

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D5.4 – Software Structure and Final

Design

Deliverable No. D5.4 Due Date 31-OCT-2022

Type Report Dissemination Level Public

Version 1.0 WP WP5

Description Final specification of the vertical enablers identified and developed in ASSIST-IoT.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 2 of 43

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 3 of 43

Authors
Name Partner e-mail

Alejandro Fornés P01 UPV alforlea@upv.es

Raúl Reinosa P01 UPV rreisim@upv.es

Rafael Vaño P01 UPV ravagar2@upv.es

Eduardo Garro P02 PRO egarro@prodevelop.es

Adrian Ramos P02 PRO aramos@prodevelop.es

Katarzyna Wasielewska-Michniewska P03 IBSPAN katarzyna.wasielewska@ibspan.waw.pl

Karolina Bogacka P03 IBSPAN k.bogacka@ibspan.waw.pl

Piotr Lewandowski P03 IBSPAN piotr.lewandowski@ibspan.waw.pl

Przemysław Hołda P03 IBSPAN pholda@ibspan.waw.pl

Anastasia Blitsi P04 CERTH akblitsi@iti.gr

Evripidis Tzonas P04 CERTH tzionasev@iti.gr

Ron Schram P09 NEWAYS Ron.Schram@newayselectronics.com

Alex van den Heuvel P09 NEWAYS alex.van.den.heuvel@newayselectronics.com

Oscar López Pérez P13 S21 SEC olopez@s21sec.com

Saioa Ros Jiménez P13 S21 SEC sros@s21sec.com

History
Date Version Change

08-Sep-2022 0.1 ToC and task assignments

30-Sep-2022 0.2 First round of contributions completed

13-Oct-2022 0.3 Second round of contributions integrated

18-Oct-2022 0.4 Third round of contributions. To internal review

31-Oct-2022 1.0 Final version submitted to EC

Key Data
Keywords Enablers, verticals, self-*, security, manageability, scalability, federated learning,

DLT

Lead Editor P01 UPV – Alejandro Fornés

Internal Reviewer(s) P14 TWOT – Lambis Tassakos

P15 OPL – Zbigniew Kopertowski

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 4 of 43

Executive Summary
This deliverable is written in the framework of WP5 – Transversal enablers design and development of ASSIST-

IoT project under Grant Agreement No. 957258. The document collects the work and outcomes of the five tasks

of the work package, which focus on the design and implementation of the enablers required to implement the

different verticals of the ASSIST-IoT architecture. These enablers (which may entail not just software but also

hardware-related design and development) belong to at least one of the following verticals: (i) Self-*, (ii)

Scalability, (iii) Interoperability, (iv) Manageability, and (v) Security, Privacy and Trust.

This document is the last iteration of a series of two deliverables devoted to the formalisation and design of the

vertical enablers identified within the scope of the project, hence presenting their final software structure. It

should be mentioned that the other series of deliverables belonging to this Work Package, devoted mainly to

the release of the actual artifacts, also included an update of specifications. Thus, the present document is built

upon both WP5 deliverable series (particularly, after D5.1 & D5.3), and since the latter was released just six

months ago, this deliverable focuses on incremental content with respect to them, as, in general, enablers have

not experienced major design changes during this time. The final design of the following enablers is included:

 From Self-*: Self-healing device enabler, Resource provisioning enabler, Monitoring and notifying en-

abler, Location tracking enabler, Location processing enabler and Automated configuration enabler.

 From Federated Machine Learning: FL Orchestrator, FL Training Collector, FL Repository and FL

Local Operations.

 From Cybersecurity: Cybersecurity monitoring enabler, Cybersecurity monitoring agent enabler, Iden-

tity manager enabler and Authorisation enabler.

 From DLT: Logging and auditing enabler, Data integrity verification enabler, Distributed broker ena-

bler and DLT-based FL enabler.

 From Manageability: Clusters and topology manager, Enablers manager and Composite services man-

ager (the names of these enablers were modified in the last architecture document, D3.7).

For each of them, their respective (i) tables of general information (presented in D5.1), (ii) high-level structure

(originally introduced in D5.1 and updated in D5.2 & D5.3), (iii) implementation technologies (candidate ones

presented in D5.1 and formalised in D5.2 & D5.3), (iv) communication interfaces (introduced in D5.2 and

updated in D5.3), and (v) enabler stories (presented in D5.2 and extended in D5.3) are revisited and updated,

when needed.

.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 5 of 43

Table of contents
Table of contents ... 5

List of figures .. 6

List of tables .. 6

List of acronyms .. 7

1. About this document .. 8

1.1. Deliverable context .. 8

1.2. The rationale behind the structure ... 9

1.3. Outcomes of the deliverable .. 9

1.4. Lessons learnt .. 9

1.5. Deviation and corrective actions ... 9

1.6. Version-specific notes ... 9

1.7. Follow-up recommendations and comments from previous reviews .. 10

2. Introduction ... 11

3. Final vertical enablers specification .. 12

3.1. Self-* enablers ... 12

3.1.1. Self-healing device enabler ... 12

3.1.2. Resource provisioning enabler .. 14

3.1.3. Location tracking enabler .. 15

3.1.4. Location processing enabler .. 16

3.1.5. Monitoring and notifying enabler .. 18

3.1.6. Automated configuration enabler .. 20

3.2. Federated learning enablers ... 23

3.2.1. FL Orchestrator ... 23

3.2.2. FL Training collector ... 24

3.2.3. FL Repository .. 25

3.2.4. FL Local operations ... 27

3.3. Cybersecurity enablers .. 28

3.3.1. Identity manager enabler ... 28

3.3.2. Authorisation enabler .. 29

3.3.3. Cybersecurity monitoring enabler ... 31

3.3.4. Cybersecurity monitoring agent enabler .. 32

3.4. DLT-based enablers ... 33

3.4.1. Logging and auditing enabler .. 33

3.4.2. Data integrity verification enabler ... 34

3.4.3. Distributed broker enabler ... 34

3.4.4. DLT-based FL enabler... 35

3.5. Manageability enablers .. 36

3.5.1. Enablers manager .. 36

3.5.2. Composite services manager ... 37

3.5.3. Clusters and topology manager ... 40

4. Conclusions ... 43

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 6 of 43

List of figures
Figure 1. Vertical enablers distribution among verticals ... 11

Figure 2. Self-healing Device enabler ES3 (battery usage monitoring and threshold update) 14

Figure 3. Location processing enabler structure .. 16

Figure 4. Location processing enabler ES1 (query configuration) .. 18

Figure 5. Location processing enabler ES2 (running query input) .. 18

Figure 6. Monitoring and notifying enabler ES4 (check gateways/devices health) .. 20

Figure 7. Automated configuration enabler structure .. 21

Figure 8. FL Repository ES4 (download FL serialised Pickle file) .. 26

Figure 9. Screenshot of FL WebApp download page.. 27

Figure 10. Enablers manager ES6 (re-deploy a terminated enabler) ... 37

Figure 11. Composite services manager ES1 (list pipelines) .. 38

Figure 12. Composite services manager ES2 (create pipeline) ... 39

Figure 13. Composite services manager ES3 (delete pipeline) ... 40

Figure 14. Clusters and topology manager ES4 (depict topology) .. 41

Figure 15. Clusters and topology manager ES5 (deploy enabler in target node) .. 42

List of tables
Table 1. General information of an enabler ... 12

Table 2. General information of the Self-healing device enabler .. 12

Table 3. Communication interfaces (API) of the Self-healing device enabler .. 13

Table 4. General information of the Resource provisioning enabler ... 14

Table 5. General information of the Location tracking enabler .. 15

Table 6. General information of the Location processing enabler .. 16

Table 7. Implementation technologies for the Location processing enabler ... 17

Table 8. Communication interfaces of the Location processing enabler ... 17

Table 9. General information of Monitoring and notifying enabler .. 18

Table 10. General information of the Automated configuration enabler .. 20

Table 11. Implementation technologies for the Automated configuration enabler ... 22

