN client keys must be previously generated (public,

private and preshared). These keys can be obtained during the test #1.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 52 of 122

Enabler VPN Enabler (test 3)

Additional

information

For testing the VPN client in a machine using Windows, use TunSafe instead of the official

WireGuard client because the latter doesn’t work on specific VPN network configurations.

Test sequence
Step 1

Send an HTTP POST request to the /client endpoint with a body including the

previously generated public and preshared keys.

Step 2
Check if the information about the created client is returned along with an HTTP 200

code.

Step 3
Perform the test #1 (without the keys generation part) to check if the client is listed

in the network interface information.

Step 4
Perform the test #9 to check if the connection to the VPN sever is possible using the

new client’s credentials.

Test verdict
The test only passes if both the new client is listed in the network interface information and the

connection to the VPN server can be performed using the new client’s credentials. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Table 28: VPN enabler’s functional test 4 results

Enabler VPN Enabler (test 4)

Description
Functional test 4 for the VPN enabler that involves the VPN Server and API components of the

enabler.

Approach
Fully manual because the connection to the VPN must be performed manually from a machine

located in another network where the VPN enabler is deployed.

Test tool/s
 REST API client (e.g., Postman or cURL)

 WireGuard VPN client (TunSafe for Windows and WireGuard CLI for Linux)

Pre-test conditions Enabler deployed and a client created (test #3).

Additional

information

For testing the VPN client in a machine using Windows, use TunSafe instead of the official

WireGuard client because the latter doesn’t work on specific VPN network configurations.

Test sequence
Step 1

Send an HTTP DELETE request to the /client endpoint with a body including the

public key of a previously created client.

Step 2 Check if an HTTP 200 code is returned.

Step 3
Perform the test #1 (without the keys generation part) to check if the client is listed

in the network interface information.

Step 4
Perform the test #9 to check if the connection to the VPN server is possible using

the credentials of the deleted client.

Test verdict

The test only passes if both the deleted client is not listed in the network interface information and

the connection to the VPN server cannot be performed using the deleted client’s credentials. ->

Passed

Additional logs/

Report (in case of

manual)

N/A

Table 29: VPN enabler’s functional test 5 results

Enabler VPN Enabler (test 5)

Description
Functional test 5 for the VPN enabler that involves the VPN Server and API components of the

enabler.

Approach
Fully manual because the connection to the VPN must be performed manually from a machine

located in another network where the VPN enabler is deployed.

Test tool/s
 REST API client (e.g., Postman or cURL)

 WireGuard VPN client (TunSafe for Windows and WireGuard CLI for Linux)

Pre-test conditions Enabler deploye and a client created and disabled.

Additional

information

For testing the VPN client in a machine using Windows, use TunSafe instead of the official

WireGuard client because the latter doesn’t work on specific VPN network configurations.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 53 of 122

Enabler VPN Enabler (test 5)

Test sequence
Step 1

Send an HTTP PUT request to the /client/enabled endpoint with a body including

the public key of a previously disabled client.

Step 2 Check if an HTTP 204 code is returned.

Step 3
Perform the test #1 (without the keys generation part) to check if the client is listed

in the network interface information.

Step 4
Perform the test #9 to check if the connection to the VPN server is possible using

the credentials of the enabled client.

Test verdict
The test only passes if both the enabled client is listed in the network interface information and the

connection to the VPN server can be performed using the enabled client’s credentials. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Table 30: VPN enabler’s functional test 6 results

Enabler VPN Enabler (test 6)

Description
Functional test 6 for the VPN enabler that involve the VPN Server and API components of the

enabler.

Approach
Fully manual because the connection to the VPN must be performed manually from a machine

located in another network where the VPN enabler is deployed.

Test tool/s
 REST API client (e.g., Postman or cURL)

 WireGuard VPN client (TunSafe for Windows and WireGuard CLI for Linux)

Pre-test conditions Enabler deployed and a client created and enabled.

Additional

information

For testing the VPN client in a machine using Windows, use TunSafe instead of the official

WireGuard client because the latter doesn’t work on specific VPN network configurations.

Test sequence
Step 1

Send an HTTP PUT request to the /client/disable endpoint with a body including

the public key of a previously created and enabled client.

Step 2 Check if an HTTP 204 code is returned.

Step 3
Perform the test #1 (without the keys generation part) to check if the client is listed

in the network interface information.

Step 4
Perform the test #9 to check if the connection to the VPN server is possible using

the credentials of the disabled client.

Test verdict

The test only passes if both the disabled client is not listed in the network interface information and

the connection to the VPN server cannot be performed using the disabled client’s credentials. ->

Passed

Additional logs/

Report (in case of

manual)

N/A

Table 31: VPN enabler’s functional test 7 results

Enabler VPN Enabler (test 7)

Description Functional test 7 for the VPN enabler that only involve the VPN Server component of the enabler.

Approach
Fully manual because the connection to the VPN must be performed manually from a machine

located in another network where the VPN enabler is deployed.

Test tool/s
 WireGuard VPN client (WireGuard CLI, TunSafe, …)

 Networking tools: ping and cURL

Pre-test conditions Enabler deployed, a VPN client created and its related information.

Additional

information

For testing the VPN client in a machine using Windows, use TunSafe instead of the official

WireGuard client because the latter doesn’t work on specific VPN network configurations.

Test sequence
Step 1

Create a WireGuard configuration file (file with a .conf extension) using the VPN

client’s previously obtained configuration

Step 2 Use the WireGuard VPN client program to connect to the VPN

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 54 of 122

Enabler VPN Enabler (test 7)

Step 3

Perform a ping to the IP address of the VPN server network interface and, depending

on the VPN network configuration, to other hosts and then try to access to services

that are only accessible via the VPN using cURL.

Test verdict The test only passes if the networking tests performed in step 3 are successful. -> Passed

Additional logs/

Report (in case of

manual)

N/A

 Data management Plane

Semantic Repository enabler

Table 32: Semantic Repository enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Add

namespace
An empty namespace is created.

A namespace is created. This request should

be rejected if the requested namespace already

exists.

Pass /

Fail

2
Get

namespaces

Retrieve the list of existing

namespaces.

An API call is performed, returning a JSON

with all existing namespaces.

Pass /

Fail

3
Add model

(default)

A model is added with default

options, to a namespace.

A model is added to an empty existing

namespace, is assigned the default metadata,

and the ‘latest’ version tag is pointed at it.

Pass /

Fail

4

Add model

(with

metadata)

A model is added to a namespace.

A model is added to a namespace, under the

declared version tag, and with attached

metadata. Overwriting existing versioned

model should be possible only, if the ‘force

overwrite’ parameter is set.

Pass /

Fail

5
Get models in

a namespace

Retrieve all models with versions

under a given namespace

An API call is performed, returning a JSON

with the list of all models and their metadata,

under the given namespace.

Pass /

Fail

6 Get model A model is retrieved

An API call is performed, returning a model

file, provided, that a model with given

namespace name, name and version exists.

Using the ‘latest’ version tag should return the

same model, as explicitly using the version tag

pointed to by the ’latest’ tag.

Pass /

Fail

7 Remove model A model is removed

A model is removed by namespace, name, and

version. This should be possible only if the

‘allow removal’ parameter is set. The call

should be rejected, if the model with given IDs

does not exist, or if the version tag is ‘latest’

(version tags must be explicit when removing

models).

Pass /

Fail

8
Remove

namespace
A namespace is removed

Remove a namespace by name. Removing an

existing namespace should be possible only, if

the ‘allow removal’ parameter is set, and the

namespace does not contain any models.

Otherwise, the request should be rejected.

Pass /

Fail

9
Upload

documentation

Model documentation is uploaded

for an existing model

The uploaded documentation source files

should be automatically transformed by the

Semantic Repository enabler into human-

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 55 of 122

Nº Test Description Evaluation criteria Results

readable HTML pages. The pages should be

well-formatted and properly linked.

Table 33: Semantic Repository enabler's functional tests results

Enabler Semantic Repository enabler (tests 1–9)

Description Functional tests for the Semantic Repository enabler.

Approach Fully automatic (integrated in a pipeline)

Test tool/s

 ScalaTest library

 Akka HTTP TestKit

 Java Virtual Machine

 GitLab CI

Pre-test conditions Deployment of all components of the enabler in a test environment.

Additional

information

The full functional test suite consists of hundreds of test cases and covers all functionalities of the

enabler. Only a simplified selection of the tests is presented in this deliverable. The full list of test

cases can be examined in the enabler’s source code and CI logs.

Test sequence
Step 1

The components of the enabler are set up by GitLab CI in a containerised

environment.

Step 2
In each test (managed by ScalaTest), Akka HTTP TestKit simulates an HTTP request

to the enabler.

Step 3 Semantic Repository enabler performs the requested action.

Step 4 ScalaTest checks if the enabler behaved as expected and reports the result.

Test verdict Pass

Additional logs

Example logs from the pipeline (only the summary):

[info] Run completed in 26 seconds, 242 milliseconds.

[info] Total number of tests run: 765

[info] Suites: completed 14, aborted 0

[info] Tests: succeeded 765, failed 0, canceled 0, ignored 0,

pending 0

[info] All tests passed.

[success] Total time: 42 s, completed Mar 10, 2023, 3:26:58 PM

Semantic Translation enabler

Table 34: Semantic Translation enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Add

alignment

An alignment is loaded into internal

persistent storage.

User uploads an alignment file. The request

should be rejected, if the alignment file contents

are not correct (wrong format, not enough

metadata, no alignment cells), or if the

alignment with given metadata already exists in

the internal persistent storage.

Pass /

Fail

2
Get

alignment
An alignment is retrieved.

An API call is performed, returning an

alignment file, provided that an alignment with

given ID was previously uploaded.

Pass /

Fail

3
Delete

alignment

An alignment is removed from

internal persistent storage.

Alignment is removed by ID, provided that it

exists, and there are no active translation

channels, that use the alignment.

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 56 of 122

Nº Test Description Evaluation criteria Results

4

Add

translation

channel

A translation channel is created.

A translation channel with the given pair of

alignments (input and output alignment) is

created, and input and output topics are

exposed. Clients should be able to write to the

input topic and receive data at the output topic.

Pass /

Fail

5

Remove

translation

channel

A translation channel is destroyed.

A translation channel stops accepting new

messages and shuts down after a configured

timeout to allow flushing of messages that are

being process at the time, when the shutdown

request comes. After or before the timeout, the

channel should no longer exist.

Pass /

Fail

6
Translate

batch data
One-time translation is performed.

An API call is made to translate attached

payload using a chain of alignments specified

by ID, provided, that the alignments were

uploaded previously. The returned payload

should be equivalent to streaming translation

through channels that use the same alignments.

Pass /

Fail

7

Send data

through

translation

channel

Data is translated in a stream.

Send a message to an input topic of a translation

channel. The message should be processed

(semantically translated) and pushed to the

output topic of the translation channel.

Pass /

Fail

Table 35: Semantic Translation enabler's functional tests results

Enabler Semantic Translation enabler (tests 1-7)

Description Functional tests for the Semantic Translation enabler

Approach Fully automatic (integrated in a pipeline)

Test tool/s

 ScalaTest library

 Akka TestKit

 Java Virtual Machine

Pre-test conditions Enabler deployed in a test environment.

Additional

information

The functional test suite for the Semantic Translation Enabler consists of nearly 300 test cases,

covering alignment compilation, validation, and application. Additionally, message translation tests

along a selected set of predefined alignments are also performed.

Test sequence Step 1 Each test is managed by the ScalaTest testing environment

Step 2
Semantic Translation enabler performs the requested alignment-handling- or

message-translation-related operation.

Step 3 ScalaTest verifies the outcome of the operation

Test verdict Pass

Additional logs/

Report (in case of

manual)

[info] Run completed in 8 seconds, 581 milliseconds.

[info] Total number of tests run: 276

[info] Suites: completed 4, aborted 0

[info] Tests: succeeded 276, failed 0, canceled 0, ignored 0,

pending 0

[info] All tests passed.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 57 of 122

Semantic Annotation Enabler

Table 36: Semantic Annotation enabler's functional tests

Nº Test Description Evaluation criteria Results

1

Convert

YARRML to

RML

Annotation formats are converted.

Using the web GUI user converts YARRML

into RML, provided that the YARRML is

syntactically correct.

Pass /

Fail

2 Test RML Test data is annotated.

Using the web GUI user declares some data and

annotation file contents in RML. The data is

annotated using provided RML and displayed

back to the user.

Pass /

Fail

3
One-time

annotation
Data is annotated using RML.

A one-time API call is made with payload, that

contains both data to be annotated, and

annotation rules in RML. Annotation result is

returned to the user.

Pass /

Fail

4

Add

streaming

annotation

file

An annotation file is loaded into

internal persistent storage.

User uploads an annotation file with given

metadata and received auto-generated ID.

Pass /

Fail

5

Get

streaming

annotation

file

An annotation file is retrieved.

An API call is performed, returning an

annotation file, provided that an annotation

with given ID was previously uploaded.

Pass /

Fail

6

Delete

streaming

annotation

file

An annotation file is removed from

internal persistent storage.

Annotation file is removed by ID, provided that

it exists, and there are no active annotation

channels, that use the annotation file.

Pass /

Fail

7

Add

streaming

annotation

channel

An annotation channel is created.

An annotation channel using the given

annotation file is created, and input and output

topics are exposed. Clients should be able to

write to the input topic and receive data at the

output topic.

Pass /

Fail

8

Remove

annotation

channel

An annotation channel is destroyed.

An annotation channel stops accepting new

messages and shuts down after a configured

timeout to allow flushing of messages that are

being process at the time, when the shutdown

request comes. After or before the timeout, the

channel should no longer exist.

Pass /

Fail

9

Send data

through

annotation

channel

Data is annotated in a stream.

Send a message to an input topic of an

annotation channel. The message should be

processed (semantically annotated) and pushed

to the output topic of the annotation channel.

Pass /

Fail

Table 37: Semantic Annotation enabler's functional tests 1-2 results

Enabler Sematic Annotation enabler (tests 1-2)

Description Web GUI operations – format conversion and test data annotation

Approach

Fully manual – web GUI tests were not automated, because of limited functionality and relatively

large effort and number of additional test tools required to cover such small amount of features to be

tested.

Test tool/s Web browser – tested on Chromium and Firefox

Pre-test conditions Enabler deployed with GUI

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 58 of 122

Enabler Sematic Annotation enabler (tests 1-2)

Additional

information
The GUI comes pre-loaded with example YARRML, RML, and data to be annotated.

Test sequence Step 1 Load YARRML or use the pre-loaded files

Step 2 Click on “to RML”

Step 3 Click on “Annotate”

Test verdict Pass

Additional logs/

Report (in case of

manual)

RML conversion done

Annotation done

Table 38: Semantic Annotation enabler's functional tests 3-9 results

Enabler Sematic Annotation enabler (tests 3-9)

Description Web GUI operations – format conversion and test data annotation

Approach Functional tests of the streaming component and annotation backend.

Test tool/s Fully automatic

Pre-test conditions

• ScalaTest library

• Akka HTTP TestKit

• Java Virtual Machine

Additional

information

Enabler deployed with an MQTT broker and Kafka broker (both can be auto-deployed with the

enabler)

Test sequence
Step 1

Tests are granular and automated with the ScalaTest library. Entire test suite can be

run at once.

Test verdict Pass

Additional logs/

Report (in case of

manual)

[info] Run completed in 59 seconds, 101 milliseconds.

[info] Total number of tests run: 50

[info] Suites: completed 3, aborted 0

[info] Tests: succeeded 50, failed 0, cancelled 0, ignored 0,

pending 0

[info] All tests passed.

[success] Total time: 93 s, completed Nov 10, 2022, 1:00:12 PM

Edge Data Broker enabler

Table 39: Edge Data Broker enabler's functional tests

Nº Test Description Evaluation criteria Results

1

Send and

receive Raw

Data

Subscribe to a test topic (two clients, one publisher

and one consumer). The publisher sends raw data to

the topic and the consumer receives the data.

The consumer receives the

data.

Pass /

Fail

2

Send data

and filter

them (not

passing the

filter)

A publisher subscribes to a test topic and a consumer

subscribes to the filtered test topic. The publisher

sends raw data that does not pass the filter threshold

to the test topic, and the consumer does not receive

the data.

The consumer does not

receive any data.

Pass /

Fail

3

Send data

and filter

them (passing

the filter

A publisher subscribes to a test topic and a consumer

subscribes to the filtered test topic. The publisher

sends raw data, that pass the threshold of the filter, to

the test topic and the consumer receives the data.

The consumer receives the

data.

Pass /

Fail

4 Create an

alert with a

A rule is created on the rule engine that specifies two

test topics (topic1 and topic2). One publisher client

subscribes to topic1 and one publisher client

The consumer receives the

alert.

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 59 of 122

Nº Test Description Evaluation criteria Results

preconfigured

rule

subscribes to topic2. One consumer client subscribes

to the test alert topic topic3. The publisher clients

send data that trigger the rules. The rule engine create

an alert to the topic3. The consumer client receives

the alert.

5

Receive Data

to a second

edbe cluster

Create consumer(s) that subscribe at the same topics

created for the first edbe cluster and check if they

receive all the data published in the beforementioned

cluster.

The consumer receives the

data.

Pass /

Fail

Table 40: Edge Data Broker enabler's functional tests results

Enabler Edge Data Broker Enabler (tests 1-5)

Description Functional tests for the Edge Data Broker Enabler

Approach

Fully manual. Each separate test requires changes regarding the client’s subscribed topic and type

and content of the messages’ payload as well as manually examining the messages generated by

fr_script.