Table 12. Communication interfaces of the Automated configuration enabler ... 22

Table 13. General information of the FL Orchestrator .. 23

Table 14. Communication interfaces (API) of the FL Orchestrator .. 23

Table 15. General information of the FL Training Collector .. 24

Table 16. General information of the FL Repository .. 25

Table 17. General information of the FL Local Operations enabler ... 27

Table 18. Implementation technologies for the FL Local Operations enabler .. 28

Table 19. Communication interfaces of the FL Local Operations enabler .. 28

Table 20. General information of the Identity Manager enabler ... 28

Table 21. General information of the Authorisation enabler ... 29

Table 22. Communication interfaces (API) of the Authorisation enabler ... 30

Table 23. General information of the Cybersecurity monitoring enabler.. 31

Table 24. General information of the Cybersecurity monitoring agent enabler .. 32

Table 25. General information of the Logging and auditing enabler .. 33

Table 26. General information of the Data integrity verification enabler ... 34

Table 27. General information of the Distributed broker enabler ... 34

Table 28. General information of the DLT-based FL enabler ... 35

Table 29. General information of the Enablers manager ... 36

Table 30. General information of the Composite services manager ... 37

Table 31. Implementation technologies for the Composite service manager .. 38

Table 32. General information of the Clusters and topology manager .. 40

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 7 of 43

List of acronyms

Acronym Explanation

API Application Programming Interface

BIM Building Information Modelling

CA Certificate Authority

CHE Container Handling Equipment

CNI Container Network Interface

CPU Central Processing Unit

DLT Distributed Ledger Technology

ES Enabler Stories

FL Federated Learning

gRPC gRPC Remote Procedure Calls

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IdM Identity Manager

IoT Internet of Things

JSON JavaScript Object Notation

K8s Kubernetes

ML Machine Learning

MQTT MQ Telemetry Transport

NoSQL Not Only SQL

OS Operating System

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

REST Representational State Transfer

SD-WAN Software-Defined Wide Area Network

SQL Structured Query Language

RAM Random Access Memory

RTG Rubber-Tyred Gantry (crane)

UV Ultraviolet

VPN Virtual Private Network

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 8 of 43

1. About this document

The main objective of this document is to present the final design and specifications of the vertical enablers

developed within the scope of ASSIST-IoT project. These enablers, along with horizontal enablers proposed in

WP4, are the technological backbone of the project, since they will enable the deployment of an ASSIST-IoT

architecture.

Although this is the final iteration of a series of two deliverables devoted to the design of enablers, the

complementing WP5 deliverable series (which focuses on actual development and outcomes) has also being

providing specification updates, and hence this report has been arranged as a delta document built upon the

content of its previous version (D5.1) and the complementary series (D5.3) for the sake of avoiding repeating

many contents. Besides, the final deliverable of WP5 (D5.5), due in M28, will include all the information

produced in an all-encompassing document, along with the developed artifacts.

1.1. Deliverable context

Keywords Lead Editor

Objectives O3: Definition and implementation of decentralised security and privacy exploiting DLT:

Specification of DLT-based enablers in Security, Privacy and Trust vertical.

O4: Definition and implementation of smart distributed AI Enablers: Specification of

Federated Machine Learning related enablers.

Work plan D5.4 takes input from:

 T3.2 & T3.3 (use cases and requirements): To be revisited and linked to the pro-

posed enablers.

 T3.5 (architecture): Depicts the design principles and high-level functionalities to

consider and follow.

 D5.1 (initial transversal enablers specification): Initial design of vertical enablers,

and previous iteration of this deliverable.

 D5.2 & D5.3 (transversal enablers development preliminary and intermediate ver-

sions): Included updated specifications from D5.1 and new design-related content.

D5.4 influences:

 WP7 (pilots and validation): To later on materialise in pilot deployments.

 WP8 (evaluation and assessment): To evaluate and assess results from testing within

pilots.

D5.4 must be in line with:

 WP4 (core enablers): To define functional boundaries and interactions.

 WP6 (testing, integration and support): To develop, test and deploy according to

DevSecOps methodology.

Milestones This deliverable is a key part of MS6 – Software structure finished, along with the previous

content presented in D5.3. It also contributes to MS7 – Integrated solution, once enablers

are deployed and working in pilot premises.

Deliverables Being an incremental or delta document built upon previous deliverables of this WP, it

receives inputs from its previous iteration (D5.1 – Initial Transversal Enablers Specification)

and the deliverables related to the outcomes and artifacts, which included an update of the

initial specifications (D5.2 & D5.3 – Transversal Enablers Development Preliminary/

Intermediate Version). It is also influenced by the main architecture document (D3.7) and

linked to the project requirements and use cases (D3.3).

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 9 of 43

1.2. The rationale behind the structure
This deliverable consists of three sections beyond the current one. The first one (Section 2) is an introduction

to the document, presenting the Verticals and allocating the different enablers within the context of one (or

some) of them. The second section details the final design and specifications of each one of the vertical enablers,

grouped by Verticals, including the data related to their context, software structure, technologies, endpoints and

user stories. Finally, conclusions are drawn in the last section.

1.3. Outcomes of the deliverable
The main outcome of the present deliverable is the final design and software structure of the enablers envisioned

within the scope of WP5. As updates (and enlargement) over the initial design (i.e., D5.1) were also documented

in the complementary series of deliverables of the WP (the one related to actual developments and outcomes,

i.e., D5.2 & D5.3), most of the content remains valid and designs have not suffered many major changes. Some

relevant outcomes of the document and design modifications include:

 All vertical enablers have updated their respective tables with general information, pointing to the

updated project’s requirement and use cases.

 The features offered by the Location processing enabler have been extended, to achieve greater

flexibility and be applicable to more use cases.

 Another enabler that has been subject of significant design modifications is the Automated

configuration enabler, with a new internal structure and endpoints.

 New enabler stories have been added to some enablers, including: Self-healing device enabler, Location

processing enabler, FL Repository, Enablers manager, Composite services manager, and Cluster and

topology manager.

1.4. Lessons learnt
During the past months, the partners of the Consortium have focused their effort in developing and possibly

adjusting the design of the enablers that will facilitate the realisation of the ASSIST-IoT architecture. From this

work the following insights have been extracted:

 Manageability enablers (Enablers manager, Composite services manager, Clusters and topology man-

ager) can be packaged and deployed together as their functionality is not foreseen to be used separately

but rather will provide a package of functionalities to manage the ASSIST-IoT deployment.

 The decision was made not to containerise Cybersecurity monitoring agent enabler as it would nega-

tively impact functionality offered by this enabler, e.g., as a result of a limited accessibility to the host

system.

 DLT-based FL enabler functionality has been focused on storing model updates produced during the

FL process. The decision was based on the considerations about the efficiency of the whole solution

and possibilities of seamless integration with other FL enablers.

1.5. Deviation and corrective actions
The Consortium formalised in D5.1 (and now D5.4), and materialised in D5.2 and D5.3 the envisioned enablers.

However, some deviations have slightly altered the initial plan:

 Manageability enablers have been renamed to better express their functionality.

 Monitoring and notifying enabler functionalities have been reviewed and refocused on the monitoring

aspects to differentiate it more from Edge data broker enabler from WP4.

1.6. Version-specific notes
The Consortium formalised the initial design of the vertical enablers in M9. Being so early in the project, many

relevant information required for their development was missing, and therefore these needs were covered in the

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 10 of 43

subsequent deliverables of WP5, namely D5.2 & D5.3, despite they should have focused just in releasing

artifacts (in the form of MVPs, preliminary versions or actual releases). As D5.3 was in an already advanced

date, most of the information depicted there is valid. Therefore:

 This version updates the general content of the enablers’ template table from D5.1, and presents the

updated high-level schema, implementation technologies, endpoints and user stories from D5.3 only

when needed (incremental data).