Test tool/s
 Paho-mqtt library

 Postman

Pre-test conditions

 One Edbe cluster with two vernemq instances and fr_script deployed on a two node

kubernetes cluster (EDBE_A).

 Another Edbe cluster with one vernemq instance deployed in a different kubernetes cluster

connected via mqtt bridge with the beforementioned (EDBE_B).

Additional

information

The full functional test consists of more test cases that covers “#” and “+” mqtt topic wildcards as

well as variation in fr_script’s statements, conditions, payloads and logic.

Test sequence Step 1 Create a mqtt client connected to the EDBE_A and publish raw data to a test topic.

Step 2 Create a mqtt client connected to the EDBE_A and subscribe to the test topic.

Step 3 Check that the consumer receives the messages.

Step 4 Repeat steps 1, 2, 3 for the EDBE_B cluster.

Step 6 Post filters and rules of fr_script with Postman.

Step 7
Create a mqtt client connected to EDBE_A and publish json formatted data to a test

topic.

Step 8
Create two mqtt clients one connected to the EDBE_A and subscribed to the test

subtopic, and one connected to the EDBE_B and subscribed to the test subtopic.

Step 9 Check that both consumers received the filtered messages.

Step 10
Create a second mqtt client connected to the EDBE_A and publish json formatted

data to a new test topic.

Test verdict Pass

Additional logs/

Report (in case of

manual)

Logs from EDBE_A :

% Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 48370 0 48370 0 0 324k 0 --:--:-- --:--:-- --:--:-- 325k

/usr/sbin/start_vernemq: line 54: warning: command substitution: ignored null byte in input

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 48370 0 48370 0 0 555k 0 --:--:-- --:--:-- --:--:-- 562k

Will join an existing Kubernetes cluster with discovery node at edbe-1.edbe-

headless.default.svc.cluster.local

config is OK

08:51:38.752 [info] cluster node 'VerneMQ@edbe-1.edbe-headless.default.svc.cluster.local' UP

08:51:48.340 [info] successfully connected to cluster node 'VerneMQ@edbe-1.edbe-

headless.default.svc.cluster.local'

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 60 of 122

Enabler Edge Data Broker Enabler (tests 1-5)

Logs from EDBE_B :

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 25147 0 25147 0 0 139k 0 --:--:-- --:--:-- --:--:-- 153k

/usr/sbin/start_vernemq: line 54: warning: command substitution: ignored null byte in input

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 25147 0 25147 0 0 153k 0 --:--:-- --:--:-- --:--:-- 162k

config is OK

08:57:26.284 [info] Bridge br0 connected to 10.43.0.1:31883.

08:57:26.289 [info] Bridge Pid <0.414.0> is subscribing to Topics: [{[<<"#">>],0}]

Logs from EDBE_A fr_script :

edbe.default.svc.cluster.local 1883

Connected to MQTT Broker!

INFO: Started server process [9]

INFO: Waiting for application startup.

INFO: Application startup complete.

INFO: Uvicorn running on http://0.0.0.0:8000

Long-Term Storage Enabler

Table 41: Long-Term Storage enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Manage

SQL server

The historical relational data

managed by ASSIST-IoT

deployments can be stored in SQL

schemas, and tables

The success of the operation can be checked by

exploring the existence of the SQL tables that

have been managed through LTSE API.

Pass /

Fail

2
Ingest Raw

SQL Data

The relational data is ingested in the

corresponding SQL table defined by

the system.

The SQL raw data is collected into the

corresponding LTSE SQL table through the

LTSE API.

Pass /

Fail

3

Retrieves

filtered SQL

data

Some filtered SQL data from the

LTSE through the LTSE API should

be provided.

The range of requested data is successfully

obtained through the LTSE API.

Pass /

Fail

4

Manage

noSQL

cluster

Create the noSQL indices for storing

corresponding noSQL information

from authorised enablers via LTSE

API

The success of the operation can be checked by

exploring the existence of the noSQL indices

through LTSE API.

Pass /

Fail

5
Ingest Raw

noSQL Data

The non-relational data of the

ASSIST-IoT system can be ingested

in its corresponding noSQL index

defined by the system.

The noSQL raw data is collected into the

corresponding LTSE noSQL index through

LTSE API.

Pass /

Fail

6

Retrieves

filtered

noSQL data

Some filtered noSQL data from the

LTSE through the LTSE API should

be provided..

The range of requested noSQL data is

successfully obtained through the LTSE API.

Pass /

Fail

Table 42: Long-Term Storage enabler's functional tests 1-3 results

Enabler LTSE (tests 1-3)

Description Functional test of the LTSE SQL component

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 61 of 122

Enabler LTSE (tests 1-3)

Approach Fully automatic, via a GO script that executes every SQL-based API endpoint of the LTSE

Test tool/s
 Any CMD debugging console

 GO test run library

Pre-test conditions
 GO installed

 LTSE helm chart deployed (and for running tests locally, to port-forward the LTSE services)

Test sequence
Step 1

Generate different GET, POST and PUT requests for create SQL schemas, SQL tables,

ingest SQL data, retrieve SQL data, delete SQL data.

Step 2
Receive OK API responses depending on the request (mainly 200 for getting data and

201 for successful creation).

Test verdict Pass

Additional logs/

Report (in case of

manual)

Table 43: Long-Term Storage enabler's functional tests 4-6 results

Enabler LTSE (tests 4-6)

Description Functional test of the LTSE noSQL component

Approach Fully automatic, via a GO script that executes every API endpoint of the LTSE

Test tool/s
 Any CMD debugging console

 GO test run library

Pre-test conditions
 GO installed

 LTSE helm chart deployed (and for running tests locally, to port-forward the LTSE services)

Test sequence
Step 1

Generate different GET and PUT requests for create noSQL indices, as well as

ingest, and retrieve noSQL data

Step 2
Receive OK API responses depending on the request (mainly 200 for getting data

and 201 for successful creation).

Test verdict Pass

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 62 of 122

Enabler LTSE (tests 4-6)

Additional logs/

Report (in case of

manual)

 Application and Services Plane

Tactile dashboard

Table 44: Tactile Dashboard enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Client test

The client of the dashboard

provides a visual tool for the user,

based on the logic run in the server

and the data stored in the database.

User requests are sent correctly to the

dashboard database, and output at the

client side is displayed correctly (i.e.,

when proper log-in process, the main

dashboard page is shown – if invalid login,

an unauthorised alert is prompted and does

not allow to get into the webpage).

Pass / Fail

2 Database test
The dashboard data should be

stored in its database.

All application requests and queries from

the client to the database should be

properly managed through the dashboard

API

Pass / Fail

3 Cookies test

Cookies are used for speeding up

some frequent actions, such as login

sessions, but should be removed

depending on user policies or cache

size.

Testing cookies (sessions) are deleted

either when cache is cleared, or when they

reach their expiry

Pass / Fail

Table 45: Tactile Dashboard enabler's functional test 1 results

Enabler Tactile dashboard (test 1)

Description Functional test of the client component from the tactile dashboard (login process)

Approach Fully automatic, via a set of different python unit-test scripts run over selenium framework

Test tool/s

 Any CMD debugging console

 Python unit-test library

 Selenium framework

Pre-test

conditions

 Python v3.11 installed

 node.js and npm installed.

 Tactile dashboard helm chart deployed with default parameters and data included in the dashboard

database

Test sequence Step 1 The script runs a webbrowser and goes to the IP address of the dashboard

Step 2 The configured user/password data are automatically inserted into their corresponding

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 63 of 122

Enabler Tactile dashboard (test 1)

fields on the login page of the dashboard

Step 3 The Login button of the login pages is automatically pressed

Step 4
If the user is already included and the password matches with the stored one in the

dashboard database, the main page of the dashboard is shown

Step 5
If the user is either not included yet, or if it is included, but the typed password is wrong,

an unauthorized alert is prompted and the dashboard remains in the login page

Test verdict Pass

Additional logs/

Report (in case

of manual)

Table 46: Tactile Dashboard enabler's functional test 2 results

Enabler Tactile dashboard (test 2)

Description Functional test of the API and database component from the tactile dashboard

Approach Fully automatic, via a set of different python unit-test scripts run over selenium framework

Test tool/s

 Any CMD debugging console

 Python unit-test library

 Selenium framework

Pre-test

conditions

 Python v3.11 installed

 node.js and npm installed.

 Tactile dashboard helm chart deployed with default parameters and data included in the

dashboard database

Test sequence Step 1 The script sends a GET request towards the Dashboard API

Step 2 The Dashboard API consults to the dashboard database

 If the dashboard database, the dashboard API response with a 200 OK message

Test verdict Pass

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 64 of 122

Enabler Tactile dashboard (test 2)

Additional logs/

Report (in case of

manual)

Table 47: Tactile Dashboard enabler's functional test 3 results

Enabler Tactile dashboard (test 3)

Description Functional test of the cookies handling by the tactile dashboard

Approach Fully automatic, via a set of different python unit-test scripts run over selenium framework

Test tool/s

 Any CMD debugging console

 Python unit-test library

 Selenium framework

Pre-test

conditions

 Python v3.11 installed

 node.js and npm installed.

 Tactile dashboard helm chart deployed with default parameters and data included in the dashboard

database

Test sequence Step 1 The script runs a web browser and goes to the IP address of the dashboard

Step 2
The configured user/password data are automatically inserted into their corresponding fields

on the login page of the dashboard

Step 3 The Login button of the login page is automatically pressed

Step 4
If the user is already included and the password matches with the stored one in the dashboard

database, the main page of the dashboard is shown

Step 5
After a predefined timer, the cached cookies of the user credentials are automatically removed

from the webbrowser

Step 6
After Step 5 is executed, a navigation button of the webpage is automatically pressed by the

script, and the dashboard pushes the user out to the login page again

Test verdict Pass

Additional logs/

Report (in case

of manual)

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 65 of 122

Business KPI Reporting enabler

Table 48: Business KPI Reporting enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Create a

graphical space

The enabler should permit to

configure different graphical

spaces depending on the

deployments needs

The BKPI enabler API should support the

creation, retrieval, update, and deletion of

graphical spaces

Pass /

Fail

1
Create graph

chart

The Business KPI enabler is a tool

that provides functionalities for

generating graphs and charts from

data stored in the LTSE.

Through its REST API, the Business KPI

enabler will create a sample graph with data

stored in LTSE NoSQL component

Pass /

Fail

Table 49: Business KPI Reporting enabler's functional test 1 results

Enabler Business KPI reporting enabler (test 1)

Description Functional test for the creation of graphical spaces in the BKPI enabler

Approach Fully automatic, with a Python script

Test tool/s
 Any CMD debugging console

 Python unit-test library

Pre-test

conditions

 Python v3.11 installed

 LTSE helm chart deployed

 BKPI helm chart deployed

Test sequence
Step 1

Generate different GET, POST, PUT, DELETE requests to create, update, get, and

delete graphical spaces.

Step 2
Receive OK API responses depending on the request (200 for getting spaces data,

204/404 for successful deletion).

Test verdict Pass

Additional logs/

Report (in case

of manual)

Table 50: Business KPI Reporting enabler's functional test 2 results

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 66 of 122

Enabler Business KPI reporting enabler (test 2)

Description Functional test for the creation of graphical charts in the BKPI enabler

Approach Fully automatic, with a Python script

Test tool/s
 Any CMD debugging console

 Python unit-test library

Pre-test conditions

 Python v3.11 installed

 LTSE helm chart deployed

 BKPI helm chart deployed

Test sequence
Step 1

Generate different GET, POST, PUT, DELETE requests to create, update, get, and

delete graphical charts from LTSE NoSQL data.

Step 2
Receive OK API responses depending on the request (mainly 200 for creation of

graphical charts, and 204 for successful creation/deletion).

Test verdict Pass

Additional logs/

Report (in case of

manual)

Performance and usage diagnosis (PUD) enabler

Table 51: PUD enabler's functional tests

Nº Test Description Evaluation criteria Results

1

Monitoring

other

enablers

Enablers’ metrics should be

collected and stored in Prometheus

time series database.

Other enablers that should be monitored, such

as Edge data broker, should appear as a target

with its state as “UP” on the Prometheus UI and

its metrics should be collected, stored in

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 67 of 122

Nº Test Description Evaluation criteria Results

 Prometheus time series database and be

accessible through its UI.

2

Monitoring

kubernetes

cluster

Kube state metrics is a listening

service that generates metrics about

the state of Kubernetes objects.

Those metrics should be collected

and stored in Prometheus time series

database.

Kube state metrics should appear as a target

with its state as “UP” on the Prometheus UI and

its metrics should be collected, stored in

Prometheus time series database and be

accessible through its UI.

Pass /

Fail

3

Monitoring

the host

system

Node_exporter is a Prometheus

exporter for hardware and OS

metrics exposed by *NIX kernels.

Those metrics should be collected

and stored in Prometheus time series

database

Node exporter metrics should appear as a target

with its state as “UP” on the Prometheus UI and

its metrics should be collected, stored in

Prometheus time series database and be

accessible through its UI.

Pass /

Fail

4

Elasticsearch

as persistent

storage for

Prometheus

metrics

Elasticsearch should be able to

receive and store the same

metrics stored in Prometheus time

series database.

Metrics that are stored in Prometheus time

series database and appear in its UI should be

permanently stored in elasticsearch cluster and

appear in Kibanas UI as well.

Pass /

Fail

Table 52: PUD enabler's functional tests results

Enabler PUD enabler (test 1-4)

Enabler Performance and Usage Diagnosis Enabler (tests 1-4)

Description Functional tests for the Performance and Usage Diagnosis Enabler

Approach Fully manual

Test tool/s Web Browser

Pre-test conditions

 A two node kubernetes cluster with edge data broker and kube state metrics installed. Node

exporter installed as system service

 A kubernetes cluster with elasticsearch and kibana installed.

Test sequence Step 1 Test sequence

Test verdict Pass

Additional logs/
Report (in case of

manual)

While performing the tests, the exporters/targets in the scope of scraping could be accessed by their

corresponding URL endpoints and their state in PUD’s Prometheus target page was “UP” for all of

them. By selecting and plotting metrics in metrics explorer, the gathered and stored metric values

are available in Prometheus time series database. Lastly, the same metric values are stored and

could be accessed from Elasticsearch and can be visualised in Kibana UI as well.

OpenAPI Management Enabler

Table 53: OpenAPI Management enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Add Service
Creates a new service that is

pointing to an OpenAPI

An new service is created through the OpenAPI

Manager given its URL where the service

listens for requests

Pass /

Fail

2 Add Route

Creates a new route in order for the

service to be accessible through the

OpenAPI Gateway

If the OpenAPI gateway receives a (http/https)

request that matches the route’s path it sends it

back to the URL/path address

Pass /

Fail

https://gitlab.assist-iot.eu/wp5/t54/integrity-verification

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 68 of 122

Nº Test Description Evaluation criteria Results

3 Add plugin

A plugin is added to an existed

service that can provide

authentication, security, monitoring

etc.

The generated plugin is attached to the service

in order to authenticate and secure the API

Pass /

Fail

4
Add

Consumers

Consumers develop the applications

that use APIs

With an authenticated API, it is necessary to

generate apikey before calling API. Routes

with GET method will be assigned for

READER consumers and routes with

POST/DELETE/PATH method will be

assigned for EDITOR consumers

Pass /

Fail

5

Interact

through

SwaggerUI

Developer interacts with the

uploaded documentation by using

SwaggerUI through the OpenAPI

Portal

Developer interacts with the OpenAPI

Definition that has been uploaded to the portal

by using SwaggerUI and can check if the all

endpoints are functioning correctly behind the

Open API Gateway.

Pass /

Fail

6
Inspect

Functionality

OpenAPI manager GUI displays

basic information about the

Gateway instance

An Admin user can obtain details about the

performance of the API gateway by accessing

Dashboard menu

Pass /

Fail

7 Backup

Administrator user backup, restore

and move OpenAPI configuration

across different nodes

Through the OpenAPI manager GUI an Admin

chose to backup, restore and save gateway’s

configuration

Pass /

Fail

Table 54: OpenAPI Management enabler's functional tests 1-5 results

Enabler OpenAPI enabler (tests 1-5)

Description
The following tests will check if a developer of an Assist IoT enabler can expose the endpoints of

the enabler by using the OpenAPI Portal.

Approach Semi-automatic

Test tool/s Any tool capable of executing HTTP requests.

Pre-test conditions
 Keycloak IdM to enable authentication with Keycloak

 Kubernetes environment

Additional

information

To register an OpenAPI definition it needs to be of a version OpenAPI 3.0.0 and later. It is

recommended have Keycloak IdM manager deployed

Test sequence Step 1-a Connect to OpenAPI Portal through a browser using credentials from Keycloak

Step 1-b
Upload the OpenAPI definition file to automatically register the enabler to Kong

Gateway

Step 1-c
Alternative use ingress to regsister the service through Kubernetes as and ingress

resource

Step 2
Check if routes are accessible behind the Gateway by using the SwaggeUI through

the OpenAPI Portal or any http tool

Step 3-a
Add Kong Plugins through the OpenAPI definition.yaml file or through the

ingress.yaml file to the endpoints

Step 3-b Add OIDC plugin for authentication to integrate with Keycloak IdM

Step 3-c
Make a authenticated request with a token provided by Keycloak IdM manager to

access your resource

Step 4 Add specific consumers to a service if needed

Step 5 Interact with the created service through the OpenAPI Portal

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation.

Additional logs/

Report (in case of
In error cases , the logs are showed as HTTP responses

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 69 of 122

Enabler OpenAPI enabler (tests 1-5)

manual)

Table 55: OpenAPI Management enabler's functional tests 6-7 results

Enabler OpenAPI enabler (tests 6-7)

Description
 The following test scenario will use the Konga Manager to inspect functionality in the Kong

Gateway.

Approach Semi-automatic

Test tool/s Konga GUI

Pre-test conditions Kong Gateway deployed in a Kubernetes cluster

Additional

information

To register an OpenAPI definition it needs to be of a version OpenAPI 3.0.0 and later. It is

recommended have Keycloak IdM manager deployed

Test sequence Step 6-a Connect to Konga GUI through a browser

Step 6-b Inspect traffic and info from the logs provided by Konga GUI

Step 7 Back up Kong configuration from the manager

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation.

Additional logs/

Report (in case of

manual)

Logs from the Konga GUI

Video Augmentation enabler

Table 56: Video Augmentation enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Train model

test

The Video Augmentation enabler

trains an ML model over the

collected and annotated dataset

The Video Augmentation API must

successfully connect to the backend trainer

component, who should carry out the training

properly.

Pass /

Fail

2
Inference

model test

The Video Augmentation enabler

provides the ability to perform ML

model inference over new not-

trained local or streaming data

(image/video).

The Video Augmentation API must

successfully infer an already trained ML model

over (i) new stored pictures/videos or (ii) from

streaming real-time RTP messages. The

validation is obtained via a 200-response

message.

Pass /

Fail

Table 57: Video Augmentation enabler's functional tests results

Enabler Video Augmentation enabler (tests 1-2)

Description Functional test for training an ML model in the Video Augmentation enabler

Approach Fully automatic, with a Python script

Test tool/s
 Any CMD debugging console

 Python unit-test library

Pre-test conditions

 Python v3.11 installed

 Tensorflow 2

 NVIDIA GPU installed

 Video Augmentation helm chart deployed

 Annotated dataset stored in the corresponding data folder locally

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 70 of 122

Enabler Video Augmentation enabler (tests 1-2)

Test sequence

Step 1 Sends a POST request to train a pre-configured ML model.

Step 2
Receive OK API response from the Video Augmentation enabler API, including a

“Training model X” message.

Step 3
Sends a POST request to perform an inference process over new data with the

already trained ML model.

Step 4
Receive OK API response from the Video Augmentation enabler API, including the

predicted object over the new image.

Test verdict Pending

Additional logs/

Report (in case of

manual)

Pending

MR Enabler

The MR enabler will not be evaluated in automated way through the platform, as the under-development

software (in *.appx file) will be deployed in specific hardware (Microsoft Hololens 2) and cannot be

encapsulated (see deliverable 3.6 [16.], Chapter 5.2 Encapsulation exceptions). Nevertheless, the testing

procedures will be followed in accordance with ASSIST-IoT methodology, which means that unit testing will

be executed offline and integration tests will be performed with the rest of the required components, as follows:

Table 58: MR enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Receive

alerts

Receiving alert messages from real-

time data streams and displaying

them to the device.

MQTT messages will be send to MR enabler in

order to visualise them.

Pass /

Fail

2
Send

Data

The MR enabler will send reports

(data and image) to the LTSE.
Verify that the data is stored to the LTSE.

Pass /

Fail

3
Performance

metrics

Health metrics will be generated in

the MR enabler and will be sent to

the PUD enabler via APIs

Verify the PUD has received the health metrics

through the provided API

Pass /

Fail

Table 59: MR enabler's functional tests results

Enabler MR enabler (tests 1-3)

Description Functional tests for MR Enabler

Approach Fully manual.

Test tool/s

 Python mqtt library

 LTSE instance

 Web browser

Pre-test conditions
 One laptop that can publish test alerts to a test topic, through a script

 Run a LTSE instance on the laptop to hold the tables

Additional

information

Test sequence Step 1 Create a mqtt client connected to the EDBE and publish raw data to a test topic.

Step 2 Connect the MRE client to the EDBE and subscribe to the test topic.

Step 3 Check that the MRE receives the messages and visualises them to the user.

Step 4 Fill a new report from the user interface of the MRE.

Step 5 Send the report, with RESTAPI, to the LTSE database.

Step 6 Check the LTSE database that the tables are filled correctly.

https://gitlab.assist-iot.eu/wp5/t54/integrity-verification

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 71 of 122

Enabler MR enabler (tests 1-3)

Step 7 Make often API calls to the device to receive MRE important health metrics.

Step 8 Adapt those metrics into one object and send them to PUD enabler via API call.

Step 9
Check on PUD enabler that the health metrics of the MRE are being sent correctly

and have valid values.

Test verdict Pass

Additional logs/

Report (in case of

manual)

4.1.2 Functional Testing of vertical enablers

4.1.2.1 Self-* enablers

Self-healing enabler

Table 60: Self-healing enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Hardware testing

(RAM/CPU)

The self-healing enabler provides

HW consumption metrics (RAM,

CPU, disk percentage).

The self-healing UNIX commands

implemented over its NodeRed flows

must receive the percentage values of

the device’s resources.

Pass /

Fail

2
Hardware testing

(network)

The self-healing enabler provides

current network connectivity

status of the device.

The self-healing UNIX commands

implemented over its NodeRed flows

must receive either a numerical value

associated with the latency for a

successful ping request or a Boolean

for a unsuccessful ping request.

Pass /

Fail

3
Hardware remediation

(RAM/CPU/network)

The self-healing enabler performs

remediation actions over the HW

resources (RAM/CPU/disk) when

their consumption is beyond the

user-defined threshold.

The self-healing UNIX commands

implemented over its NodeRed flows

receive an acknowledgment about the

successful remediation action.

Pass /

Fail

4 Network remediation

The self-healing enabler performs

remediation actions over the

network interface when there is

no communication

The network interfaces are restarted,

and a numerical value associated with

the restarted status for a new ping

request is received.

Pass /

Fail

Table 61: Self-healing enabler's functional tests results

Enabler Self-healing enabler (tests 1-4)

Description Functional tests for the Self-healing enabler

Approach Semi-automatic (the monitoring thresholds of the remediation triggers is customized by the user)

Test tool/s Node-red-contrib-flowtest library

Pre-test

conditions

 node.js, npm installed.

 Node-red installed, and node-modules zip file executed.

 In node-red (localhost:1880), import the self-healing flow JSON file

Additional

information

The scenario assumes that the tester has knowledge of the node-red interface provided by the self-healing

enabler.

Test sequence Step 1 The test inject will inject a test message into the different flows

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 72 of 122

Enabler Self-healing enabler (tests 1-4)

Step 2 The assert node will catch the injected test message and make assertions about it.

Step 3 The reporting test is prompted in the node-red console

Test verdict Pass

Additional

logs/

Report (in

case of

manual)

Automated Configuration enabler

Table 62: Automated Configuration enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Add Requirements

Model

Test adding a new requirements

model using the HTTP interface.

The test succeeds if the new requirements

model is added and can be retrieved via the

HTTP interface.

Pass /

Fail

2

Delete

Requirements

Model

Test deleting an existing

requirements model using the

HTTP interface.

The test succeeds if the specified

requirements model is deleted and can no

longer be retrieved.

Pass /

Fail

3
Add Reaction

Model

Test adding a new reaction model

using the HTTP interface.

The test succeeds if the new reaction model

is added and can be retrieved via the HTTP

interface.

Pass /

Fail

4
Delete Reaction

Model

Test deleting an existing reaction

model using the HTTP interface.

The test succeeds if the specified reaction

model is deleted and can no longer be

retrieved.

Pass /

Fail

5 Register Resource
Test registering a new resource

using the Kafka interface.

The test succeeds if the new resource is

registered and can be retrieved via the HTTP

interface.

Pass /

Fail

6
Deregister

Resource

Test deregistering an existing

resource using the Kafka interface.

The test succeeds if the specified resource is

deregistered and can no longer be retrieved.

Pass /

Fail

7
CustomMessage

Handling

Test sending a custom message

using the Kafka interface and

triggering the appropriate reaction.

The test succeeds if the custom message is

sent, the reaction is triggered, and the action

is executed.

Pass /

Fail

8 ConditionalAction Test the ConditionalAction

reaction to verify correct

The test succeeds if the appropriate action or

fallback is executed based on the specified

condition.

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 73 of 122

Nº Test Description Evaluation criteria Results

execution of action or fallback

based on the condition.

9 FilterExpression

Test the correct filtering of

messages based on

FilterExpression types.

The test succeeds if messages are filtered

correctly, and reactions are triggered as

specified.

Pass /

Fail

Table 63: Automated Configuration enabler's functional tests results

Enabler Automated Configuration enabler (tests 1-9)

Description Functional tests for the automated Configuration enabler

Approach Fully automatic (integrated in a pipeline)

Test tool/s

 ScalaTest library

 Akka HTTP TestKit

 Java Virtual Machine

 GitLab CI

Pre-test conditions Deployment of all components of the enabler in a test environment.

Additional

information

The full functional test suite consists of multiple test cases and covers functionalities of the enabler.

Only a simplified selection of the tests is presented in this deliverable. The full list of test cases can

be examined in the enabler’s source code and CI logs.

Test sequence
Step 1

The components of the enabler are set up by GitLab CI in a containerised

environment.

Step 2
In each test (managed by ScalaTest), Akka HTTP TestKit simulates an HTTP

request to the enabler.

Step 3 Automated Configuration enabler performs the requested action.

Step 4 ScalaTest checks if the enabler behaved as expected and reports the result.

Test verdict Pass

Additional logs/

Report (in case of

manual)

Table 64: Automated Configuration enabler's functional tests 1-4 results

Enabler Automated Configuration enabler (tests 1-4)

Description This scenario tests the addition and deletion of requirements and reaction models.

Approach Manual

Test tool/s
 HTTP client (e.g., Postman)

 JSON formatter

Pre-test conditions An instance of the Automated Configuration Enabler should be running.

Additional

information

The scenario assumes that the tester has knowledge of the HTTP interface provided by the

Automated Configuration Enabler.

Test sequence Step 1 Add a requirements model (Test 1) using the HTTP client.

Step 2 Delete the requirements model (Test 2) using the HTTP client.

Step 3 Add a reaction model (Test 3) using the HTTP client.

Step 4 Delete the reaction model (Test 4) using the HTTP client.

Test verdict Pass

Additional logs/

Report (in case of

Manual testing is necessary to ensure that the HTTP interface works as expected and that the

requirements and reaction models can be added and deleted correctly.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 74 of 122

Enabler Automated Configuration enabler (tests 1-4)

manual)

Table 65: Automated Configuration enabler's functional tests 5-9 results

Enabler Automated Configuration enabler (tests 1, 3, 5-9)

Description
This scenario tests the addition and deletion of resources and reaction models, custom message

handling, conditional actions, filtering of messages, and executing various reaction actions.

Approach Manual

Test tool/s

 HTTP client (e.g., Postman)

 Kafka client

 JSON formatter

Pre-test conditions
An instance of the Automated Configuration Enabler should be running, and Kafka should be

properly configured.

Additional

information

The scenario assumes that the tester has knowledge of the HTTP and Kafka interfaces provided by

the Automated Configuration Enabler.

Test sequence Step 1 Add a requirements model (Test 1) using the HTTP client.

Step 2 Add a reaction model (Test 3) using the HTTP client.

Step 3 Register a new resource (Test 5) using the Kafka client.

Step 4 Deregister the resource (Test 6) using the Kafka client.

Step 5 Send a custom message (Test 7) using the Kafka client.

Step 6
Test the ConditionalAction (Test 8) by sending appropriate messages using the

Kafka client.

Step 7
Test the FilterExpression (Test 9) by sending various messages and observing the

reactions.

Step 8
Test the execution of various ReactionAction types (Test 10) by sending appropriate

messages.

Step 9 Send another custom message (Test 7) using the Kafka client to verify the reaction.

Test verdict Pass

Additional logs/

Report (in case of

manual)

Manual testing is necessary to verify that the system's behavior matches the expected behavior, as

described in the documentation, under various conditions.

Resource Provisioning enabler

Table 66: Resource Provisioning enabler's functional tests

Nº Test Description Evaluation criteria Results

1

Obtain

managed

enablers

Display enablers in cluster available

for management and inference.

An appropriate output is obtained by displaying

the enabler management configuration.
Pass / Fail

2

Update

managed

enablers

Update configuration on enablers or

components to realise the inference

The correct string is displayed on the screen

showing the success of the operation
Pass / Fail

3 Get train values

Display train values configuration to

realise the inference based on the

current criteria.

Formatted output with current criteria values and

following the specific schema.
Pass / Fail

4
Update train

values

Send same train values configuration

so as not to no alter current criteria

following the format received

previously.

The correct string is displayed on the screen

showing the success of operation
Pass / Fail

5 Train
Execute the train based on train

values criteria for clusters and

Test output of the operation to see if any error

has occurred or if the training has been
Pass / Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 75 of 122

Nº Test Description Evaluation criteria Results

components chosen previously. completed.

6
Execute

inference

When the data is trained, infer module

acts in each cluster/component

predicting future resources

requirements.

Test output of the operation to see if any error

has occurred or if the inference has been

completed.

Pass / Fail

7 Get version Display enabler version The correct version string is correctly display Pass / Fail

8 Get health
Display health status of the

environment

The current enabler environment is healthy or

not.
Pass / Fail

Table 67: Resource Provisioning enabler's functional tests results

Enabler Resource Provisioning enabler (test 1-8)

Description
Formal description of functional tests. All tests follow the same steps based on the ability to self-

manage without dependencies on other enablers.

Approach Fully automatic. OpenAPI Swagger file-based pipeline integration.

Test tool/s
This enabler only requires any software capable of executing REST API calls such as POSTMAN,

Gitlab pipelines or a script with curl or similar software.

Pre-test conditions Enabler deployed and prerequisites specified in documentation applied.

Additional

information
Self-managing enabler, suitable for automated testing and GitLab pipelines.

Test sequence

Step 1

Send an HTTP Request (GET, POST, DEL) to each respective endpoint. In case of

POST request, it is mandatory to include a custom body specified in the swagger

file.

Step 2a-1 Check if an HTTP 2xx or 3xx response code is returned.

Step 2a-2 Check if response schema matches with the HTTP Request response.

Step 2a-3 If last 2 steps are successful, it returns the success of the operation.

Step 2b-1 Check if an HTTP 4xx or 5xx response code is returned.

Step 2b-2 Response log is returned.

Test verdict
For each test, each answer is compared with the expected results and the final verdict will indicate

the success or failure of the operation. -> Passed

Additional logs/

Report (in case of

manual)

N/A

NOTE: Several steps of each test may have different paths depending on the output obtained, it is good to keep

this in mind.

Monitoring and Notifying enabler

Table 68: Monitoring and Notifying enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Receive data from

IoT/Edge devices

Monitor the status of devices by

subscribing to topics created by

the Edge Data Broker enabler and

ensuring the data delivery.

The data arrives intact, and the user sees it

on his consumer dashboard.

Pass /

Fail

2 Create notification

Create a notification when a

monitored device’s threshold is

breached.

The notification is successfully created.
Pass /

Fail

3 Push notification

The notifications created in test

#2 should be pushed to the

responsible operator.

The notification (alongside with the related

data) is successfully obtained by the correct

operator, and can be seen on the dashboard.

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 76 of 122

Nº Test Description Evaluation criteria Results

4

Store

notifications/critical

events

The notifications created in test

#2 should be stored in the

enabler’s database for future

consuming.

The notification (alongside with the related

data) is successfully stored in the database

in JSON format.

Pass /

Fail

5

Query

notifications/critical

events

The notifications stored in the

database, in test #4, should be

able to be queried.

Successfully see the queried critical events

from the database.

Pass /

Fail

Table 69: Monitoring and Notifying enabler's functional tests results

Enabler Monitoring and Notifying enabler (test 1-5)

Description

The functional tests of the enabler, test an entire pipeline of connecting to the broker, creating a

“normal” message, a “critical message”, mapping them, sending the critical one to the enabler’s

internal storage, to DLT logging and auditing and finally querying it.

Approach Fully automatic (integrated in a pipeline)

Test tool/s Maven, Junit, GitLab pipelines

Pre-test conditions

 Zookeeper up and running

 Kafka broker up and running

 MongoDB internal storage up and running

Additional

information
Maven’s Junit has been used because the enabler is implemented in Java.

Test sequence Step 1 Check if a topic is created and subscribe to it

Step 2 Send a message to the test topic

Step 3 Check if the message is consumed

Step 4 Receive a value above the predefined threshold

Step 5 Check if the notification is produced

Step 6 Check if the message with the notification is forwarded to the consumer

Step 7 Check if the message is correctly mapped to a MongoDB document

Step 8 Check if the Json with the notification is forwarded to the MongoDB collection

Step 9 Check if the stored data can be queried

Test verdict
Passed. (If all the above steps are executed without any problem, then the test is considered as

passed)

Additional logs/

Report (in case of

manual)

N/A

Location Processing enabler

Table 70: Location Processing enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Create Query
Test creating a new query using

POST v1/queries

Test succeeds if the response status code is

201 and the created query is returned in the

response body.

Pass /

Fail

2
Retrieve All

Queries

Test retrieving all queries using

GET v1/queries

Test succeeds if the response status code is

200 and the list of queries is returned in the

response body.

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 77 of 122

Nº Test Description Evaluation criteria Results

3
Retrieve Single

Query

Test retrieving a single query

using GET v1/queries/{name}

Test succeeds if the response status code is

200 and the specified query is returned in

the response body.

Pass /

Fail

4 Update Query
Test updating a query using PUT

v1/queries/{name}.