 This entails that D5.3 remains as the main document for enablers design and specifications, presenting

the current one just an update of the data presented six months ago.

 The final deliverable of D5.5 will include all the information in an all-encompassing document, along

with the final outcomes. Only some minor design modifications might be needed to be documented in

the last one, in which case they will be conveniently outlined.

1.7. Follow-up recommendations and comments from previous

reviews
According to the formal feedback received out of RP1, documentation, deliverable D5.1 was accepted but the

following comments were included, that have been tackled in the following way:

Q – (From D5.1) Is there a chance to test the decentralised learning approach within the project?

A – Yes. The outcomes from the Federated Learning task will be evaluated within the activities of the pilots,

with special emphasis in pilot 3B.

Q – (From D5.1) Most of the enablers designed are generic and loosely-coupled to the use cases: how they are

going to be tested? Isn’t this a risk for the project?

A – The project detected this issue in early stages and it was decided that all enablers should be tested in at least

one use case of the pilots, whenever possible. WP5 enablers are, in general, deployable independently of the

scope of the use case or pilot, as they provide vertical, cross-cutting features. Therefore, no major risk is

expected for testing them within the scope of pilots’ activities.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 11 of 43

2. Introduction

Considering the ASSIST-IoT reference architecture, Verticals represent properties or features that are present

on different horizontal Planes (i.e., Device and edge, Smart network and control, Data management and

Application and services), either independently or requiring cooperation with them. In this architecture, vertical

capabilities can be grouped in five types, namely: (i) Self-*, (ii) Interoperability, (iii) Security, Privacy and

Trust, (iv) Scalability, and (v) Manageability. Some of these capabilities become features of the system by

design choices (e.g., using an underlying container orchestration framework such as Kubernetes, provides

features that can be allocated under scalability and self-*), while others require of dedicated artifacts (i.e.,

enablers) to be incorporated.

A total of 21 enablers have been formalised in the project as deemed necessaries (or at least, encouraged) to be

part of Next Generation IoT system realisations. Before implementing them, a set of initial specifications with

expected features and candidate technologies were outlined in D5.11 and later on extended in D5.22 and D5.33.

As an agile approach has been applied, many specification changes have been already addressed by the two

previous deliverables (despite the fact they were not initially expected to include such information). Hence, in

the present report, a moderate number of changes are needed.

It should be mentioned that enablers, despite been originally envisioned belonging to a specific Vertical, might

provide features that can be allocated under the umbrella of other ones, as it can be seen in Figure 1. One clear

example are the enablers related to Federated Learning (FL). These enablers work together to provide a

framework that can be deployed to train models in different computing nodes locally and combine their results

in a central node, hence contributing to scalability as processing effort is shared. Also, data do not travel through

the network to the central node, just the trained models and the inferred weights, preserving data privacy (hence

enablers can be assigned to Security, Privacy and Trust vertical as well).

Figure 1. Vertical enablers distribution among verticals

1 https://assist-iot.eu/wp-content/uploads/2021/12/ASSIST-IoT_D5.1_Software_Structure_and_Preliminary_Design_v1.pdf
2 https://assist-iot.eu/wp-content/uploads/2021/12/ASSIST-IoT_D5.2-Transversal-Enablers-Development-Preliminary-Version-v1.0.pdf
3 https://assist-iot.eu/wp-content/uploads/2022/05/D5.3_Transversal-Enablers-Development-Intermediate-Version.pdf

https://assist-iot.eu/wp-content/uploads/2021/12/ASSIST-IoT_D5.1_Software_Structure_and_Preliminary_Design_v1.pdf
https://assist-iot.eu/wp-content/uploads/2021/12/ASSIST-IoT_D5.2-Transversal-Enablers-Development-Preliminary-Version-v1.0.pdf
https://assist-iot.eu/wp-content/uploads/2022/05/D5.3_Transversal-Enablers-Development-Intermediate-Version.pdf

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 12 of 43

3. Final vertical enablers specification

The specification of the enablers of the project are presented following a common structure. First, a table with

general information about a given enabler (see Table 1), including its description, is attached. Then, a basic

diagram presenting the high-level structure of its internal components is depicted, followed by a table listing

the implementation technologies, frameworks and/or programming languages leveraged to realise each of its

components. Afterwards, the endpoints (generally APIs) that will be exposed to consume the enabler (either

by end users, administrators or other enablers) are documented. Finally, a collection of Enabler Stories (ES),

will be presented, including cases were an enabler performs an action as a response to a given event or condition

(initiated by a user, or not).

Since most of the specifications indicated remain updated, in those enablers in which any change needs to be

reported, the content of D5.3 will be pointed to (with the exception of the table with general information).

Regarding the tables with implementation technologies and endpoints, the additions, modifications and

removals are highlighted.

Table 1. General information of an enabler

Enabler Name of the enabler

Id Short unique identifier/acronym

Owner and support Lead and supporting beneficiaries
Description and main

functionalities
Functional description of the enabler (description paragraph and bullet points for de-

scribing its features)

Vertical, related capabili-

ties and features

Vertical to which this enabler belongs. Vertical groups together logically connected fea-

tures and functionalities of a system, regardless of the plane on which they may be imple-

mented. ASSIST-IoT defines 5 verticals:

 Manageability

 Scalability

 Security, privacy and trust

 Interoperability

 Self-* (autonomy)

Every vertical involves capabilities, a concretisation of a capability is called a feature.

Plane/s involved Horizontal plane or planes on which the enabler's features are delivered

Requirements mapping List of the IDs of the requirements addressed or considered

Use case mapping List of the IDs of the use cases related to this enabler

Internal components List of the internal components of this enabler

3.1. Self-* enablers

3.1.1. Self-healing device enabler

Table 2. General information of the Self-healing device enabler

Enabler Self-healing device enabler

Id SELF11

Owner and support PRO

Description and main

functionalities

This enabler aims at providing to IoT devices with the capabilities of actively at-tempting

to recover themselves from abnormal states, mainly divided in three categories: security

(jamming, DoS), dependability (data corruption, network protocol violation), and long-

term (HW’s end-of-life, HW unsupported capabilities), based on a pre-established rou-

tines schedule.

Vertical, related capabili-

ties and features
Self-* (autonomy)

Plane/s involved Device and edge plane – as it provides features to heal the devices belonging to this plane

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 13 of 43

Enabler Self-healing device enabler

Smart network and control plane – as it brings features to evaluate some networking as-

pects

Requirements mapping

 R-C-5: Local Processing Capabilities

 R-C-7: Edge-oriented deployment

 R-C-18: Support for autonomous processing

 R-C-19: Support for self-aware systems

 R-C-20: Support for system self-healing

 R-C-21: Reduction of computing demands for AI training

 R-P2-3: Smart wristband for construction workers

 R-P2-16: Device reliability and durability

 R-P3A-9: Edge Intelligence

Use case mapping

 UC-P1-2: CHE location tracking

 UC-P2-1: Worker’s health and safety assurance

 UC-P3A-2: Vehicle non-conformance causes identification

Internal components Self-detector, Self-monitor, Self-remediator

High-level structure

No changes to D5.3.

Implementation technologies

After several attempts (in which the functionalities of the enabler could not reach the host OS environment if it

was encapsulated), it was decided that the self-healing device enabler became an encapsulation exception of the

ASSIST-IoT enablers list. In addition, instead of basic thresholds definition, more advanced monitoring options

(i.e., smarter ML-based solutions) are under development.

Apart from this, the implementation technologies (Node-RED, JavaScript and Unix commands) remain as in

D5.3.