Test succeeds if the response status code is

200 and the updated query is returned in the

response body.

Pass /

Fail

5 Delete Query
Test deleting a query using

DELETE v1/queries/{name}

Test succeeds if the response status code is

200 and the deleted queries count is

returned in the response body.

Pass /

Fail

6 Trigger Query
Test triggering a query using

POST v1/queries/{name}/input

Test succeeds if the response status code is

200 and the output is returned in the

response body.

Pass /

Fail

Table 71: Location Processing enabler's functional tests 1-3 results

Enabler Location Processing enabler (tests 1-3)

Description
This test scenario will validate the successful creation of two queries, the retrieval of a single query,

and the retrieval of all queries using the Location Processing enabler's HTTP interface.

Approach Manual

Test tool/s Postman (or any other API testing tool)

Pre-test conditions
The Location Processing enabler is up and running with the correct configuration. No query with

the same name exists in the system.

Additional

information
Ensure access to the HTTP interface.

Test sequence
Step 1

Create the first query by sending a POST request to v1/queries with the required

query body.

Step 2
Create the second query by sending a POST request to v1/queries with the required

query body.

Step 3 Semantic Repository enabler performs the requested action.

Step 4 Verify the successful creation by checking the response with a status code 201.

Step 5 Retrieve a single query by sending a GET request to v1/queries/{name}.

Step 6
Verify the successful retrieval by checking the response with a status code 200 and

the correct query information.

Step 7 Retrieve all queries by sending a GET request to v1/queries.

Step 8
Verify the successful retrieval by checking the response with a status code 200 and

the correct list of queries.

Test verdict Pass

Additional logs/

Report (in case of

manual)

Manual testing is necessary to validate the overall functionality and interaction between the HTTP

interface and the Location Processing enabler, as well as the ability to retrieve and manage multiple

queries.

Table 72: Location Processing enabler's functional tests 4-6 results

Enabler Location Processing enabler (tests 4-6)

Description
This test scenario will validate the successful creation, update, triggering, and deletion of a query

using the Location Processing enabler's HTTP interface.

Approach Manual

Test tool/s Postman (or any other API testing tool)

Pre-test conditions
The Location Processing enabler is up and running with the correct configuration. No query with

the same name exists in the system.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 78 of 122

Enabler Location Processing enabler (tests 4-6)

Additional

information
Ensure access to the HTTP interface.

Test sequence
Step 1

Create a query by sending a POST request to v1/queries with the required query

body.

Step 2 Verify the successful creation by checking the response with a status code 201.

Step 3
Update the created query by sending a PUT request to v1/queries/{name} with the

modified query body.

Step 4 Verify the successful update by checking the response with a status code 200.

Step 5
Trigger the updated query manually by sending a POST request to

v1/queries/{name}/input with the required input data.

Step 6
Verify the successful triggering by checking the response and output topic in the

MQTT broker.

Step 7 Delete the query by sending a DELETE request to v1/queries/{name}.

Step 8 Verify the successful deletion by checking the response with a status code 200.

Test verdict Pass

Additional logs/

Report (in case of

manual)

Manual testing is necessary to validate the overall functionality and interaction between the HTTP

interface, the Location Processing enabler, and the MQTT brokers.

4.1.2.2 Federated machine learning enablers

FL Training Collector enabler

Table 73: FL Training Collector enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Send training

configuration

FL Training Collector should be

able to receive configuration for

the training job to be run via API.

The API request is correctly handled and a

message confirming a successful execution

of a requested operation (accept

configuration) is send in response.

Pass /

Fail

2 Request job status

FL Training Collector should be

able to provide status of a job

which configuration it received.

The API request is correctly handled and in

response all necessary information about

job with a given it status are given

Pass /

Fail

Table 74: FL Training Collector enabler's functional test 1 results

Enabler FL Training Collector enabler (test 1)

Description Functional test 1 for the FL Training Collector enabler that tests the configurability of the training

Approach Semi-automatic

Test tool/s

REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL). Additionally, logs of the FL Training Collector and FL Local Operations instances

should be surveyed.

Pre-test conditions

The FL Training Collector should, of course, be deployed. In order to properly test configurations

involving custom strategies, FL Repository should be deployed. FL Repository should contain those

objects. Additionally, a sufficient number of FL Local Operations should be deployed in order to

test the full training.

Additional

information
N/A

Test sequence
Step 1

Send a prepared configuration to FL Training Collector via a HTTP POST request

to the `/job/config/<training_id>` endpoint.

Step 2
 Check the HTTP response. If the configuration is structurally valid, it should have

the status of 200, with a 500 status otherwise.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 79 of 122

Enabler FL Training Collector enabler (test 1)

Step 3
Check FL Training Collector logs. If the enabler has properly connected to the FL

Repository and FL Orchestrator, no error messages should appear.

Step 4

Send the appropriate configuration to FL Local Operations instances. In the FL

Training Collector and FL Local Operations appropriate logs should appear,

detailing the beginning gRPC connection, the progression of the training process, as

well as displaying the metrics. The information in the logs should be congruent with

the configuration.

Step 5

At the end of the training process check the collection of FL training results via the

FL Repository by sending an HTTP GET request to the `/training-results` endpoint.

It should contain the results of the conducted training. The final weights should be

possible to download via an HTTP GET `/training-

results/weights/<model_name>/<model_version>/<training_id>` request.

Test verdict
If the training process adheres to the detailed steps without the FL Training Collector generating

any additional error messages, the test passes. Otherwise, it fails.

Additional logs/

Report (in case of

manual)

Logs from the FL Local Operations and FL Training Collector enablers

Table 75: Training Collector enabler's functional test 2 results

Enabler FL Training Collector enabler (test 2)

Description
Functional test 2 for the FL Training Collector enabler that tests the ability to obtain the status of a

given training process.

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL)

Pre-test conditions
The FL Training Collector should be deployed along with the FL Repository and at least a single

instance of the FL Local Operations.

Additional

information

Test sequence
Step 1

Send an HTTP GET request to the `/job/status/{training_id}` endpoint on the FL

Training Collector enabler with a random training_id.

Step 2 Obtain a training response with the status INACTIVE.

Step 3

Send sample training configurations to the FL Training Collector and FL Local

Operations. Appropriate sample configurations should be found in the README

files in those enablers. Wait for the training to start.

Step 4

Send an HTTP GET request to the `/job/status/{training_id}` endpoint on the FL

Training Collector enabler with the training id placed in the configuration. A

response with the status TRAINING, along with the number of finished rounds,

should be obtained.

Step 5
Wait for the training to stop and send the same request once again. The status

obtained should be FINISHED.

Test verdict If all the results described in the steps were achieved properly, the test was passed.

Additional logs/

Report (in case of

manual)

N/A

FL Orchestrator

Table 76: FL Orchestrator enabler's functional tests

Nº Test Description Evaluation criteria Results

1

FL training

configuration setup

test

The FL Orchestrator needs to be

in charge of defining the FL

training configuration (including

model to be trained, number of

The FL orchestrator must successfully

retrieve from its own database the default

values for FL training. In addition, the FL

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 80 of 122

Nº Test Description Evaluation criteria Results

involved parties and training

rounds, encryption mechanism,

and evaluation criteria).

orchestrator API must successfully connect

with the FL repository database.

2

FL training

configuration

delivery test

The FL Orchestrator sends the

defined FL training configuration

to all the enablers involved in the

training.

The FL orchestrator API must send in

JSON documents about the FL

configuration to the FL Training Collector,

and FL Local Operations, which will

acknowledge about its successful

reception.

Pass /

Fail

3

FL training

lifecycle monitoring

test

The FL Orchestrator needs to be

aware of the current job status of

the FL process.

The FL orchestrator API must periodically

receive the status of the FL Training

Collector and the FL Local Operations

(either ON or OFF), as well as the number

of finished epochs and training rounds.

Pass /

Fail

Table 77: FL Orchestrator enabler's functional test 1 results

Enabler FL Orchestrator (test 1)

Description
Five different unit tests are conducted in order to assess the proper FL training configuration is set

up via the enabler API calls.

Approach Semi-automatic relying on the enabler API endpoints responses.

Test tool/s
 Any CMD debugging console

 Unit test python library

Pre-test conditions
Python installed.

FL Orchestrator and FL Repository deployed

Test sequence Step 1 Generate a GET request for inserting the default values of all ML algorithms.

Step 2
Generate a GET request for retrieving every ML algorithm configuration value from

the FL repository.

Step 3
Generate a POST request for collecting from a virtual GUI the default FL training

configuration parameters (number of rounds, number of local operations, etc.).

Step 4
Generate a POST request that modifies the default FL training configuration

parameters.

Step 5 Generate a POST request for visualizing the defined FL training configuration.

Test verdict Pass

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 81 of 122

Enabler FL Orchestrator (test 1)

Additional logs/

Report (in case of

manual)

Table 78: FL Orchestrator enabler's functional test 2 results

Enabler FL Orchestrator (test 2)

Description
Functional test conducted to assess the delivery of the FL training configuration to the FL Local

Operations and FL Training Collector via the enabler API.

Approach Semi-automatic relying on the enabler API endpoints responses.

Test tool/s
 Any CMD debugging console.

 Unit test python library

Pre-test

conditions

Python installed.

FL Orchestrator, FL Local Operations, and FL Training Collector deployed

Test sequence
Step 1

Generate a POST request for delivering the FL training configuration to the FL Local

Operations.

Step 2
Generate a POST request for delivering the FL training configuration to the FL Training

Collector

Step 3
Receive an API response with the acknowledgement from FL Local Operations and FL

Training Collector about the training request delivery.

Test verdict Test ready, but whole environment not deployed yet

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 82 of 122

Enabler FL Orchestrator (test 2)

Additional logs/

Report (in case of

manual)

Table 79: FL Orchestrator enabler's functional test 3 results

Enabler FL Orchestrator (test 3)

Description Functional test conducted to assess the FL training lifecycle via the enabler API.

Approach Semi-automatic relying on the enabler API endpoints responses.

Test tool/s
 Any CMD debugging console.

 Unit test python library

Pre-test

conditions

Python installed.

FL Orchestrator, FL Local Operations, and FL Training Collector deployed

Test sequence
Step 1

Receive a GET request from the deployed FL Local Operations APIs informing about

their ON status.

Step 2
Receive a GET request from the deployed FL Training Collector API informing about a

FL training round finished

Test verdict Test ready, but whole environment not deployed yet

Additional logs/

Report (in case

of manual)

FL Repository enabler

Table 80: FL Repository enabler's functional tests

Nº Test Description Evaluation criteria Results

1

Add new FL model

metadata

The enabler correctly adds the

new metadata to the selected

collection, in this case, models.

The model is listed by the enabler along

with the other models. Its specific metadata

can also be separately downloaded (test 1).

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 83 of 122

Nº Test Description Evaluation criteria Results

2

Add new FL model

files

The enabler stores the model files

and updates the metadata of the

model by providing a new id

under which the files are stored.

The model_id field in the metadata of the

model is correctly updated. Additionally,

the model files can be downloaded and

reconstructed into the original model (test

2).

Pass /

Fail

3

List all available

FL models

The enabler returns all FL model

metadata stored in the enabler.

The metadata of each of the listed FL

models is the same as their separately

obtained metadata (test 4).

Pass /

Fail

4

List only the FL

models which were

already trained.

The enabler returns only the

metadata of those FL models,

which were already trained using

the system and some of their

training results have been saved.

The metadata of each of the listed FL

models is the same as their separately

obtained metadata. Additionally, each of

the models listed has a form of training

results stored in the repository (test 4) .

Pass /

Fail

5
Delete an FL model

The enabler deletes the selected

model from its repository,

including metadata as well as any

model files.

The metadata of the model does not show

up in the listed files. Neither is it possible

to separately download the metadata or the

files (test 3).

Pass /

Fail

6

 Get the metadata

of selected FL

model

The enabler returns the full

metadata of a selected model.

The metadata of a selected model obtained

from the endpoint is the same as previously

uploaded metadata (test 5).

Pass /

Fail

7

Get the files

serializing a

selected FL model

The enabler returns the serialised

data of a selected model.

The downloaded files have the same

structure and contain the same information

as previously uploaded files.

Pass /

Fail

8

Add new FL

training results

metadata

The enabler correctly adds the

new metadata to the selected

collection, in this case, training-

results.

The training results are listed by the enabler

along with the other training results, both

while using the functionality that lists all

training results and all training results for a

selected model. Their specific metadata

can also be separately downloaded (test 1).

Pass /

Fail

9

Add new FL

training results

weights

The enabler stores the final

weights obtained as a result of the

training.

The weights_id field in the metadata of the

training results is correctly updated.

Additionally, the resulting weights can be

downloaded and applied to the training

model (test 2).

Pass /

Fail

10

List all available

FL training results

The enabler returns all FL

training results metadata stored in

the enabler.

The metadata of each of the listed FL

training results is the same as their

separately obtained metadata (test 4).

Pass /

Fail

11

List only the FL

training results

which were

obtained using a

specific model.

The enabler returns only the

metadata of those FL training

results, which were obtained in a

training that used a specified

model.

The metadata of each of the listed

FL training results specify the selected

model. Additionally, the model appears on

the list of already trained models (test 4).

Pass /

Fail

12

Delete selected FL

training results

The enabler deletes the selected

training results from its

repository, including metadata as

well as any training weights.

The training results do not show up in the

listed results. Neither is it possible to

separately download the metadata or the

weights (test 3).

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 84 of 122

Nº Test Description Evaluation criteria Results

13

Get the files

serialising the

model weights

which were a part

of the selected

training results

The enabler returns the serialised

final weights obtained as a result

of selected training.

The downloaded files have the same

structure and contain the same information

as previously uploaded files.

Pass /

Fail

14

Add new FL

strategy metadata

The enabler correctly adds the

new metadata to the selected

collection, in this case, strategies.

The strategies are listed by the enabler

along with all the other aggregation

strategies (test 1).

Pass /

Fail

15

Add new FL

strategy object

The enabler stores the pickled

object which can be used by the

Training Collector as an

aggregation strategy.

The strategy_id field in the metadata of the

model is correctly updated. Additionally,

the resulting object can be downloaded and

applied as an FL aggregation strategy (test

2).

Pass /

Fail

16

List all available

FL strategies

The enabler returns all FL

strategy metadata stored in the

enabler.

The metadata of each of the listed FL

strategies is the same as their separately

obtained metadata (test 4).

Pass /

Fail

17

Update the

metadata of a

selected FL strategy

The enabler updates the

description of the FL strategy

located in the repository under a

chosen name.

The listed FL strategy metadata is updated

according to the request (test 2).

Pass /

Fail

18

Delete selected FL

strategy

The enabler deletes the selected

aggregation strategy from its

repository, including metadata as

well as the pickled object.

The strategy does not show up in the listed

strategies. Neither is it possible to

separately download the strategy object

(test 3).

Pass /

Fail

19

Get the pickled

object

implementing the

functionality of an

FL strategy

The enabler returns the serialised

strategy object.

The downloaded files have the same

structure and contain the same information

as previously uploaded files (test 6).

Pass /

Fail

20

Add new FL

collector metadata

The enabler correctly adds the

new metadata to the selected

collection, in this case, FL

collectors.

The collector metadata is listed by the

enabler along with all the other available

FL collections (test 1).

Pass /

Fail

21

Add new FL

collector object

The enabler stores the pickled

object which can be used by the

FL Local Operations for dynamic

data loading of a specific format

The collector_id field in the metadata of the

model is correctly updated. Additionally,

the resulting object can be downloaded and

applied as a data loader (test 2).

Pass /

Fail

22

List all available

FL collectors

The enabler returns all FL

collector metadata stored in the

enabler.

The metadata of each of the listed FL

collectors is the same as their separately

obtained metadata (test 4).

Pass /

Fail

23

Update the

metadata of a

selected FL

collector

The enabler updates the

description of the FL collector

located in the repository under a

chosen name.

The listed FL collector metadata is updated

according to the request (test 2).

Pass /

Fail

24

Delete selected FL

collector

The enabler deletes the selected

FL collector from its repository,

The collector does not show up in the listed

collector. Neither is it possible to

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 85 of 122

Nº Test Description Evaluation criteria Results

including metadata as well as the

pickled object.

separately download the collector object

(test 3).

25

Get the pickled

object

implementing the

functionality of an

FL collector

The enabler returns the serialised

FL collector object.

The downloaded files have the same

structure and contain the same information

as previously uploaded files (test 6).

Pass /

Fail

26

Add new FL

transformation

metadata

The enabler correctly adds the

new metadata to the selected

collection, in this case, FL

transformations.

The transformation metadata is listed by

the enabler along with all the other

available FL transformations (test 1).

Pass /

Fail

27

Add new FL

transformation

object

The enabler stores the pickled

object which can be used by the

FL Local Operations for flexible

data pre-processing

The transformation_id field in the metadata

of the model is correctly updated.

Additionally, the resulting object can be

downloaded and applied as a data

transformation (test 2).

Pass /

Fail

28

List all available

FL data

transformations

The enabler returns all FL data

transformation metadata stored in

the enabler.

The metadata of each of the listed data

transformations is the same as their

separately obtained metadata (test 4).

Pass /

Fail

29

Update the

metadata of a

selected FL data

transformation

The enabler updates the

description of the FL data

transformation located in the

repository under a chosen id.

The listed FL data transformation metadata

is updated according to the request (test 2).

Pass /

Fail

30

Delete selected FL

data transformation

The enabler deletes the selected

FL data transformation from its

repository, including metadata as

well as the pickled object.

The transformation does not show up in the

listed data transformations. Neither is it

possible to separately download the data

transformation object (test 3).