Communication interfaces

The updated list of endpoints is presented here. From the three endpoints introduced in D5.3, five new endpoints

(highlighted in green) have been added:

Table 3. Communication interfaces (API) of the Self-healing device enabler

Method Endpoint Description

POST /self-monitor-type
To select between “basic” or “ML” the type of self-monitor tool to be used by

the enabler

POST /cpuusage?threshold=XX
If “basic” self-monitor-type is marked, this endpoint changes the maximum

threshold of CPU usage to the XX value defined by the user

POST
/ramusage?thres-

hold=XX

If “basic” self-monitor-type is marked, this endpoint changes the maximum

threshold of RAM usage to the XX value defined by the user

POST /network?IP=XX
If “basic” self-monitor-type is marked, this endpoint changes the IP address

over which the service should ping to check network availability

POST /battery?threshold=XX
If “basic” self-monitor-type is marked, this endpoint changes the battery life

alerting action to the XX value defined by the user

POST /ml-cpuusage
If “ML” self-monitor-type is marked, this endpoint defines the maximum

threshold of CPU usage according to the trained results of the ML model

POST /ml-ramusage
If “ML” self-monitor-type is marked, this endpoint changes the maximum

threshold of RAM usage according to the trained results of the ML model

POST /ml-battery
If “ML” self-monitor-type is marked, this endpoint changes the battery life

alerting action according to the trained results of the ML model

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 14 of 43

Enabler stories

There two enabler stories described in D5.3 remain valid (monitoring of the CPU and RAM usage – ES1, and

evaluation of the network interface operation – ES2). A third one, devoted to battery usage mechanism, is

described below:

Figure 2. Self-healing Device enabler ES3 (battery usage monitoring and threshold update)

STEP 1: The user starts a device, installs the self-device enabler, and configures the battery usage threshold by

interacting with the self-detector via API commands.

STEP 2: From this moment, the self-detector and self-monitor are in charge of discovering and monitoring the

battery life in a happy path scenario.

STEP 3: If the monitored battery life metric goes down below certain threshold value defined by the user in

STEP 1, the self-monitor informs the self-remediator to carry out the proper remediation action (prompts out an

alert to the device’s screen).

3.1.2. Resource provisioning enabler

Table 4. General information of the Resource provisioning enabler

Enabler Resource provisioning enabler

Id T51E2

Owner and support UPV

Description and main

functionalities

Working on edge deployments, where resources are not as large as in the cloud, it is un-

feasible to set a static resource projection to each node. This is due to the difference in the

use of these resources depending on the workload at the time the task is performed, being

dependent on several factors. This enabler aims to adapt the auto-scaling of nodes and

clusters more dynamically, achieving optimal use in relation to resource utilisation and

general operation.

Vertical, related capabili-

ties and features
Self-* (autonomy)

Plane/s involved All Planes – it monitors and adapts the resources of enablers from all planes

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-C-9: Workload placement

 R-C-16: Resource monitoring

 R-C-18: Support for autonomous processing

 R-C-19: Support for self-aware systems

Use case mapping
 UC-RPE-1: Information about enablers and active components

 UC-RPE-2: Data training (deep learning)

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 15 of 43

Enabler Resource provisioning enabler

 UC-RPE-3: Obtain data training range

 UC-RPE-4: Update data training range

 UC-RPE-5: Data inference

 UC-RPE-6: Select enablers to manage

Internal components
API, Pod Resources Controller (PRC), Training module (TM), Inference module (IM),

History data – MySQL Database, Predicted data – MySQL Database

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

3.1.3. Location tracking enabler

Table 5. General information of the Location tracking enabler

Enabler Location tracking enabler

Id T51E3-A

Owner and support NEWAYS

Description and main

functionalities

The main task of the location tracking enabler is to receive the position of tags. Each tag

transmits its position with a fixed repetition rate of around 1 second. This position repre-

sents the triangulation of the tag relative to 3 reference anchors with a fourth anchor for

failure reference. The localization tracking enabler translates these positions into a format

which can be handled by a data broker.

Vertical, related capabili-

ties and features
Self-* (autonomy)

Plane/s involved Device and edge plane – coordinates physical tags and anchors to locate assets

Requirements mapping

 R-P1-1 (CHE location services)

 R-P1-2 (CHE location availability)

 R-P1-3 (CHE positioning accuracy)

 R-P2-1 (Personal location tracking)

 R-P2-2 (Construction plant location tracking)

 R-P2-3 (Localisation tag for construction workers)

 R-P2-11: Geofencing

Use case mapping

 UC-P2-1: Workers' health and safety assurance

 UC-P2-2: Geofencing boundaries enforcement

 UC-P2-4: Construction site access control

Internal components Tag and anchor configuration, localisation engine

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 16 of 43

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

3.1.4. Location processing enabler

Table 6. General information of the Location processing enabler

Enabler Location processing enabler

Id T51E3-B

Owner and support SRIPAS

Description and main

functionalities

The Location Processing enabler provides highly configurable and flexible geofencing

capabilities based on location data. It runs user-defined queries against the data storage.

The enabler handles data updates and queries using both the HTTP-based request-re-

sponse and streaming approach.

Vertical, related capabili-

ties and features
Self-* (autonomy)

Plane/s involved Data management plane – it provides location awareness through location data

Requirements mapping

 R-P1-1: CHE location services

 R-P2-1: Personal location tracking

 R-P2-2: Construction plant location tracking

 R-P2-11: Geofencing

 R-C-5: Local Processing Capabilities

 R-C-18: Support for autonomous processing

 R-C-19: Support for self-aware systems

Use case mapping

 UC-P2-1: Workers' health and safety assurance

 UC-P2-2: Geofencing boundaries enforcement

 UC-P2-4: Construction site access control

Internal components Application and Database

High-level structure

The design of the whole enabler has been rethought since D5.3. Initially, the scope covered defining regions

and points and then querying them. It was decided that the enabler should incorporate more features provided

by the geolocation storage to achieve greater flexibility. In effect, the enabler can be used in various use cases.

Figure 3. Location processing enabler structure

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 17 of 43

The application is written with the Akka framework to provide scalability and durability. It runs user-defined

SQL queries against the database. The queries can be parametrised using the specialised syntax. In effect, the

enabler is highly customisable for different scenarios. The incoming data is collected from input streams or

HTTP requests; it allows for streaming the query results. The transferred data is in JSON format. The behaviour

of the application is configurable through an HTTP interface. The application streaming capabilities are

compatible with the MQTT protocol. The database is shipped with the PostGIS extension. It stores the

geolocation data and the application configuration.

Implementation technologies

Although the technologies mentioned were already described in previous deliverables, they are stated again to

map them with the final components, because of the redesign of the enabler.

Table 7. Implementation technologies for the Location processing enabler

Technology Justification Component(s)

Scala Main language for developing custom functions for all components of the

enabler. Selected for its high quality, good support and adequacy for the

task

All components

except database

Application
Akka All the components of the enabler will be developed using Akka (and

Akka Streams) libraries, due to the excellent support they provide for fea-

tures and communication standards/protocols required for the enabler

All components

except database

Application
PostGIS PostGIS is a mature spatial extension for PostgreSQL. It natively supports

all the GIS-oriented functions needed by the Location processing enabler.

Additionally, PostGIS is well supported by existing Java-based libraries

(hence it is also Scala-friendly)

Location data storage

and processing

Database

Apache Kafka Selected for its state of the art support for asynchronous buffering and

stream handling mechanisms

Streaming up-

dates/queries

Communication interfaces

The design has been rethought since D5.3, and therefore the previous API calls are invalid. The following

table presents the endpoints that the enabler will include:

Table 8. Communication interfaces of the Location processing enabler

Method Endpoint Description

GET /v1/queries Returns all queries.

GET /v1/queries/<name> Returns a specific query.

POST /v1/queries Creates a new query with specified configuration.

POST /v1/queries/<name>/input Sends input data to a specific query.

PUT /v1/queries/<name> Updates a query.

DELETE /v1/queries/<name> Deletes a query.

Enabler stories

The design has been rethought since D5.3, and hence the previous enabler stories are substituted by a new set.

The first enabler story is related to the configuration of a query via the HTTP interface. Its flow and steps

are the following:

STEP 1: The client invokes the /v1/queries API endpoint, passing the configuration details.

STEP 2: The application verifies the request data.

STEP 3: The application communicates with the database that stores query configurations to perform the

requested action.

STEP 4: The client receives the confirmation message.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 18 of 43

Figure 4. Location processing enabler ES1 (query configuration)

The second enabler story involves passing the input data to a running query via HTTP interface. Its flow

and steps are the following:

STEP 1: The client invokes the /v1/queries/<name>/data endpoint and passes the input data in the request

body.

STEP 2: The application communicates with the called query and inputs the received data.

STEP 3: Query runs SQL statement.

STEP 4: The application responds with the query output data.

Figure 5. Location processing enabler ES2 (running query input)

3.1.5. Monitoring and notifying enabler

Table 9. General information of Monitoring and notifying enabler

Enabler Monitoring and notifying enabler

Id T51E4

Owner and support CERTH

Description and main

functionalities

This enabler IS responsible for monitoring the uninterrupted functionality of devices and

notifying in case of malfunction incidents. Specifically, it must ensure the departure of

data, the arrival, the validity and its own self-monitoring functionality.

 Device Monitoring: Another functionality of the enabler is the device monitoring.

The enabler ensures that the IoT device reads the required data in fixed time intervals,

to control data flooding or data interruption. If not, a notification will be created.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 19 of 43

Enabler Monitoring and notifying enabler

 Edge Monitoring: Furthermore, the enabler is to guarantee the edge monitoring. In

more details, the enabler ensure communication with connected IoT devices. If com-

munication between the linked components is lost, a notification will be created. Ad-

ditionally, it will check for attacks (i.e., sybil attack).

Vertical, related capabili-

ties and features
Self-* (autonomy)

Plane/s involved

Device and edge plane – Devices (smart, IoT) are part of the use cases for various actions

Data management plane – Monitoring and notification is based on data (real-time with

streaming, historical as reports). Depending on the case, the need for streaming or histor-

ical data may arise

Application and services plane – Monitoring will have to include an interface for an end

user to interact. Notification is similar to the monitoring

Requirements mapping

 R-C-16: Resource monitoring

 R-C-18: Support for autonomous processing

 R-C-19: Support for self-aware systems

 R-P1-1: CHE location services, indirectly, to monitor its correct functionality

 R-P2-1: Personal location tracking, indirectly, to monitor its correct functionality

 R-P2-3: Smart wristband for construction workers, indirectly, to monitor its correct

functionality

 R-P2-2: Construction plant location tracking, indirectly, to monitor its correct func-

tionality

 R-P2-7: Monitoring the weather conditions at the construction site, indirectly, to

monitor its correct functionality

 R-P2-9: Assessment of Personal Exposure to UV Radiation, indirectly, to monitor its

correct functionality

 R-P2-12: Alerts and notifications minimisation

Use case mapping

 UC-P1-1: CHE location tracking

 UC-P1-2: Container handling operations reporting

 UC-P1-5: RTG-Truck alignment; RTGs and Trucks needs to notify each other about

their positions

 UC-P2-1: Workers’ health and safety assurance; It is required in this UC that after

breaching some threshold values we need to send notifications across various com-

ponents of the system (for example notifying OSH manager or to some components

that acts when unauthorised access was detected)

 UC-P2-2: Geofencing boundaries enforcement; When you breach fence the notifica-

tion will be sent.

 UC-P2-4: Detection of falls and immobility

 UC-P2-5: Safe navigation instructions

 UC-P2-6: Health and safety inspection support

 UC-P3A-1: Fleet in-service emissions verification

 UC-P3A-2: Vehicle’s non-conformance causes identification

 UC-P3B-1: Vehicle’s exterior condition documentation and visualisation

Internal components
Communication Interface, Database, Message queue, Registry, and Module for imple-

menting the logic

High-level structure

No changes to D5.3.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 20 of 43

A new functionality is introduced, adding the ability to check the health of edge/IoT devices and gateways on

demand and/or in fixed time intervals. If the result of the query discovers devices/gateways which are

unreachable, the result is pushed to the DLT distributed broker enabler. In addition, the user will be able to

register/delete devices and gateways in the internal storage.

Note: It is under discussion if an additional functionality can be introduced, in order to check the health of K8s

nodes/pods on demand and/or on fixed time intervals.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

The enabler stories of D5.2 and D5.3 (IoT device which stops receiving data from its integrated sensor – ES1,

device entering restricted zone – ES2, and querying vehicle conditions – ES3) remain valid. A new one (#4) has

been added and formalised below. In this story, a user wants to check the health of devices or gateways in

order to see if they are connected and communicating with each other.

Figure 6. Monitoring and notifying enabler ES4 (check gateways/devices health)

STEP 1: The user sends the request to the enabler’s API to check the health of devices and/or gateways.

STEP 2: The request is passed to the database.

STEP 3: The database returns the required fields to the monitoring and notifying module which implements the

logic.

STEP 4: The module’s internal control system checks which devices and/or gateways are alive or unreachable.

STEP 5: The result is sent to the DB and it gets updated.

STEP 6: The results are sent back to the API for user consumption.

STEP 7: The user checks the results and acts accordingly.

3.1.6. Automated configuration enabler

Table 10. General information of the Automated configuration enabler

Enabler Automated configuration enabler

Id T51E5

Owner and support SRIPAS

Description and main

functionalities

This enabler aims to allow users to abstractly define requirements for functionalities and

then to check whether those requirements are met by registered resources. The enabler

can also automatically react to external actions based on predefined rules.

 Administrator can define configuration of a system. The configuration describes

what resources are required by a specific functionality.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 21 of 43

Enabler Automated configuration enabler

 Administrator can define reactions - rules on how the system should behave when a

specific action has happened. Reactions can modify existing configuration and emit

notifications.

 Self-Configurator can autonomically decide which functionalities will be kept in the

event of limited available resources.

 Resources can notify the Self-Configurator about going live and going down.

Vertical, related

capabilities and features
Interoperability, Self-* (autonomy)

Plane/s involved

Device and edge plane – the enabler will be used for configuring devices

Data management plane – the automated configuration enabler will provide/support in-

teroperability mechanisms for heterogeneous environments

Requirements mapping

 R-C-2: Data governance

 R-C-5: Local processing capabilities

 R-C-6: Data persistence and trust

 R-C-7: Edge-oriented deployment

 R-C-18: Support for autonomous processing

 R-C-19: Support for self-aware systems

 R-C-28: Distributed Configuration

 R-P1-16: Open/accessible remote capabilities

 R-P3A-5: Data Storage

 R-P3A-12: Edge connectivity

Use case mapping

 UC-P1-1: Asset location management

 UC-P2-1: Worker's health and safety assurance

 UC-P2-6: Safe navigation instructions

 UC-P3A-3: Sending new configuration to PCM

Internal components Self-configurator, Eventstore

High-level structure

Although conceptually the enabler provides the high-level features described in past deliverables, the internal

components have been refactored, with the final design as shown in the following figure:

Figure 7. Automated configuration enabler structure

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 22 of 43

Implementation technologies

Although some of the technologies mentioned were already described in previous deliverables, they are stated

again to map them with the final components, because of the conceptual redesign of the enabler. EventStore DB

and Akka Persistence have been added to the used technologies for implementing the enabler.

Table 11. Implementation technologies for the Automated configuration enabler

Technology Justification Component(s)

Scala 3 Scala is a programming language that supports both object-oriented and functional

programming. It can be run on a Java virtual machine or compiled to JavaScript and

run in a browser. The latest iteration of Scala language (Scala 3) was released in May

2021 and it is just being adopted by the industry. The language has strong static

typing, which can support exhaustive pattern matching, opaque data types, and type

classes.