Pass /

Fail

31

Get the pickled

object

implementing the

functionality of an

FL data

transformation

The enabler returns the serialised

FL data transformation object.

The downloaded files have the same

structure and contain the same information

as previously uploaded files (test 6).

Pass /

Fail

Table 81: FL Repository enabler's functional test 1 results

Enabler FL Repository enabler (test 1)

Description Functional test 1 for the FL Repository enabler that tests the POST endpoints of the enabler

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL)

Pre-test conditions The FL Repository enabler needs to be deployed.

Additional

information

Test sequence Step 1 Send an HTTP POST request to a selected ‘/<collection-name>’ endpoint.

Step 2
If the response code is 400, access the HTTP GET “/<collection-name>” endpoint

and see if an item with the same identifier (in the form of id or name and version) is

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 86 of 122

Enabler FL Repository enabler (test 1)

already there.

Step 3
If the response code is 201, access the HTTP GET “/<collection-name>” endpoint.

The sent object should already be there.

Test verdict If the results described in the tests are fulfilled, the test result is positive. Otherwise, it’s negative.

Additional logs/

Report (in case of

manual)

N/A

Table 82: FL Repository enabler's functional test 2 results

Enabler FL Repository enabler (test 2)

Description Functional test 2 for the FL Repository enabler that tests the PUT endpoints of the enabler

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL)

Pre-test conditions The FL Repository enabler needs to be deployed.

Additional

information
N/A

Test sequence

Step 1

In the case of endpoints allowing for metadata modification, send the new metadata

to the `/<collection-name>/meta/<identifier>/<identifier 2, if exists>` endpoint. In

the case of files or pickled objects, upload them to `/<collection-

name>/<identifier>/<identifier 2, if exists>`.

Step 2

If the response status is 204, the update has been successful. The HTTP GET

“/<collection-name>” endpoint response should now showcase new, updated data

(in the form of new storage id or new metadata).

Step 3

If the response status is 404, the update has not been successful. The HTTP GET

“/<collection-name>” endpoint response should have no items with the selected

identifiers (they do not exist).

Test verdict If the results described in the tests are fulfilled, the test result is positive. Otherwise, it’s negative.

Additional logs/

Report (in case of

manual)

N/A

Table 83: FL Repository enabler's functional test 3 results

Enabler FL Repository enabler (test 3)

Description Functional test 3 for the FL Repository enabler that tests the DELETE endpoints of the enabler

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL)

Pre-test conditions The FL Repository enabler needs to be deployed.

Additional

information
N/A

Test sequence

Step 1

First, lists the existing collection items using the `/<collection-name>` endpoint and

check if you’ll be trying to delete an item with identifiers already present in the

collection.

Step 2

If you’re trying to delete an existing item, the response should have the 204 status.

The item should no longer be present in the collection items listed via `/<collection-

name>` endpoint.

Step 3

If you’re trying to delete a non-existing item, the response should have the 404

status. The item list accessed via the `/<collection-name>` endpoint should remain

unchanged.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 87 of 122

Enabler FL Repository enabler (test 3)

Test verdict If the results described in the tests are fulfilled, the test result is positive. Otherwise, it’s negative.

Additional logs/

Report (in case of

manual)

N/A

Table 84: FL Repository enabler's functional test 4 results

Enabler FL Repository enabler (test 4)

Description
Functional test 4 for the FL Repository enabler that tests the GET endpoints of the enabler that

allow for listing the collection (partially and as a whole)

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL)

Pre-test conditions The FL Repository enabler needs to be deployed.

Additional

information
N/A

Test sequence

Step 1

First, send an HTTP GET request to the `/<collection-name>` endpoint and check

the response. In the case of training-results, a list of the training results obtained for

a specific model and version is available by sending a GET request to the `/training-

results/<model_name>/model_version` endpoint. In any case, the response should

be a list of metadata (it may also be an empty list).

Step 2
Send an HTTP POST request to add an element to the displayed collection. Send

the previous HTTP GET request again to see if the list was updated.

Step 3

Send an HTTP DELETE request to delete an element from the displayed collection.

Similarly, repeat the first request and see if the response changed appropriately (the

item in question is no longer displayed by the list).

Test verdict If the results described in the tests are fulfilled, the test result is positive. Otherwise, it’s negative.

Additional logs/

Report (in case of

manual)

N/A

Table 85: FL Repository enabler's functional test 5 results

Enabler FL Repository enabler (test 5)

Description
Functional test 5 for the FL Repository enabler that tests the GET endpoints of the enabler that

allow for downloading a specific set of metadata.

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL)

Pre-test conditions The FL Repository enabler needs to be deployed.

Additional

information
N/A

Test sequence

Step 1

First, display the items in the collection by accessing the `/<collection-name>`

endpoint via an HTTP GET request. Choose the identifiers of the metadata item to

download.

Step 2
Send an HTTP GET request to the `/<collection-name>/meta` endpoint. A valid

metadata item should be obtained.

Step 3

Then, send a similar HTTP GET request specifying identifiers that were not listed

by the `/<collection-name>` endpoint. A response with 404 status should be

obtained.

Test verdict If the results described in the tests are fulfilled, the test result is positive. Otherwise, it is negative.

Additional logs/

Report (in case of
N/A

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 88 of 122

Enabler FL Repository enabler (test 5)

manual)

Table 86: FL Repository enabler's functional test 6 results

Enabler FL Repository enabler (test 6)

Description
Functional test 6 for the FL Repository enabler that tests the GET endpoints of the enabler that

allow for downloading the specific objects stored in the enabler.

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL)

Pre-test conditions The FL Repository enabler needs to be deployed.

Additional

information
N/A

Test sequence

Step 1

First, use the HTTP POST `/<collection-name>/<identifier1>/<identifier2>/…` to

update the files of a specific, pre-existing item. The existing identifiers are visible in

the collection by accessing the HTTP GET `/<collection-name>` endpoint.

Step 2
Use an HTTP GET `/<collection-name>/<identifier1>/<identifier2>/…` to

download and store an object.

Step 3 Compare the downloaded object with the previously sent data.

Test verdict If the results described in the tests are fulfilled, the test result is positive. Otherwise, it’s negative.

Additional logs/

Report (in case of

manual)

N/A

FL Local Operations enabler

Table 87: FL Local Operations enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Send configuration

FL Local Operations should be

able to receive configuration for

the training job to be run via API.

The API request is correctly handled and a

message confirming a successful execution

of a requested operation (accept

configuration) is send in response. The

training process may appropriately begin

(test 1).

Pass /

Fail

2
Send model

metadata

FL Local Operations should be

able to accept the model with a

given name, version and

metadata.

The API request is correctly handled and a

message confirming a successful execution

of a requested operation (accept model) is

send in response (test 2).

Pass /

Fail

3
Send model files

FL Local Operations should

correctly store the data necessary

to reconstruct the model for later

use.

The API request is correctly handled and a

message confirming a successful execution

of a requested operation (accept model) is

send in response (test 3).

Pass /

Fail

4 Request status

The FL Local Operations enabler

should be able to provide its

status.

The API request is correctly handled and in

response status information is given (test

4).

Pass /

Fail

5
Request machine

capabilities

In order to determine which FL

Local Operations instances will

be able to perform the training of

a selected model, the current

capabilities of this instance must

be obtained.

The API request is correctly handled and in

response, the information detailing the

current capabilities of the instance is given

(test 5).

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 89 of 122

Nº Test Description Evaluation criteria Results

6
Request current

data format

In order to determine which FL

Local Operations instances will

be able to perform the training of

a selected model, or what data

transformations would have to be

applied for them to be, the current

format of the data located on the

instance must be obtained.

The API request is correctly handled and in

response, the information detailing the

current data format on the instance is given

(test 6).

Pass /

Fail

7

Request predictions

from the inference

component

The inference component of the

FL Local Operations should be

able to reconstruct an ML model

and pre-process incoming data

according to its local

configuration. It should also be

able to efficiently return these

predictions.

The gRPC request is correctly handled with

predictions returned in the proper format

(test 7).

Pass /

Fail

8

Request the

deployment of only

the inference

component of the

charts (without the

training or the

database)

It should be possible to deploy the

inference component separately

in order to provide inference

without overloading the

capabilities of edge

environments.

The inference component is correctly

deployed without any additional resources

and is able to conduct inference (test 8).

Pass /

Fail

Table 88: FL Local Operations enabler's functional test 1 results

Enabler FL Local Operations enabler a (test 1)

Description Functional test 1 for the FL Local Operations enabler that tests the configurability of the training

Approach Semi-automatic

Test tool/s

REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL). Additionally, logs of the FL Training Collector and FL Local Operations instances

should be surveyed.

Pre-test conditions

The FL Local Operations, as well as the FL Repository and the FL Training Collector should be

deployed. Additionally, a training process that needs just one client should be started on the FL

Training Collector using one of the sample configurations present in its README, started via an

HTTP POST request sent to the its `/job/config/<training_id>` endpoint.

Additional

information
N/A

Test sequence

Step 1

Send a training configuration to the FL Local Operations via an HTTP POST

request to the `/job/config/<training_id>` endpoint. The configuration should be

consistent with the previous FL Training Collector configuration, that is, correctly

identify the FL TC IP address and aim to train the same model.

Step 2
Obtain the response status. If the configuration was successful, the received

response status should be 200.

Step 3
The FL Local Operations logs is an indicator that the model is properly loaded into

the instance.

Step 4

The logs should later also display that client has been constructed properly, with the

appropriate selected privacy mechanisms put in place (the mechanisms mentioned

in logs should be the same as those in the configuration). A connection with the

Flower server located on FL Training Collector should be stablished.

Step 5
The training process should finish without any information about missed

connections with the FL Training Collector or FL Repository.

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/ N/A

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 90 of 122

Enabler FL Local Operations enabler a (test 1)

Report (in case of

manual)

Table 89: FL Local Operations enabler's functional test 2 results

Enabler FL Local Operations enabler a (test 2)

Description Functional test 2 for the FL Local Operations enabler that tests local model metadata storage

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL).

Pre-test conditions The FL Local Operations should be deployed.

Additional

information
N/A

Test sequence
Step 1

Send an HTTP POST request to the `/model` endpoint on the FL Local Operations

instance. This request should contain valid FL Model metadata.

Step 2
Obtain the response status. If the configuration was successful, the received

response status should be 200.

Step 3

Try to upload model files via an HTTP PUT request to

`/model/<model_name>/<model_version>` endpoint. The received response status

should be 204.

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/

Report (in case of

manual)

N/A

Table 90: FL Local Operations enabler's functional test 3 results

Enabler FL Local Operations enabler a (test 3)

Description Functional test 3 for the FL Local Operations enabler that tests local model file storage

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL).

Pre-test conditions The FL Local Operations should be deployed.

Additional

information

Test sequence
Step 1

Send an HTTP POST request to the `/model` endpoint on the FL Local Operations

instance. This request should contain valid FL Model metadata.

Step 2

Try to upload model files via an HTTP PUT request to

`/model/<model_name>/<model_version>` endpoint. The received response status

should be 204.

Step 3

Then, try to upload model files via an HTTP PUT request to

`/model/<model_name>/<model_version>` specifying a non-existent model name

and version. The received response status should be 404.

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/

Report (in case of

manual)

N/A

Table 91: FL Local Operations enabler's functional test 4 results

Enabler FL Local Operations enabler a (test 4)

Description Functional test 4 for the FL Local Operations enabler that tests job status retrieval.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 91 of 122

Enabler FL Local Operations enabler a (test 4)

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL).

Pre-test conditions The FL Local Operations should be deployed.

Additional

information
N/A

Test sequence

Step 1

Send an HTTP GET to the `/job/status` endpoint on the FL Local Operations

instance. This request should the number of training jobs the FL Local Operations is

currently participating in, which for a newly created enabler should be 0.

Step 2
Send a valid Local Operations training configuration via an HTTP POST request to

the `/job/config/training_id` endpoint on the enabler.

Step 3
Then send an HTTP GET request to the `/job/status` endpoint on the enabler again.

The number of current jobs should be larger by 1.

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/

Report (in case of

manual)

N/A

Table 92: FL Local Operations enabler's functional test 5 results

Enabler FL Local Operations enabler a (test 5)

Description Functional test 5 for the FL Local Operations enabler that tests machine capabilities retrieval.

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL), along with terminal commands like `htop`, `pip` and `glxinfo` or equivalent tools.

Pre-test conditions The FL Local Operations should be deployed.

Additional

information
N/A

Test sequence
Step 1

Send an HTTP GET to the `/capabilities` endpoint on the FL Local Operations

instance.

Step 2
Check the response. It should contain information about the available RAM,

storage, GPU capabilities, installed python packages and similar.

Step 3

Use commands like `htop` (to check the RAM and storage), `pip` (to check installed

dependencies) and `glxinfo` (to check GPU availability) to verify the obtained

capabilities. They response should be consistent with the data from these

commands.

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/

Report (in case of

manual)

N/A

Table 93: FL Local Operations enabler's functional test 6 results

Enabler FL Local Operations enabler a (test 6)

Description Functional test 6 for the FL Local Operations enabler that tests data format retrieval.

Approach Semi-automatic

Test tool/s
REST API client (one that is automatically set up for the enabler can be accessed via its API on the

`/docs` URL).

Pre-test conditions The FL Local Operations should be deployed.

Additional

information
N/A

Test sequence Step 1 Send an HTTP GET to the `/format` endpoint on the FL Local Operations instance.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 92 of 122

Enabler FL Local Operations enabler a (test 6)

Step 2
The response should be a JSON file detailing the current training data format of the

data located on the enabler.

Step 3

Compare the JSON with the data format file, which should be located either in the

enabler’s folder marked in configuration as PREPROCESSED_FOLDER (for

already pre-processed data) or its DATA_FOLDER (for its local data).

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/

Report (in case of

manual)

N/A

Table 94: FL Local Operations enabler's functional test 7 results

Enabler FL Local Operations enabler a (test 7)

Description Functional test 7 for the FL Local Operations inference component to test its inference capabilities.

Approach Semi-automatic

Test tool/s gRPC testing client, for example tropicRPC available for Vscode.

Pre-test conditions
The FL Local Operations should be deployed. An inference configuration compatible with the tests

should be set up in the `inference_application/configurations` directory.

Additional

information
N/A

Test sequence

Step 1

Send a gRPC data stream to the enabler adhering with the configuration established

in `inference_application/code/proto/basic-inference.proto`. The requests in the data

stream should have unique id fields. The format of the data should be compatible

with the FL Local Operations data configuration.

Step 2

Receive the predictions in the form of a data stream. The id of the response should

be the same as the id of the request. The shape of the predictions should be

compatible with the predictions of the model.

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/

Report (in case of

manual)

N/A

Table 95: FL Local Operations enabler's functional test 8 results

Enabler FL Local Operations enabler (test 8)

Description Functional test 8 for the FL Local Operations inference component partial deployment.

Approach Fully manual

Test tool/s Existing Kubernetes and Helm installations

Pre-test conditions Internet connection to acquire the Docker image.

Additional

information
N/A

Test sequence

Step 1

Run the command detailed in FL Local Operations README, ` helm install

fllocaloperationslocal fllocaloperations --set

inferenceapp.fullDeployment.enabled=false`.

Step 2
Check nodes and services deployed in Kubernetes. Only the inference component

should be deployed from the FL Local Operations Helm chart.

Step 3 Uninstall the FL Local Operations chart using Helm commands.

Step 4

Run ` kubectl apply -f fllocalops-config-map.yaml ` or `kubectl apply -f

local-pv.yaml` if either the pvc-data-lo PersistentVolume or fllocalops-

configmap ConfigMap were not deployed previously. Deploy the FL Local

Operations chart using ` helm install fllocaloperationslocal fllocaloperations `.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 93 of 122

Enabler FL Local Operations enabler (test 8)

Step 5
Check if the training component, the database component and the inference

component were all properly deployed.

Test verdict If the tests proceed according to the described steps, the end result is a success.

Additional logs/

Report (in case of

manual)

N/A

4.1.2.3 Cybersecurity enablers

Identity Manager enabler

Table 96: Identity Manager enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Ports

exposed

Identity Manager enabler

needs to expose a set of

external ports to check the

service is up and running

A Dynamic Unit Test is deployed to verify that after the

deployment of the enabler ports are responding

accordingly to the definition on docker-compose. Ports

8080 and 2020

Verification can be done in CI/CD pipeline using

https://github.com/gauntlt/gauntlt

Pass /

Fail

2

API REST

exposed

Keycloak

Identity Manager enabler

needs to expose REST API
http://<host>/auth/realms/

Pass /

Fail

3
API REST

exposed

Identity Manager enabler

needs to expose REST API
http://:2020/health

Pass /

Fail

4

Key Cloak

API

response

Enabler rest interfaces needs

to process the response from

the Keycloak API

Different static tests are deployed in order to process

real and simulated connection attempts to the backend

Described and documented in GitLab

https://gitlab.assist-iot.eu/wp5/t53/identity-manager/-

/blob/main/restenabler/test_keycloakapiconnector.py

Pass /

Fail

5

Rest

Connector

API

response

Enabler rest interfaces needs

to process the response from

the Rest Connector

Different static tests are deployed in order to process

real and simulated connection attempts to the backend

Described and documented in GitLab

https://gitlab.assist-iot.eu/wp5/t53/identity-manager/-

/blob/main/restenabler/test_restconnector.py

Pass /

Fail

Table 97: Identity Manager enabler's functional tests results

Enabler Identity Manager enabler (test 1-5)

Description
Short description of the functional test that needs to be done to check that the enabler is properly

deployed.