Self-

Configurator

Configuration

applier,

Registry,

Intelligence

Akka and

Akka

Persistence

Akka is a set of libraries for Scala and Java that implements actor-based concurrency

model. It provides abstractions for both message-driven (via communicating actors)

and stream-based applications. It is one of the most popular Scala frameworks. It is

widely used in both academia and industry.

Akka Persistence enables event sourcing for Akka’s actors. It realises it by providing

Finite State Machine inspired abstraction for actors. By default, it stores only events

that change the internal state of the actors, not the state itself.

Akka is being actively developed, and it already provides support for Scala 3. Akka

Persistence FSM-based abstraction together with an exhaustive pattern matching

(Scala feature) can ensure that all defined scenarios are handled.

Self-

Configurator

Configuration

applier,

Registry,

Intelligence

EventStore

DB

EventStoreDB is a NoSQL database optimised for Event Sourcing. It stores data as

an immutable series of events.

As mentioned previously, JDBC-compliant databases were out of the picture, but

EventStoreDB provides a plugin that integrates with Akka Persistence and Scala 3

automatically.

Eventstore

Kafka Kafka is a distributed event streaming platform that provides publisher-subscriber

mechanics \cite{kafka-homepage}. It is the most popular solution of its kind in

manufacturing, banking, insurance, and telecom companies. Apart from the

publisher-subscriber model, Kafka can store streams of events durably and process

streams of events either online or offline.

Self-

Configurator,

Connector

All of them

Communication interfaces

During implementation, a redesign of the endpoints was performed so those defined in past deliverables are

no longer valid. Currently, the following endpoints apply for the enabler:

Table 12. Communication interfaces of the Automated configuration enabler

Method Endpoint Description

POST /requirements-model Creates or updates requirements model

DELETE /requirements-model/{id} Deletes requirements model with specific id

POST /reaction-model Creates or updates reaction model

DELETE /reaction-model/{id} Deletes reaction model with specific id

RegisterResource Resources topic
Message with which resources register to Self-

Configurator

DeregisterResource Resources topic
Message with which resources deregister from Self-

Configurator

CustomMessage Resources topic A custom message that can trigger reactions

RequirementsMet Requirements met topic
Message sent if all requirements are met with

available resources

RequirementsNotMet Requirements met topic
Message sent if not all requirements are met with

available resources

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 23 of 43

Enabler stories

No changes to D5.3.

3.2. Federated learning enablers

3.2.1. FL Orchestrator

Table 13. General information of the FL Orchestrator

Enabler FL Orchestrator

Id T52E1

Owner and support PRO, SRIPAS

Description and main

functionalities

The FL orchestrator is responsible of specifying details of FL workflow(s)/pipeline(s).

This includes FL job scheduling, managing the FL lifecycle, selecting and delivering ini-

tial version(s) of the shared algorithm, as well as modules used in various stages of the

process, such as training stopping criteria. Finally, it can specify ways of handling differ-

ent “error conditions” that may occur during the FL process.

Vertical, related capabili-

ties and features
Manageability, Scalability, Privacy

Plane/s involved
Smart network and control plane – a network interface should be managed in the commu-

nication between parties – mediators (if any) – masters

Requirements mapping

 R-C-3: Compliance with legal requirements on data protection

 R-C-7: Edge-oriented deployment

 R-C-10: Transmission security

 R-C-21: Reduction of computing demands for AI training

 R-C-22: Support for data privacy during the training process

 R-C-23: Multi-model FL support

 R-C-24: Cooperative ML training support

 R-C-25: Holistic security/privacy approach

 R-C-28: Distributed configuration

 R-P3A-9: Edge intelligence

 R-P3B-13: Automatic defect detection

Use case mapping

 UC-P1-7: Target visualisation during RTG operation

 UC-P2-1: Worker’s health and safety assurance

 UC-P3A-2: Vehicle non-conformance causes identification

 UC-P3B-1: Vehicle’s exterior condition documentation

Internal components FLS API Server, FLS Workflow manager

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3.

Communication interfaces

Since there are many changes in the API with respect to D5.3, it is preferred to attach the new and final set of

interfaces rather than point to all the changes that it has suffered from the previous version. Hence, the current

endpoints are as follows:

Table 14. Communication interfaces (API) of the FL Orchestrator

Method Endpoint Description

GET /configurationsbyModel/<id> Recover configurations of model <id> collected in the FL Repository

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 24 of 43

GET /AddModelData/<id>
Store into the internal FL Orchestrator database, the retrieved FL algo-

rithm from the FL Repository

GET /ModelData/<id>
Append FL training configuration with the FL algorithm retrieved from

the FL repository of the /appModelData endpoint

POST /StoreConfigurationModel

Store into the internal FL Orchestrator database, the complete FL algo-

rithm + training configuration (i.e., store the resulting JSON from /Mod-

elData endpoint)

GET /configurationsbyModel/<id>
Recover configurations of model <id> collected in the FL Orchestrator

database

GET /GetConfigurations
Recover all FL algorithms plus training configurations stored in the FL

Orchestrator database

POST /UpdateConfigurationModel Update training configuration of the FL algorithm to be used for training

POST /TrainingModel/<id> Start FL training with the configuration <id> defined in the WebUI

GET /RecoverStatusfromEnablers Receive the status of all the FL Local Operations involved in the training

POST /FLTrainingRound Recover last finalised training round from the FL Training Collector

GET
/RecoverTrainingEpochs/<epo-

chs>/<total_epochs>

Get the current epoch being trained and the total number of epochs to

be trained

Enabler stories

No changes to D5.3.

3.2.2. FL Training collector

Table 15. General information of the FL Training Collector

Enabler FL Training Collector enabler

Id T52E2

Owner and support SRIPAS, PRO

Description and main

functionalities

The FL training process involves several independent parties that commonly collaborate

in order to provide an enhanced ML model. In this process, the different local updates

suggestions shall be aggregated accordingly. This duty within ASSIST-IoT is tackled by

the FL Training Collector, which is also be in charge of delivering back the updated

model. In the context of this enabler, two aspects of the FL process need to be supported:

 The combination of local results to deliver new version of the shared model, as

there exist multiple ways of combining them (e.g., FedSGD, FedAvg) .

 Different topologies of FL-running systems.

The FL Training Collector will consist of two components: (i) the combiner, responsible

of providing updates with respect to the shared averaged model, and (ii) the I/O compo-

nent, which will carry out the input and output communications of the enabler.

Vertical, related capabili-

ties and features
Privacy, Scalability

Plane/s involved
Smart network and control plane – a network interface should be managed in the commu-

nication between parties – mediators (if any) – masters

Requirements mapping

 R-C-3: Compliance with legal requirements on data protection

 R-C-7: Edge-oriented deployment

 R-C-10: Transmission security

 R-C-21: Reduction of computing demands for AI training

 R-C-22: Support for data privacy during the training process

 R-C-23: Multi-model FL support

 R-C-24: Cooperative ML training support

 R-C-25: Holistic security/privacy approach

 R-C-28: Distributed configuration

 R-P3A-9: Edge intelligence

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 25 of 43

Enabler FL Training Collector enabler

 R-P3B-13: Automatic defect detection

Use case mapping

 UC-P1-7: Target visualisation during RTG operation

 UC-P2-1: Worker’s health and safety assurance

 UC-P3A-2: Vehicle non-conformance causes identification

 UC-P3B-1: Vehicle’s exterior condition documentation

Internal components FLTC I/O, FLTC Combiner

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

3.2.3. FL Repository

Table 16. General information of the FL Repository

Enabler FL Repository enabler

Id T52E3

Owner and support SRIPAS, PRO

Description and main

functionalities

One of key aspects of application of Federated Learning in IoT ecosystems is making it

configurable. In this context, the FL Repository enabler was proposed. This repository

stores (and delivers upon request/need) the ML algorithms or ML models.

It consists of four main components: ML Algorithms libraries (that gathers ML algorithms

in its first stage, i.e., without involving any modelling associated with a particular training

data set), ML models libraries (intermediary or final versions of ML models, once they

have been already trained with a particular data set), Collectors (averaging algorithms to

be used on the FL training process – if used), and Auxiliary component (for any needed

additional module). The FL Repository is a set of different databases.

Vertical, related capabili-

ties and features
Privacy, Scalability

Plane/s involved
Device and edge plane – as the FL repository may be instantiated with edge devices

Data management plane – in order to collect several ML data repositories

Requirements mapping

 R-C-3: Compliance with legal requirements on data protection

 R-C-7: Edge-oriented deployment

 R-C-10: Transmission security

 R-C-21: Reduction of computing demands for AI training

 R-C-22: Support for data privacy during the training process

 R-C-23: Multi-model FL support

 R-C-24: Cooperative ML training support

 R-C-25: Holistic security/privacy approach

 R-C-28: Distributed configuration

 R-P3A-9: Edge intelligence

 R-P3B-13: Automatic defect detection

Use case mapping UC-P1-7: Target visualisation during RTG operation

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 26 of 43

Enabler FL Repository enabler

 UC-P2-1: Worker’s health and safety assurance

 UC-P3A-2: Vehicle non-conformance causes identification

 UC-P3B-1: Vehicle’s exterior condition documentation

Internal components ML Algorithms Libraries, FL Collectors, Auxiliary, ML Model Libraries

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

The stories of the enabler described in deliverable D5.2 remain valid (FL Orchestrator retrieves ML algorithm

– ES1, FL Training Collector retrieves ML collector algorithm – ES2, and FL Training Collector sends updated

model – ES3). Apart from them, a new use story (#4) related with the trained FL model offering of previous

FL trainings. Its diagram and flows are the following:

Figure 8. FL Repository ES4 (download FL serialised Pickle file)

STEP 1: User opens the second tab of the FL system webpage.

STEP 2: Automatically, the FL Orchestrator perform an API request to the FL repository to visualise the already

stored and finished FL models.

STEP 3: These models are presented in a table format to the user, which can download them as serialised pickle

files by clicking on the download button.

STEP 4: The user decides to download a FL model.

STEP 5: A request is made to the repository, which provides the serialised model.

STEP 6: The user obtains the model.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 27 of 43

Figure 9. Screenshot of FL WebApp download page

3.2.4. FL Local operations

Table 17. General information of the FL Local Operations enabler

Enabler FL Local Operations

Id T52E4

Owner and support SRIPAS, PRO

Description and main

functionalities

One of key goals of FL is to assure protection of data privacy, owned by individual stake-

holders. Therefore, data is expected to be used only locally, to train local version of the

shared model, and only parameters update proposals of the ML algorithm are shared with

other master or other participants. When the FL training process has concluded, the final

shared ML model is used to deliver specific functionality, also called inference engine.

Both operations (model training and model inference) involve access to private data. This

means that it is crucial to “encapsulate” local processes within a single “node” (that is

controlled by data owner). However, it should be noticed that the data that is being used

in both FL training processes must be in the same format, which is imposed by the ML

model that is being employed.

To carry out with all these local operations, the FL Local Operations enabler was pro-

posed. FL Local Operations enabler is an embedded enabler within each FL involved

party/device of the FL systems.

Vertical, related capabili-

ties and features
Privacy, Scalability

Plane/s involved
Smart Network and Control plane – a network interface should be managed in the com-

munication between parties – mediators (if any) – masters

Requirements mapping

 R-C-3: Compliance with legal requirements on data protection

 R-C-7: Edge-oriented deployment

 R-C-10: Transmission security

 R-C-21: Reduction of computing demands for AI training

 R-C-22: Support for data privacy during the training process

 R-C-23: Multi-model FL support

 R-C-24: Cooperative ML training support

 R-C-25: Holistic security/privacy approach

 R-C-28: Distributed configuration

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 28 of 43

Enabler FL Local Operations

 R-P3A-9: Edge intelligence

 R-P3B-13: Automatic defect detection

Use case mapping

 UC-P1-7: Target visualisation during RTG operation

 UC-P2-1: Worker’s health and safety assurance

 UC-P3B-1: Vehicle’s exterior condition documentation

 UC-P3B-2: Exterior defects detection support

Internal components
Local Data Transformer (that is charge of guaranteeing that data is appropriately format-

ted for the FL model in use), Local Model Training, Local Model Inferencer, Privacy

High-level structure

No changes to D5.3.

Implementation technologies

The implementation technologies of the enabler have not changed since the deliverable D5.3 (scikit-learn,

pyTorch, TensorFlow, Flower, OpenVINO, OpenCV, Python, homomorphic encryption algorithms and

FastAPI) besides the extension indicated in the following table:

Table 18. Implementation technologies for the FL Local Operations enabler

Technology Justification Component(s)

Sonora ADDED Sonora is a Python-first implementation of gRPC-Web built on top

of standard Python APIs like WSGI and ASGI for easy integration. It will be

used to provide gRPC interface for the inference

Local Model Infer-

encer

Communication interfaces

The API presented in D5.3 remains valid. Additionally, a new interface has been added to the enabler:

Table 19. Communication interfaces of the FL Local Operations enabler

Method Endpoint Description

Inference gRPC
Added gRPC interface for inference with high throughput

requirements

Enabler stories

No changes to D5.3.

3.3. Cybersecurity enablers

3.3.1. Identity manager enabler

Table 20. General information of the Identity Manager enabler

Enabler Identity manager enabler

Id T53E2

Owner and support S21Sec

Description and main

functionalities

Identity manager enabler (IdM) performs the authentication phase of access control pro-

cess, that is, it is responsible for managing identities on the access control process. Identity

manager processes and validates the identity, for later control of the access to the re-

sources by the authorisation enabler. The main goal of identity management is to ensure

that only authenticated entities are granted access to the specific resource (applications,

systems, or IT environments) for which they are authorised. This includes control over

entities (i.e., user provisioning, or entities provisioning) and the process of onboarding

new entities (i.e., users, systems, etc.). IdM enabler relies on OAuth2 protocol.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 29 of 43

Enabler Identity manager enabler

The IdM provides a central user database and management console. It is also able to work

federated with remote user databases, unifying remote user stores. It provides Single-

Sign-On capabilities through OAuth2 protocol. The IdM integrates with the Authorisation

enabler in order to offer a common authorisation and authentication process.

Vertical, related capabili-

ties and features
Security, privacy and trust

Plane/s involved
All planes – as it can provide identity management for accessing configuration and/or

services offered by enablers of any plane

Requirements mapping
 R-C-7: Edge-oriented deployment

 R-C-25: Holistic security/privacy approach

Use case mapping

 UC-P1-4: RTG-Truck identification and authentication

 UC-P1-5: RTG-Truck alignment

 UC-P2-5: Safe navigation instruction

 UC-P2-6: Health and safety inspection support

 UC-P3A-3: Updating the diagnostics methods pool

 UC-P3B-2: Exterior defects detection support

Internal components
IdM administration module, IdM authentication module, Local user database, Remote

user database (optional)

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3. Extended to work over machines with low resources, based on ARM64 architectures.

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

3.3.2. Authorisation enabler

Table 21. General information of the Authorisation enabler

Enabler Authorisation enabler

Id T53E1

Owner and support S21Sec

Description and main

functionalities

Authorisation enabler is responsible for the authorisation phase in the access control pro-

cess. Authorisation is a process of granting, or automatically verifying, permission to an

entity (computer, application, or person) to access requested information after the entity

has been authenticated. The enabler is based on XACML standard security policies, re-

sults on obligations actions to be deployed after the evaluation process.