Approach Fully automatic (integrated in a pipeline)

Test tool/s This enabler only requires a tool that support REST API, such as POSTMAN, and a web browser.

Pre-test conditions The enabler must be deployed and configured with a test dataset.

Additional

information
N/A

Test sequence
Step 1

Using the web browser go to the IP address and port that must be exposed and check

that the webpage is shown.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 94 of 122

Enabler Identity Manager enabler (test 1-5)

Step 2
Send an HTTP Request (GET, POST) to each endpoint. In case of Post request, it

must be included the body.

Step 3 Check if the answer (HTTP Respond) received is according to the Request sent

Test verdict
For each test, each HTTP Respond received must be checked with the expected value and the final

verdict will show the result of the test.

Additional logs/

Report (in case of

manual)

N/A

Authorisation enabler

Table 98: Authorization enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Ports

exposed

Authorisation

Server enabler

needs to expose

a set of external

ports and API

URL to check

the service is up

and running

A Dynamic Unit Test is deployed to verify that after the deployment of

the enabler ports are responding accordingly to the definition on

docker-compose.

Port MySQL 3306 and 9000

Verification can be done in CI/CD pipeline using

https://github.com/gauntlt/gauntlt

Pass /

Fail

2
API REST

AuthServer

Authorisation

Server needs to

expose REST

API

Dynamic Unit Test to verify REST API

 Test with role:

http://<host>:9000/DcAuthzPap/rest/evaluate?resource=domain@s

ourceOfIdentification&action=actionName&code=identification

Code@userRole

 Test Without role:

http://<host>:9000/DcAuthzPap/rest/evaluate?resource=domain@s

ourceOfIdentification&action=actionName&code=identification

Code

Parameter description:

 domain: Required. Name of the domain in Authorisation

Server.

 sourceOfIdentification: Required. Name of the source of

identification (resource) in Authorisation Server.

 actionName: Required. Name of the action requested. Action

names are defined in the rules of the policy in the

Authorisation Server.

 identificationCode: Required. Identification code of a user of

the Authorisation Server.

 userRole: Optional. If used in the rules, will be the user role

used in the rules of the policy in the Authorisation Server.

The response is a JSON with the following format:

Permit:
{"retcode":"0","resource":"domain@sourceOfIden

tification","action":"actionName","code":"iden

tificationCode","response":"Permit","msg":""}

Deny:

{"retcode":"0","resource":"domain@sourceOfIden

Pass /

Fail

https://github.com/gauntlt/gauntlt
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole
https://onlyoffice.assist-iot.eu/ds-vpath/5.4.0-21/web-apps/apps/documenteditor/main/%20http:/%3chost%3e:9000/DcAuthzPap/rest/evaluate?resource=domain@sourceOfIdentification&action=actionName&code=identificationCode@userRole

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 95 of 122

Nº Test Description Evaluation criteria Results

tification","action":"actionName","code":"iden

tificationCode","response":"Deny","msg":""}

3
API REST

PAP

Authorisation

Server needs to

expose REST

API for PAP

http://<host>:9000/DcAuthzPap/
Pass /

Fail

Table 99: Authorisation enabler's functional tests results

Enabler Authorisation enabler (test 1-3)

Description
Short description of the functional test that needs to be done to check that the enabler is properly

deployed.

Approach Fully automatic (integrated in a pipeline)

Test tool/s This enabler only requires a tool that support REST API, such as POSTMAN, and a web browser.

Pre-test conditions The enabler must be deployed and configured with a test dataset.

Additional

information
N/A

Test sequence
Step 1

Using the web browser go to the IP address and port that must be exposed and check

that the webpage is shown.

Step 2
Send an HTTP Request (GET, POST) to each endpoint. In case of Post request, it

must be included the body.

Step 3 Check if the answer (HTTP Respond) received is according to the Request sent

Test verdict
For each test, each HTTP Respond received must be checked with the expected value and the final

verdict will show the result of the test.

Additional logs/

Report (in case of

manual)

N/A

Cybersecurity Monitoring enabler

Table 100: Cybersecurity Monitoring enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Ports

exposed

Security monitoring enabler

needs to expose a set of

external ports to check the

service is up and running

A Dynamic Unit Test is deployed to verify that after

the deployment of the enabler ports are responding

accordingly to the definition on docker-compose.

Verification can be done in CI/CD pipeline using

https://github.com/gauntlt/gauntlt

Pass /

Fail

Table 101: Cybersecurity Monitoring enabler's functional tests results

Enabler Cybersecurity Monitoring enabler (test 1)

Description
Short description of the functional test that needs to be done to check that the enabler is properly

deployed.

Approach Fully automatic (integrated in a pipeline)

Test tool/s This enabler only requires a web browser.

Pre-test conditions N/A

Additional N/A

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 96 of 122

Enabler Cybersecurity Monitoring enabler (test 1)

information

Test sequence
Step 1

Using the web browser go to the IP address and port that must be exponed and check

that the webpage is shown.

Test verdict The final verdict will be determined if the webpage of the enabler can be reached and shown

Additional logs/

Report (in case of

manual)

N/A

Cybersecurity Monitoring Agent enabler

Table 102: Cybersecurity Monitoring Agent enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Ports

exposed

Security monitoring agent

enabler needs to expose a set

of external ports to check the

service is up and running

A Dynamic Unit Test is deployed to verify that after the

deployment of the enabler ports are responding

accordingly to the definition on docker-compose.

Verification can be done in CI/CD pipeline using

https://github.com/gauntlt/gauntlt

Pass /

Fail

Table 103: Cybersecurity Monitoring Agent enabler's functional tests results

Enabler Cybersecurity Monitoring Agent enabler (test 1)

Description
Short description of the functional test that needs to be done to check that the enabler is properly

deployed.

Approach Fully automatic (integrated in a pipeline)

Test tool/s This enabler only requires a web browser to access to Cybersecurity monitoring enabler.

Pre-test conditions Cversecurity Monitoring enabler must be deployed and tested.

Additional

information
It is needed to access the Cybersecurity monitoring enabler to add the agent to the system.

Test sequence
Step 1

Using the web browser, access the Cybersecurity monitoring enabler, and check if

the agent is shown in the proper section

Test verdict If the agent is shown in the proper section will determine the final verdict result

Additional logs/

Report (in case of

manual)

N/A

4.1.2.4 DLT based enablers

Logging and Auditing

Table 104: Logging and Auditing enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Push logs

The DLT has to have an

operating API to receive

messages.

Send data to verify that the API receives them and stores

them in the ledger

Pass /

Fail

2 Store Logs
Store logs with critical data

to the DLT
Run a query to verify the data exists on the ledger

Pass /

Fail

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 97 of 122

Nº Test Description Evaluation criteria Results

3
Retrieve

specific log

Retrieve a log with critical

data that is stored in the

ledge

Provide a specific hash ID of the log to query the log

Pass /

Fail

Table 105: Logging and Auditing enabler's functional tests results

Enabler Logging and Auditing enabler (test 1-3)

Description The full functional test suite consists of test cases that covers all functionalities of the enabler.

Approach
Semi-automatic. They are running all together but the main test function has to be called manually.

The Postman part is manual.

Test tool/s

 CCkit

 gomega (library for testing in golang language)

 ginkgo (library for testing in golang language)

 Postman

Pre-test conditions

Data ready in json format with one of the two sets of fields:

 DeviceID, Value, Timestamp, Partition, Offset, Warning

 Tag_ID, Lat, Lon

Additional

information
Pending to integrate them a pipeline.

Test sequence
Step 1

Test every functionality of the enabler on chain (test the functionalities of the smart

contract) depending on the input and the expected outcome.

Step 2
Test the blockchain network through the api and if the process and the connection

between them goes smoothly. In this step, Postman was used.

Test verdict PASS

Additional logs/

Report (in case of

manual)

Ran 20 of 20 Specs in 0.003 seconds

SUCCESS! -- 20 Passed | 0 Failed | 0 Pending | 0 Skipped

PASS

ok

Integrity Verification

Table 106: Integrity Verification enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Push

hashed data

The DLT has to have an

operating API to receive

messages.

Send data to verify that the API receives them and stores

them in the ledger

Pass /

Fail

2
Store

hashed data

The DLT stores the hashed

data
Run a query to verify the data exists on the ledger

Pass /

Fail

3
Verification

mechanism

The DLT has to verify the

integrity of the data.

Send hashed data (that already exists in the ledger) to

verify that the verification mechanism works and

matches the data with the already stored data

Pass /

Fail

Table 107: Integrity Verification enabler's functional tests results

Enabler Integrity Verification enabler (test 1-3)

Description The full functional test suite consists of test cases that covers all functionalities of the enabler.

Approach
Semi-automatic. They are running all together but the main test function has to be called manually.

The Postman part is manual.

Test tool/s CCkit

https://gitlab.assist-iot.eu/wp5/t54/integrity-verification

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 98 of 122

Enabler Integrity Verification enabler (test 1-3)

 gomega (library for testing in golang language)

 ginkgo (library for testing in golang language)

 Postman

Pre-test conditions
Data ready in json format with one of the two sets of fields:

 Value

Additional

information
Pending to integrate them a pipeline.

Test sequence
Step 1

Test every functionality of the enabler on chain (test the functionalities of the smart

contract) depending on the input and the expected outcome.

Step 2
Test the blockchain network through the api and if the process and the connection

between them goes smoothly. In this step, Postman was used.

Test verdict PASS

Additional logs/

Report (in case of

manual)

Ran 20 of 20 Specs in 0.003 seconds

SUCCESS! -- 20 Passed | 0 Failed | 0 Pending | 0 Skipped

PASS

ok

Broker Service

Table 108: Broker Service enabler's functional tests

Nº Test Description Evaluation criteria Results

1
Push

metadata

The DLT has to have an

operating API to receive

messages.

Send data to verify that the API receives them and stores

them in the ledger

Pass /

Fail

2
Store

metadata
Store metadata to the DLT Run a query to verify the data exists on the ledger

Pass /

Fail

Table 109: Broker Service enabler's functional tests results

Enabler Broker Service enabler (test 1-2)

Description The full functional test suite consists of test cases that covers all functionalities of the enabler.

Approach
Semi-automatic. They are running all together but the main test function has to be called manually.

The Postman part is manual.

Test tool/s

 CCkit

 gomega (library for testing in golang language)

 ginkgo (library for testing in golang language)

 Postman

Pre-test conditions
Data ready in json format with one of the two sets of fields:

 ID, Endpoint, Type, Timestamp, Status

Additional

information
Pending to integrate them a pipeline.

Test sequence
Step 1

Test every functionality of the enabler on chain (test the functionalities of the smart

contract) depending on the input and the expected outcome.

Step 2
Test the blockchain network through the api and if the process and the connection

between them goes smoothly. In this step, Postman was used.

Test verdict PASS

Additional logs/

Report (in case of

manual)

Ran 20 of 20 Specs in 0.003 seconds

SUCCESS! -- 20 Passed | 0 Failed | 0 Pending | 0 Skipped

PASS

ok

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 99 of 122

Federated Learning DLT

Table 110: FL DLT enabler's functional tests

Nº Test Description Evaluation criteria Results

1 Push model

The DLT has to have an

operating API to receive

messages.

Send a model to verify that the API receives them and

stores them in the ledger

Pass /

Fail

2 Store model Store a model to the DLT Run a query to verify the model exists on the ledger
Pass /

Fail

Table 111: FL DLT enabler's functional tests results

Enabler FL DLT enabler (test 1-2)

Description The full functional test suite consists of test cases that covers all functionalities of the enabler.

Approach
Semi-automatic. They are running all together but the main test function has to be called manually.

The Postman part is manual.

Test tool/s

 CCkit

 gomega (library for testing in golang language)

 ginkgo (library for testing in golang language)

 Postman

Pre-test conditions
Data ready in json format with one of the two sets of fields:

 ModelName, ModelVersion, TrainingID, Round, Clients

Additional

information
Pending to integrate them in a pipeline

Test sequence
Step 1

Test every functionality of the enabler on chain (test the functionalities of the smart

contract) depending on the input and the expected outcome.

Step 2
Test the blockchain network through the api and if the process and the connection

between them goes smoothly. In this step, Postman was used.

Test verdict PASS

Additional logs/

Report (in case of

manual)

Ran 25 of 25 Specs in 0.005 seconds

SUCCESS! -- 25 Passed | 0 Failed | 0 Pending | 0 Skipped

PASS

ok

4.1.2.5 Manageability enablers

Enablers’ manager

Table 112: Enablers’ manager functional tests

Nº Test Description Evaluation criteria Results

1
Show

enablers list

The enabler provides the list

of the deployed enablers.
The list of the deployed enablers is shown in a table.

Pass /

Fail

2
Deploy

enabler

Deploys a new enabler using

the Smart Orchestrator under

the hood.

The new enabler is shown in the table of the deployed

enablers.

Pass /

Fail

3
Terminate

an enabler

Terminates a deployed

enabler, interacting with the

Smart Orchestrator under the

hood.

The enabler is shown in the table of the deployed

enablers and its operational status is “terminated”. Now,

the enabler can be deleted.

Pass /

Fail

https://gitlab.assist-iot.eu/wp5/t54/federated-learing

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 100 of 122

Nº Test Description Evaluation criteria Results

4
Delete an

enabler

Deletes a terminated enabler

using the Smart

Orchestrator.

The enabler is not shown in the table of the deployed

enablers.

Pass /

Fail

5
Show

enabler logs

Shows the logs of the

enabler.
The list of logs of the selected enabler is shown.

Pass /

Fail

6

Show Helm

chart

repository

list

The enabler provides the list

of the registered Helm chart

repositories.

The list of the registered Helm chart repositories is

shown in a table.

Pass /

Fail

7

Add a Helm

chart

repository

Adds a new Helm chart

repository using the Smart

Orchestrator under the hood.

The new Helm chart repository is shown in the table of

the registered Helm chart repositories.

Pass /

Fail

8

Delete a

Helm chart

repository

Deletes a Helm chart

repository using the Smart

Orchestrator under the hood.

The deleted Helm chart repository is not shown in the

table of the registered Helm chart repositories.

Pass /

Fail

Table 113: Enablers’ manager functional tests 1-5 results

Enabler Enablers manager (tests 1-5)

Description Functional tests 1-5 for the Enablers manager, which are those related with the enablers management.

Approach
Fully manual because the end user only interacts with the frontend component of the enabler, since it

is a user-friendly dashboard deployed as a web page.

Test tool/s Web browser

Pre-test conditions The enabler itself and the Smart Orchestrator must be previously deployed.

Additional

information

Test sequence
Step 1

Navigate to the Enabler list page, which can be accessed through its entry located

under the Enablers management section of the dashboard menu.

Step 2
Wait until the table of the deployed enablers is loaded using the data obtained from

the Smart Orchestrator.

Step 3

Perform the needed action using the proper buttons of the page and wait for the final

result. Some actions will need additional actions (e.g., fill in a form, apply to a

confirmation dialog, …)

Step 4
Check if the final displayed information is related with the performed action and the

expected result.

Test verdict

The test passes if the user can perform the actions described in all the steps, even if the operational

status of a deployed enabler is failed or an error message certainly related with the Smart Orchestrator

enabler is shown. The test fails if the user cannot perform any action described in any step due to an

unexpected error (not certainly related with the Smart Orchestrator), or if the dashboard backend loses

its connection with the Smart Orchestrator. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Table 114: Enablers’ manager functional tests 6-8 results

Enabler Enablers manager (tests 6-8)

Description
Functional tests 6-8 for the Enablers manager, which are those related with the Helm chart repositories

management.

Approach
Fully manual because the end user only interacts with the frontend component of the enabler, since it

is a user-friendly dashboard deployed as a web page.

Test tool/s Web browser

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 101 of 122

Enabler Enablers manager (tests 6-8)

Pre-test conditions The enabler itself and the Smart Orchestrator must be previously deployed.

Additional

information

Test sequence
Step 1

Navigate to the Helm chart repositories page, which can be accessed through its entry

located under the Enablers management section of the dashboard menu.

Step 2
Wait until the table of registered Helm chart repositories is loaded using the data

obtained from the Smart Orchestrator.

Step 3

Perform the needed action using the proper buttons of the page and wait for the final

result. Some actions will need additional actions (e.g., fill in a form, apply to a

confirmation dialog, …)

Step 4
Check if the final displayed information is related with the performed action and the

expected result.

Test verdict

The test passes if the user can perform the actions described in all the steps, even if an error message

certainly related with the Smart Orchestrator enabler is shown. The test fails if the user cannot perform

any action described in any step due to an unexpected error (not certainly related with the Smart

Orchestrator), or if the dashboard backend loses its connection with the Smart Orchestrator. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Composite Services manager

The component is in an early development stage, as it greatly depends on its interaction with other enablers (and

hence, need to have their APIs and environment variables in place). At the moment, it is not possible to describe

concise functional tests, therefore for the sake of avoiding adding content that might be likely modified,

functional tests are not indicated yet.

Table 115: Composite Services manager’s functional tests

Nº Test Description Evaluation criteria Results

1

Show

deployed

pipelines

The enabler provides the

deployed pipelines.

The enabler shows the deployed pipelines in a user-

friendly way.

Pass /

Fail

2

Deploy a

new

pipeline

Deploys a new pipeline

using the Smart Orchestrator

under the hood.

The new pipeline is shown in a user-friendly way and

the agents of the new pipeline are deployed in the proper

Ks cluster.

Pass /

Fail

3

Delete an

existing

pipeline

Deletes an existing pipeline

using the Smart Orchestrator

under the hood.

The deleted pipeline is not shown, and the agents of the

deleted pipeline are deleted in the K8s cluster.

Pass /

Fail

4

Update an

existing

pipeline

Updates an existing pipeline

using the Smart Orchestrator

under the hood.

The updated pipeline is shown in a user-friendly way

and the agents of the updated pipeline are deployed or

deleted (if needed) in the proper K8s cluster.

Pass /

Fail

Table 116: Composite Services manager’s functional tests results

Enabler Composite services manager tests

Description Functional tests for the Composite services manager.

Approach
Fully manual because the end user only interacts with the frontend component of the enabler, since

it is a user-friendly dashboard deployed as a web page.

Test tool/s Web browser

Pre-test conditions The enabler itself, the Smart Orchestrator and the LTSE must be previously deployed.

Additional

information

The agents deployed to accomplish the pipelines are not shown in the table of deployed enablers

since they are not considered enablers.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 102 of 122

Enabler Composite services manager tests

Test sequence
Step 1

Navigate to the Manageability flow page through its entry in the menu of the

dashboard.

Step 2 Modify the existing pipelines: add, delete or update them.

Step 3 Click on the Deploy button to deploy the displayed pipelines.

Step 4
Check in the debug panel, which is located in the right part of the view, appears a

message informing that an HTTP 200 code is returned

Test verdict The test only passes if an HTTP 200 code is returned. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Clusters and Topology manager

Table 117: Clusters and Topology manager’s functional tests

Nº Test Description Evaluation criteria Results

1
Show

clusters list

The enabler provides the

list of the registered K8s

clusters.

The list of the deployed enablers is shown in a

table.

Pass /

Fail

2
Register

cluster

Registers a new K8s

cluster using the Smart

Orchestrator.

The new cluster is shown in the table of the

registered clusters and its status is “ENABLED”.

Pass /

Fail

3
Delete

cluster

Deletes a K8s cluster using

the Smart Orchestrator.

The K8s cluster is not shown in the table of the

registered K8s clusters.

Pass /

Fail

4

Show

clusters

topology

graph

The enabler shows the

topology (K8s nodes and

its role: master or worker)

of the registered K8s

clusters.

A user-friendly graph is shown using the

information about the topology of the registered

K8s clusters.

Pass /

Fail

5

Show a list

of the

enablers

deployed

on a cluster

The enabler shows a list of

the enablers deployed on

the selected K8s cluster.

The list of the deployed enablers in the selected K8s

cluster is shown in a dialog.

Pass /

Fail

6

Deploy an

enabler on

a cluster

Deploys a new enabler on

the selected K8s node

using the Smart

Orchestrator under the

hood.

The new enabler is shown in the table of the

deployed enablers of the Enabler list page (Enabler

manager).

Pass /

Fail

Table 118: Clusters and Topology manager’s functional tests 1-3 results

Enabler Clusters and Topology manager (tests 1-3)

Description
Functional tests 1-3 for the Clusters and topology manager, which are those related with the K8s

cluster management.

Approach
Fully manual because the end user only interacts with the frontend component of the enabler, since

it is a user-friendly dashboard deployed as a web page.

Test tool/s Web browser

Pre-test conditions The enabler itself and the Smart Orchestrator must be previously deployed.

Additional

information
N/A

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 103 of 122

Enabler Clusters and Topology manager (tests 1-3)

Test sequence
Step 1

Navigate to the K8s clusters page, which can be accessed through its entry located

under the K8s clusters & devices section of the dashboard menu.

Step 2
Wait until the table of registered K8s clusters is loaded using the data obtained from

the Smart Orchestrator.

Step 3

Perform the needed action using the proper buttons of the page and wait for the final

result. Some actions will need additional actions (e.g., fill in a form, apply to a

confirmation dialog, …)

Step 4
Check if the final displayed information is related with the performed action and the

expected result.

Test verdict

The test passes if the user can perform the actions described in all the steps, even if the status of a

registered cluster is DEGRADED or FAILED, or an error message certainly related with the Smart

Orchestrator enabler is shown. The test fails if the user cannot perform any action described in any

step due to an unexpected error (not certainly related with the Smart Orchestrator), or if the

dashboard backend loses its connection with the Smart Orchestrator. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Table 119: Clusters and Topology manager’s functional tests 4-5 results

Enabler Clusters and Topology manager (tests 4-5)

Description
Functional tests 1-3 for the Clusters and topology manager, which are those related with the K8s

cluster topology management.

Approach
Fully manual because the end user only interacts with the frontend component of the enabler, since it

is a user-friendly dashboard deployed as a web page.

Test tool/s Web browser

Pre-test conditions The enabler itself and the Smart Orchestrator must be previously deployed.

Additional

information
N/A

Test sequence
Step 1

Navigate to the K8s clusters topology page, which can be accessed through its entry

located under the K8s clusters & devices section of the dashboard menu.

Step 2
Wait until the user-friendly graph is created using the information about the topology

of the registered K8s clusters obtained from the Smart Orchestrator.

Step 3 Click on a K8s cluster.

Step 4 Check if the list of deployed enablers on the selected cluster is shown.

Test verdict

The test passes if the user can perform the actions described in all the steps, even if an error message

certainly related with the Smart Orchestrator enabler is shown. The test fails if the user cannot perform

any action described in any step due to an unexpected error (not certainly related with the Smart

Orchestrator), or if the dashboard backend loses its connection with the Smart Orchestrator. -> Passed

Additional logs/

Report (in case of

manual)

N/A

Table 120: Clusters and Topology manager functional test 6 results

Enabler Clusters and topology manager (test 6)

Description
Functional test 6 for the Clusters and topology manager, which is related with the K8s cluster

topology management.

Approach
Fully manual because the end user only interacts with the frontend component of the enabler, since it

is a user-friendly dashboard deployed as a web page.

Test tool/s Web browser

Pre-test conditions The enabler itself and the Smart Orchestrator must be previously deployed.

Additional

information
N/A

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 104 of 122

Enabler Clusters and topology manager (test 6)

Test sequence
Step 1

Navigate to the K8s clusters topology page, which can be accessed through its entry

located under the K8s clusters & devices section of the dashboard menu.

Step 2
Wait until the user-friendly graph is created using the information about the topology

of the registered K8s clusters obtained from the Smart Orchestrator.

Step 3 Click on a K8s node and fill in the form to deploy a new enabler on the selected node.

Step 4
Navigate to the Enabler list page, which can be accessed through its entry located

under the Enablers management section of the dashboard menu.

 Step 5

Check if the deployed enabler is displayed in the table of the deployed enablers and

if in the K8s cluster column appears the same K8s cluster to which the previously

selected K8s node belongs.

Test verdict

The test passes if the user can perform the actions described in all the steps, even if the operational

status of a deployed enabler is failed or an error message certainly related with the Smart Orchestrator

enabler is shown. The test fails if the user cannot perform any action described in any step due to an

unexpected error (not certainly related with the Smart Orchestrator), or if the dashboard backend loses

its connection with the Smart Orchestrator. -> Passed

Additional logs/

Report (in case of

manual)

N/A

4.2 Integration testing
The integration testing methodology and approach for ASSIST-IoT is outlined in D6.2 [15.], where it is

described as a sequential process following functional testing. However, given that integration testing involves

checking the interaction between internal components of an enabler, it is often confounded with functional

testing, as the communication between components is itself a functionality. Due to this fact, it was decided to

approach integration testing in a different way, addressing specifically the integrations between enablers.

The aim is to test the connection of enablers without considering the specific internal processes, which have

already been tested in unit and functional testing. Hence, this conforms the first phase of integrating components,

to be later enhanced towards entire pilot trials (end-to-end testing phase). The table below reports the status of

integrations that have been already implemented in the project. The partners that implemented the integrations

are marked with blue color.

Another important note is that after the unified testing environment has been running, many of the integrations

have progressed immediately. The current state of the project requires the quick integration of enablers, so the

deployments in pilots can be eventually launched.

Table 121: Integration progress of ASSIST-IoT enablers

Enablers Involved Integration Description

Partner

Responsible

& Involved

Pilots

Involved

Current

status

1 EDBE – LTSE

The integration involves the information (camera position,

licence plate number etc.) of the pictures that arrive from the

scanners, which have to be transferred through EDBE. The

information is sliced into separate attributes and then stored

to the LTSE.

CERTH - TT P3b Completed

2
Monitoring &

Notifying – ALL

DLT enablers

Integration of Kafka and DLT enablers. Firstly, Logging and

Auditing in order to store critical event notifications from

IoT devices. Secondly with Integrity Verification to store

hashes of information in order to ensure that it remains

CERTH P3b Completed

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 105 of 122

Enablers Involved Integration Description

Partner

Responsible

& Involved

Pilots

Involved

Current

status

intact. Third with Broker Service to monitor the status of

edge devices and gateways.

3 OpenAPI - IdM

Configuring Kong API Gateway to use Open ID Connect

(OIDC) plugin to integrate with Keycloak IdM in order to

secure exposed endpoints. Also using Keycloak OIDC to

connect to the openAPI Portal.

CERTH -

S21SEC
ALL Completed

4

Semantic

Annotation enabler

– Semantic

Repository enabler

Downloading RML files from the Semantic Repository. The

Semantic Annotation enabler needs these files to annotate

incoming data streams. The integration will be used in Pilot

2 to integrated data from various sources.

SRIPAS P2 Completed

5
Semantic

Annotation enabler

– EDBE

Integration of the MQTT protocol with the Semantic

Annotation enabler. The Semantic Annotation enabler is

able to produce and consume data using the MQTT protocol.

The integration is needed for Pilot 2 to ensure

interoperability with other enablers and components.

SRIPAS -

ICCS
P2 Pending

6
Semantic

Translation

enabler – EDBE

In addition to the existing Apache Kafka support, Semantic

Translation enabler will offer integration of the MQTT

protocol

SRIPAS –

ICCS
P2 Pending

7
Location

Processing enabler

– EDBE

Integration of the MQTT protocol with the Location

Processing enabler. The Location Processing enabler is able

to produce and consume data using the MQTT protocol. The

integration is needed for Pilot 2 to ensure interoperability

with other enablers and components.

SRIPAS –

ICCS
P2 Pending

8

Location

Processing enabler

– Location

Tracking enabler

Configuration in the Location Tracking enabler was

prepared for ingesting location data from the location tags.

A common schema for data exchanged between the enablers

was established. The integration is needed for location-

tracking related use cases in Pilot 2.

SRIPAS –

NEWAYS
P2 Completed

9
MR enabler –

Location

Processing enabler

Obtaining worker locations from the Location Processing

enabler through mqtt protocols, using the EDBE and

displaying those new locations inside the MR enabler. The

MR enabler, as soon as it receives the mqtt message, it

compares the tags in the message with the workers’ database

and displays the new location of the workers that are closer

to the MR enabler.

SRIPAS –

ICCS
P2 Completed

10
MR enabler –

Semantic

Repository enabler

Downloading 3D models and other media files from the

Semantic Repository using REST API and displaying them

through the MR enabler.

ICCS –

SRIPAS
P2 Completed

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 106 of 122

Enablers Involved Integration Description

Partner

Responsible

& Involved

Pilots

Involved

Current

status

11
Smart orchestrator

- PUD

To let the orchestrator decide the optimal place to

automatically deploy enablers in the available clusters,

different metrics (resource and latency-related) are needed.

This required implementing a federated version of the PUD

enabler to access such information from a central location,

without needing to involve the LTSE nor custom

synchronization mechanisms.

UPV - ICCS P2 Completed

12
Smart orchestrator

- Manageability

enablers

The Smart orchestrator API is extensive and unfriendly to be

directly utilized for administrating a given deployment (i.e.,

involved clusters, enablers and repositories). Manageability

enablers provide interfaces and forms to abstract it, which

required integrating its backend with the right orchestrator

endpoints, including some aggregation of calls and filtering

of the results.

UPV ALL Completed

13
Smart orchestrator

- EDB

ETSI MANO architecture was not thought for massive

deployments, in which several clusters (managed under the

umbrella of “groups”) will deploy the same set of enablers.

To cope with this kind of cases, an extended MQTT-based

architecture was implemented, in which the orchestrator

incorporates a dedicated MQTT client and data model to

manage the entire flow. MQTT bridges between the main

EDBE and edge instances have been also provisioned.

Buffering and timeout strategy under refinement.

UPV ALL Completed

14
SD-WAN & WAN

acceleration

enablers

These enablers are naturally working together to implement

IPSec tunnels among connected network sites. Dedicated

code was needed to enable the configuration of the WAN

acceleration enabler instances from the SD-WAN controller,

which acts as the orchestrator of the entire SD-WAN

solution.

UPV ALL Completed

15
VPN enabler -

LTSE

Information about clients provisioned was initially stored in

an internal database of the VPN enabler. This information

has been moved to the LTSE, and to that end the API of the

VPN enabler has been modified to implement the required

LTSE endpoints. In this way, less storage systems are

needed in a given deployment,

UPV ALL Completed

16
Manageability

enablers - Tactile

dashboard

Manageability enablers are essential to manage a

deployment, and therefore it was natural to integrate them

with the main user framework of the project. To that end, the

development guides of the tactile dashboard enabler were

leveraged to generate such interfaces (including backends)

and then integrating them in the same solution (VUI + Spring

/PUI9 framework), avoiding the need of deploying different

web applications independently and optimizing in this way

the available resources.

UPV – PRO ALL Pending

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 107 of 122

Enablers Involved Integration Description

Partner

Responsible

& Involved

Pilots

Involved

Current

status

17

Traffic

classification

enabler - Semantic

repository enabler

The traffic classification enabler can generate and needs

models to work. At this moment, involved models are stored

and consumed in a storage volume of the host containing an

instance of the enabler. The idea is to modify its API to

interact with the Semantic repository enabler to manage the

trained models (store and get them), being the latter a

dedicated solution for that purpose.

UPV –

SRIPAS
- Completed

18
FL Training

Collector enabler

The FL Training Collector has been fully integrated with the

FL Repository and the FL Local Operations, allowing for

download and storage of models and custom components in

the case of FL Repository and for configurable FL training

and evaluation in the case of FL Local Operations. Proper

connections can be established with the FL Orchestrator, but

in order to fully integrate the system some internal changes

in FL Orchestrator are needed. These integrations will be

then necessary for the proper functioning of Pilot 3b.

UPV –

SRIPAS
P3b Completed

19
FL Repository

enabler

The FL Repository has been fully integrated with the FL

Orchestrator, FL Training Collector and the FL Local

Operations. The integration allows for flexible ML model,

training results and custom modules download and storage.

These integrations will be then necessary for the proper

functioning of Pilot 3b.

SRIPAS –

PRO
P2, P3b Completed

20
FL Local

Operations enabler

The FL Local Operations has been fully integrated with the

FL Training Collector and the FL Repository, allowing for

the configurable start and monitoring of the FL training

process and the flexible ML model and custom component

loading respectively. The integration with the FL

Orchestrator still necessitates some internal updates in the

code. These integrations will then be used in pilots 3b and 2.

SRIPAS –

PRO
P3b, P2 Completed

21
MR enabler -

EDBE

The MR enabler receives messages in real time, through

topics that it has subscribed, every time that the EDBE

publishes a message to the specific topic (mqtt protocols).

The message could contain either information for a real time

alert, or an update on the location of the construction’s

workers.

ICCS P3b, P2 Completed

22
MR enabler -

Tactile dashboard

Integration of the interface holding the updatable fields for

the MR enabler inside the PUI9 framework. Those fields will

be configurable through the PUI9 framework and will be

received by the MR enabler through a REST API call, when

the MR enabler is executed.

ICCS – PRO P2 Pending

23 MR enabler - PUD The MR enabler receives data, containing health metrics,

from the Hololens device that is executed on, through

constant REST API calls, and stores them. Then, the PUD

ICCS P2 Completed

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 108 of 122

Enablers Involved Integration Description

Partner

Responsible

& Involved

Pilots

Involved

Current

status

enabler make constant REST API calls to receive the latest

values and display them.

24
MR enabler -

LTSE

Retrieve workers’ data from the LTSE database and display

them on MR through REST API calls. Also prepare reports

on the MR enabler’s UI and send them to the LTSE database

through REST API requests.

ICCS P2 Completed

25
SDN controller -

ACN enabler

Integration of SDN controller and ACN enablers is for

collecting information from SDN controller and use

controller to configure (rerouting paths) the network, to

execute the results of optimisation from AI module into the

SDN network.

ACN modules are using ONOS applications: Path Generator

and Maintainer in ACN communicates directly with ONOS

and independently with two ONOS build-in applications,

i.e., Intent Forwarding (IFWD) and Intent Monitoring and

Rerouting (IMR).

OPL P2 Completed

26
Tactile dashboard -

IdM
Integration of the tactile dashboard and the IdM in order to

authenticate users by means of the stored tokens in the IdM.
PRO – S21Sec ALL Completed

27
Tactile dashboard

– Authorisation

enabler

Integration of the tactile dashboard and the Authz in order to

authorized specific roles to specific users in the dashboard.
PRO – S21Sec ALL Completed

28 Multi-link – LTSE

The Multi-link enabler makes use of VPN tunnels and

dedicated information to perform. Similarly to the VPN-

LTSE integration, the multi-link enabler data will be stored

in the LTSE, thus requiring some modifications of its API to

be implemented.

UPV ALL Pending

29 LTSE – BKPI Visualization of historical data from Malta Freeport stored

in the NoSQL part of the LTSE through the BKPI enabler
PRO P1

Partially

completed

30 PUD – BKPI

PUD’s underlying technology uses Grafana as main

representation framework. Project envisions BKPI as the

main one, and therefore some dedicated dashboards and

plugins (as data are to be stored in LTSE) are needed

ICCS ALL
Partially

completed

31
FL Local

operations & DLT-

based FL

A custom FL training strategy will store aggregated weights

along with singular client weights in the FL-DLT enabler in

order to later retrieve from the FL-DLT computed client

reputation scores. More precisely, the FL Local Operations

should send a series of requests, first sending the files

containing the aggregated weights, then client weights, and

then finally a JSON file with metadata like the round index

and number of clients the FL-DLT should wait for. Then the

FL Local Operations should, on sending an HTTP request

SRIPAS -

CERTH
P3b Pending

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 109 of 122

Enablers Involved Integration Description

Partner

Responsible

& Involved

Pilots

Involved

Current

status

with a previously specified format, receive a JSON response

with the reputation score for a given client. This integration

will not be used in any pilots.

32
Cybersecurity

agents and server

Cybersecurity Server has 2 parts, one the Incident Response

must be installed in the cloud and the Incident detection can

be implement in the cloud or the edge (Depends on each

Pilot). Finally, the agent needs a Linux or Windows

compatible OS.

S21Sec ALL Completed

33
BKPI – Tactile

Dashboard

BKPI enabler is essential to visualized time-series KPI pilot

data, and therefore it was natural to integrate them with the

main user framework of the project. To that end, the

development guides of the tactile dashboard enabler were

leveraged to generate such interfaces, integrating them in the

same solution, avoiding the need of deploying different web

applications independently.

PRO P1 Completed

4.3 End-to-end testing
As already mentioned in the previous deliverable, end-to-end testing is the last phase of software functional

testing. After unit, functional and integration testing of enablers, the environment now becomes the entire

application and the interconnection between enablers. The best testbed for conducting end-to-end testing is no

other than the actual pilot trials and sub-trials. The recommended way to approach end-to-end testing, since

there are enablers involved from different organizations, is to create an integration team composed of all the

technical partners in such trial, which will be responsible for developing, executing and reporting the tests. It is

important to note that the integration team is not officially recognized as a standalone unit within the project.

However, it is important for all organizations involved in the project to collaborate closely on testing and

integration, to ensure that all components work seamlessly together.

Table 122: End-to-end testing report final table

Pilot #

Trial #

Enabler’s

connection

under test

Description Input Outputs
Already tested /

Which phase
Test result

Automated or

manual /

Comments in

case of

manual

Which enablers are

under test

Brief description of the

connection being tested

Which is the

input data of

the interacting

enablers

Which is the

output which

will be input

to the next

connection

Yes / no

Pass / Fail

Auto / Manual

If yes in which

phase?
Any comment

The amendment of the project (entry into force in M30) allows to present a general approach for test

development in each pilot, and in the last deliverable of this deliverable series, the results of the tests will be

reported with precision and thoroughness. The following section presents the general idea of what will tested in

be end-to-end phase and provide an overview of the expected outcomes. An important note is that in cases that

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 110 of 122

there are already implemented automated tests between enablers in the previous phases, these tests are modified

and transferred into each trial.

4.3.1 Pilot 1: Port Automation

4.3.1.1 Trial #1: Tracking assets in terminal yard

This pilot trial involves the tracking of assets in the terminal yard. The architectural diagram delivered in D7.2

[17.] includes a straightforward connection of the enabler.

Figure 25. Architectural block diagram of Pilot 1 – Trial #1

In principle, to have a complete tested pilot trial, every line connecting the enablers / components has to be

tested. In detail, the end-to-end testing of this trial includes the following steps:

 Test the connection between GWEN with the EDBE deployments

 Test the connection between EDBE and LTSE

 Test the connection of Authorisation Enabler with EDBE, LTSE, VPN

 Test the connection of tactile dashboard with the manageability enablers and with smart orchestrator

In fact, all of the above have been already tested multiple times, and the tests are automated and integrated in

the pipeline. The point of this phase is to monitor that all of the application’s functionalities are present, stable

and reliable, in order to be delivered to the end user.

4.3.1.2 Trial #2: Automated CHE cooperation

Similar to the first pilot trial, the testing activities involve:

 The connection of GWEN with EDBE

 The connection of Authorisation enabler and IdM enabler with the application’s dashboard

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 111 of 122

Figure 26. Architectural block diagram of Pilot 1 – Trial #2

As mentioned before, some of the tests have been already conducted in the previous phases of testing, making

the monitoring of the application’s stability and reliability the main purpose of this phase.

4.3.1.3 Trial #3: RTG remote control with AR support

The third trial of pilot one involves the following testing activities:

 GWEN, EDBE, Multilink enabler and video augmentation enabler working together

 The connection of EDBE with LTSE

 The connection Video augmentation enabler with FL repository

 The integration of IdM enabler and Authorisation enabler with the platform

 The connection of VPN enabler, Tactile dashboard, Manageability and Smart orchestrator, which will

actually work as a unity

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 112 of 122

Figure 27. Architectural block diagram of Pilot 1 – Trial #3

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

4.3.2 Pilot 2: Smart safety of workers

4.3.2.1 Trial #1: Occupational safety and health monitoring

SUB TRIAL – 1: Workers’ health and safety assurance sub-trial

The first sub-trial of pilot two involves the following testing activities:

 Connection between Authorisation and IdM enablers with Tactile dashboard

 Connection of Tactile dashboard and Construction site controller with Workplace safety controller

 Connection of EDBE with Workplace safety controller, PCS interface, Weather data collector,

Wristband interface and semantic annotator

 Connection of Workplace safety controller with Semantic annotator and Semantic repository

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 113 of 122

Figure 28. Architectural diagram for Workers’ health and safety assurance sub-trial

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

SUBTRIAL – 2: Geofencing boundaries enforcement sub-trial

The second sub-trial of pilot two involves the following testing activities:

 Connection of location tracking enabler with EDBE

 Connection of EDBE with LTSE, Tactile Dashboard and Workplace safety controller

 Connection of Workplace safety controller with Semantic repository enabler, Constructions site

controller and Integrity Verification enabler

 Connection of Tactile dashboard with Authorisation and IdM enablers

 Connection of Semantic repository enabler with BIM processor and Location processing enabler

 Connection of BKPI reporting enabler with LTSE and Tactile dashboard

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 114 of 122

Figure 29. Architectural diagram for Geofencing boundaries enforcement sub-trial

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

SUB TRIAL – 3: Construction site access control sub-trial

The third sub-trial of pilot two involves the following testing activities:

 Connection of EDBE with Location tracking enabler, LTSE and Workspace safety controller

 Connection of Workspace safety controller with Amazon rekognition, Construction site controller,

Semantic repository enabler and Integrity verification enabler

 Connection of Tactile dashboard with Authorisation and IdM enablers, BKPI reporting enabler, LTSE

and Integrity verification enablers

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 115 of 122

Figure 30. Architectural diagram for Construction site access control sub-trial

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

4.3.2.2 Trial #2: Fall-related incident identification

The second trial of pilot two involves the following testing activities:

 Connection of EDBE with Location tracking enabler, LTSE and Workspace safety controller

 Connection of Workspace safety controller with Amazon rekognition, Construction site controller,

Semantic repository enabler, Integrity verification enabler and FL local operations

 Connection of Tactile dashboard with Authorisation and IdM enablers, BKPI reporting enabler, LTSE

and Integrity verification enablers

 Connection of FL local operations with all the remaining FL enablers

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 116 of 122

Figure 31. Architectural diagram for Fall-related incident identification trial

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

4.3.2.3 Trial #3: Health and safety inspection support

The third trial of pilot two involves the following testing activities:

 Connection of MR glasses with PUD, Tactile dashboard, Semantic repository enabler and EDBE

 Connection of Tactile dashboard with Authorisation and IdM enablers

 Connection of Workplace safety controller with EDBE, Location processing enabler and Construction

site controller

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 117 of 122

Figure 32. Architectural diagram for Safe navigation instructions sub-trial

 Connection of MR glasses with LTSE

 Connection of Location tags with Location tracking enabler

 Connection of EDBE with Location tracking enabler

Figure 33. Architectural diagram for Health and safety inspection support sub-trial

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 118 of 122

4.3.3 Pilot 3A: Vehicle in-service emission diagnostics

4.3.3.1 Trial #1: Fleet in-service emission verification

The first trial of pilot three-a involves the following testing activities:

 Integration of GWEN, EDBE, Multilink enabler, Authorisation enabler and IdM as one technology

block

 Connection of LTSE with the above block of enablers, Authorisation and IdM enablers

 Connection of Manageability enablers with Smart orchestrator

Figure 34. BS-P3A-1: Fleet in-service emission verification

Figure 35. BS-P3A-2: Vehicle diagnostics

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 119 of 122

4.3.4 Pilot 3B: Vehicle exterior condition inspection and

documentation

4.3.4.1 Trial #1: Vehicle exterior condition inspection and documentation

The first trial of pilot three-b involves the following testing activities:

 Connection of the scanner with EDBE

 Connection of Smart orchestrator with Tactile dashboard, LTSE and BKPI reporting enabler

 Connection of EDBE with LTSE

 Connection of the local Filesystem with FL enablers

 Connection of Tactile dashboard with Authorisation and IdM enablers

Figure 36. Architectural diagram for Vehicle exterior condition inspection and documentation

If there are tests already implemented, they will be reported in the corresponding table in the last deliverable.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 120 of 122

4.4 Acceptance testing
Due to the amendment to the Grant Agreement of the project, that has extended the duration of WP6 till WP36

(originally, ending now at M30), the focus of this deliverable has shifted to reporting the tests that have been

implemented in the first three testing phases agreed upon by the consortium. The aim is to have a practical

approach for acceptance testing after the conclusion of the former, given that the project is now in a phase where

pilots have to be validated. The definition of acceptance testing was documented in the previous deliverable

D6.2, along with various technologies and a preliminary approach. The priority now is to ensure that the

approach can be accurately implemented and executed in the following months.

In order to properly understand the purpose of acceptance testing in ASSIST-IoT, it is important to establish a

link between the requirements defined in WP3, and specifically in D3.3 [4.]. This involves mapping the

requirements onto the corresponding business needs and defining the solutions that will fulfill those needs. The

primary goal of acceptance testing is to verify compliance with the gathered requirements and assess whether

the solution is ready for delivery to the pilots. This is done in a laboratory environment subsequently to the end-

to-end testing process in which the pilot trials have been tested.

From functional to non-functional and with their priorities set, the requirements will be analyzed and classified,

with the next step being to verify the acceptance criteria formulated in WP3 to ensure that the solution meets

the requirements and is suitable for deployment in the pilots.

4.5 Performance testing
Performance testing is the final testing process for software deployment that focuses on speed, response time,

stability, reliability, and scalability [20.]. This test relates closely to business requirements as the system’s

operations will be evaluated against business indicators [21.]. The result of this testing phase is the diagnostic

information leading to eliminating bottlenecks and improving the poor performance of components. The

literature divides the performance testing into smaller units [22.], which are: i) load, ii) stress, iii) endurance,

iv) spike, and v) configuration testing. The aforementioned tests demand various conditions for assessing the

system’s performance.

In terms of ASSIST-IoT, performance testing is to take place in the deployment of pilot sites. The work in other

packages is essential for providing the basic indicators for running performance tests. The indicators range from

technical deliverables relevant to architecture and development to business driven by the pilot sites. These

indicators will provide an overview of the system’s scalability, reliability, stability, and efficiency in different

IoT scenarios.

The requirements that were appointed for acceptance testing can be segregated, and the ones that are more

relevant to performance testing should be applied to this phase. In a sense, the aforementioned requirements

along with some KPIs will form the criteria for performance testing. Practically, the same pilot pipelines tested

in the acceptance phase should be used for this testing phase by stressing and loading them.

Since each component has its own performance metrics, it is important to verify the quantitative values under

different conditions. Therefore, the following units should be the core of performance testing:

 Throughput: The number of requests or transactions that the system can handle per unit of time, which

applies to all pilots that interact with LTSE for example.

 Response time: The time it takes for the system to respond to a request.

 Latency: The time it takes for a specific operation to complete, for example, the time it takes for a

notification to arrive to a worker for pilot 2.

 Concurrent users: The number of users that can use the system simultaneously without degrading

performance. (KPI 4.7.1)

 Resource allocation: The amount of system resources, such as CPU, memory, and disk space that the

system uses during different types of operations. It is essential to have the capacity to dynamically

expand or contract resources without sacrificing performance or availability.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 121 of 122

5 Conclusion / Future Work

The objective of this deliverable is to provide a detailed report on the tests that have been conducted during the

integration process, following the DevSecOps methodology. The report covers the procedures, tools, and tests

utilized to ensure the security of the deployed architecture. The tools employed in the testing and integration

process include GitLab, GitLab CI/CD, GitLab Runner, Container registry, Helm registry, and Kubernetes.

The testing strategy for each enabler and the level of integration achieved so far have been thoroughly

documented, while the upcoming testing phases have been analysed in both theoretical and practical manners

to facilitate their reporting in the final deliverable. The time plan for the testing and integration phase has been

updated to reflect the amendment of the project.

This deliverable will be updated in conjunction with the other two WP6 deliverables, which will document the

final testing and integration results, packaging and releasing, technical support, and documentation.

D6.3 Testing and integration plan - Final

Version 1.0 – 9-MAY-2023 - ASSIST-IoT© - Page 122 of 122

References

[1.] ASSIST-IoT (2022). D6.7: Release and Distribution Plan. Deliverable of the Horizon-2020 ASSIST-

IoT project, Grant Agreement No. 957258.

[2.] ASSIST-IoT (2022). D6.6: Technical and Support Documentation. Deliverable of the Horizon-2020

ASSIST-IoT project, Grant Agreement No. 957258.

[3.] ASSIST-IoT (2021). D6.1: Devsecops Methodology and tools. Deliverable of the Horizon-2020

ASSIST-IoT project, Grant Agreement No. 957258.

[4.] ASSIST-IoT (2021). D3.3: Use Cases Manual & Requirements and Business Analysis. Deliverable of

the Horizon-2020 ASSIST-IoT project, Grant Agreement No. 957258.

[5.] GitLab website. https://about.gitlab.com/

[6.] GitLab. (2021, 1 June). GitLab is setting the standard for DevSecOps.

https://about.gitlab.com/blog/2021/06/01/gitlab-is-setting-standard-for-devsecops/

[7.] GitLab. GitLab CI/CD. https://docs.gitlab.com/ee/ci/

[8.] GitLab. GitLab Runner. https://docs.gitlab.com/runner/

[9.] GitLab. GitLab Registry. https://docs.docker.com/registry/

[10.] Helm. Helm Registry. https://helm.sh/docs/helm/helm_registry/

[11.] Helm. The package manager for Kubernetes. https://helm.sh/

[12.] Helm. Charts. https://helm.sh/docs/topics/charts/

[13.] Kubernetes. https://kubernetes.io/

[14.] Óscar López, Jordi Blasi, Mikel Uriarte, Ignacio Lacalle, Gonzalo Galiana, Carlos E. Palau, Eduardo

Garro, Maria Ganzha, Marcin Paprzycki, Piotr Lewandowski, Katarzyna Wasielewska, Konstantinos

Votis, Georgios Stavropoulos, Iordanis Papoutsoglou, DevSecOps Methodology for NG-IoT

Ecosystem Development Lifecycle – ASSIST-IoT perspective, Journal of Computer Science and

Cybernetics, 37(3):321-33, Sept 2021.

[15.] ASSIST-IoT (2022). D6.2: Testing and integration plan - Initial. Deliverable of the Horizon-2020

ASSIST-IoT project, Grant Agreement No. 957258.

[16.] ASSIST-IoT (2022). D3.6: ASSIST-IoT Architecture Definition. Deliverable of the Horizon-2020

ASSIST-IoT project, Grant Agreement No. 957258.

[17.] ASSIST-IoT (2022). D7.2: Pilot Scenario Implementation. Deliverable of the Horizon-2020 ASSIST-

IoT project, Grant Agreement No. 957258.

[18.] Guru99. (2022, 16 April). Integration Testing: What is, Types, Top Down & Bottom Up Example.

Source. Accessed on 3rd of May 2022. https://www.guru99.com/integration-testing.html

[19.] Software testing fundamentals. (2020, 13 September). Integration testing. Source. Accessed on 3rd of

May 2022. https://softwaretestingfundamentals.com/integration-testing/

[20.] Guru99. (2023, 21 January). Performance Testing Tutorial – Types. Source.

https://www.guru99.com/performance-testing.html

[21.] Microsoft Learn. (2022, 12 January). Performance testing. Source. https://learn.microsoft.com/en-

us/azure/architecture/framework/scalability/performance-test

[22.] Mustafa, K. M., Al-Qutaish, R. E., & Muhairat, M. I. (2009, December). Classification of software

testing tools based on the software testing methods. In 2009 Second International Conference on

Computer and Electrical Engineering (Vol. 1, pp. 229-233). IEEE.

https://about.gitlab.com/
https://about.gitlab.com/blog/2021/06/01/gitlab-is-setting-standard-for-devsecops/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/runner/
https://docs.docker.com/registry/
https://helm.sh/docs/helm/helm_registry/
https://helm.sh/
https://helm.sh/docs/topics/charts/
https://kubernetes.io/
https://www.guru99.com/integration-testing.html
https://softwaretestingfundamentals.com/integration-testing/
https://www.guru99.com/performance-testing.html
https://learn.microsoft.com/en-us/azure/architecture/framework/scalability/performance-test
https://learn.microsoft.com/en-us/azure/architecture/framework/scalability/performance-test