There are two different modes of deploying the same enabler, it can function as federated

server, autonomous edge service or interact between both. In ASSIST-IoT a federated

Authorisation enabler distributes a security policy from cloud to the edge to be locally

evaluated and enforced.

The authorisation enabler provides a Web administrator (PAP) to create and deploy the

security policy to the different devices. In the service side that wants to use the authorisa-

tion service, there is an enforcement point (PEP) to make request to the authorisation

server, this is, asking whether the access should be granted or not, through a REST inter-

face available to receive the request and orchestrate the process. It is also possible to add

Information Points (PIP) to generate the context for the request and obtain any data that

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 30 of 43

Enabler Authorisation enabler

external provider can offer to be incorporated to the request. Finally, the Authorisation

enabler evaluates the requests against the policy, that is locally stored in the policy repos-

itory, and makes the decision (PDP) about the authorisation. It is also possible to invoke

an obligation server to launch external requests to perform the derived actions (obliga-

tions) obtained as a result of the policy decision, through a REST requests.

Vertical, related capabili-

ties and features
Security, privacy and trust

Plane/s involved
All planes – as it can implement authorisation schemas for deciding who (user, enabler,

external service) can configure and/or consume enablers offered from any plane

Requirements mapping
 R-C-7: Edge-oriented deployment

 R-C-25: Holistic security/privacy approach

Use case mapping

 UC-P1-4: RTG-Truck identification and authentication

 UC-P1-5: RTG-Truck alignment

 UC-P2-5: Safe navigation instruction

 UC-P2-6: Health and safety inspection support

 UC-P3A-3: Updating the diagnostics methods pool

 UC-P3B-2: Exterior defects detection support

Internal components
PAP (Policy Administration Point), PDP (Policy Decision Point), PEP (Policy Enforce-

ment Point), PIP (Policy Information Point)

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3. Extended to work over machines with low resources, based on ARM64 architectures.

Communication interfaces

The updated list of endpoints is presented here. From D5.3, four new endpoints (highlighted in green) have been

added:

Table 22. Communication interfaces (API) of the Authorisation enabler

Method Endpoint Description

GET /evaluate?resource=<domain>@<resour

ce>&action=<action>&code=<id>

Evaluates a request performed and authorises it or not

depending on the stored policies

GET /evaluate/trace?resource=<domain>@<r

esource>&action=<action>&code=<id>

Provides detailed info of evaluation data, such as,

Context, XACML REQUEST, XACML RESPONSE

and JSON RESULT of the XACML Evaluation.

POST evaluate?resource=<domain>@<resour

ce>&action=<action>&code=<id>

Enables to create a local PIP (Policy Information Point),

with the aim of consulting any information should be

needed for the authorization decision.

GET /rest/fedprov/<pip_name>/<in_value> Enables the exchange of security policies between two

Authorization servers.

POST /rest/poldbimport Evaluates a request performed and authorises it or not

depending on the stored policies

Enabler stories

No changes to D5.3. But a previous (out of band) step should be added to the flow to reflect a possible exchange

of a security policy between an authorisation enabler in the Cloud to an Authorisation enabler at the edge:

STEP 0: A policy defined in the Authorisation enabler in the Cloud is exported to and received by the

Authorisation enabler in the Edge, to be evaluated locally in the Edge when corresponds.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 31 of 43

3.3.3. Cybersecurity monitoring enabler

Table 23. General information of the Cybersecurity monitoring enabler

Enabler Cybersecurity monitoring enabler

Id T53E3

Owner and support S21Sec

Description and main

functionalities

Cybersecurity monitoring enabler provides cyber security awareness and visibility on cy-

bersecurity objectives and provides infrastructure cybersecurity monitoring. The enabler

is responsible of collecting, processing, and analysing the incoming logs and information

from the infrastructure under study. It decodes the information and applies security active

rules from an existing ruleset to this information. If there is a match, it generates an alert.

It normalises and enriches the alert to provide a consolidated output that provides cyber-

security monitoring information related to different events and facilitates the assignment

of the risk level of the incident and the response actions to be done.

The cybersecurity enabler can do predefined actions for incident mitigation depending on

the incident, such as to communicate with the agent so that it performs an action, send an

email or send the incident to a ticketing system. This enabler will update information on

a graphical interface, so that an admin user can see the status of the alert/incident infor-

mation, as well as the status of the related monitoring agents.

Vertical, related capabili-

ties and features
Security, privacy and trust

Plane/s involved

All planes – as it can monitor all layers, from device threats to network, services and

application threats and vulnerabilities. Responses to certain events can be implemented

and automated

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-C-18: Support for autonomous processing

 R-C-19: Support for self-aware systems

 R-C-25: Holistic security/privacy approach

 R-C-26: Optimised Security notification

 R-C-28: Distributed Configuration

Use case mapping

 UC-P1-4: RTG-Truck identification and authentication

 UC-P1-5: RTG-Truck alignment

 UC-P2-5: Safe navigation instruction

 UC-P2-6: Health and safety inspection support

 UC-P3A-3: Updating the diagnostics methods pool

 UC-P3B-2: Exterior defects detection support

Internal components Alert treatment module, Incident response module, GUI

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3. It has been extended to work over machines with low resources, based on ARM64

architectures.

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 32 of 43

3.3.4. Cybersecurity monitoring agent enabler

Table 24. General information of the Cybersecurity monitoring agent enabler

Enabler Cybersecurity monitoring agent enabler

Id T53E4

Owner and support S21Sec

Description and main

functionalities

Cybersecurity monitoring agent enabler performs functions of an endpoint detection and

response system, monitoring and collecting activity from end points that could indicate a

cybersecurity threat. The Cybersecurity monitoring agent enables the execution of pro-

cesses on the system target under study to collect relevant information if a cybersecurity

breach is produced. It reports to the Cybersecurity monitoring enabler.

The Cybersecurity monitoring agent collects and processes system events and system log

messages. It monitors file integrity of critical files and audit data of the system. It also

monitors the security of the Docker engine API and the container at runtime. It is also able

to perform some actions such as blocking network connection or stopping running pro-

cesses if the Cybersecurity monitoring enabler requests it.

Vertical, related capabili-

ties and features
Security, privacy and trust

Plane/s involved

Device and edge plane – installed at the monitored hosts, this agent will collect all the

necessary logs and data to be processed and analysed by the Cybersecurity monitoring

enabler

Rest of the Planes – logs and data belong to enablers/services/interfaces belonging to them

Requirements mapping

 R-C-5: Local Processing Capabilities

 R-C-25: Holistic security/privacy approach

 R-C-26: Optimised Security notification

Use case mapping

 UC-P1-4: RTG-Truck identification and authentication

 UC-P1-5: RTG-Truck alignment

 UC-P2-5: Safe navigation instruction

 UC-P2-6: Health and safety inspection support

 UC-P3A-3: Updating the diagnostics methods pool

 UC-P3B-2: Exterior defects detection support

Internal components The agent module

High-level structure

No changes to D5.3.

Implementation technologies

No changes to D5.3.

It should be noted here that, although initially the Cybersecurity monitoring agent was expected to run on

containerised approach, it has not been finally implemented in this way, as described in D3.7.

The monitoring agent requires to be linked to the monitoring server as well as a registering process to this

component. Due to the ephemeral behaviour of containerised solutions, the register of the agents to the server

would be lost if the agent container disappears. Hence, it could be considered as an exception to run agents in

an encapsulated environment, like a containerised solution. Also, security agent enabler might need to monitor

host services and interfaces that might not reachable if deployed as a container. The proposed solution for

overcoming this exception is to deploy the cybersecurity monitoring agent as a service in the underlying host

system running the containerised solution, and then evaluating the way to redirect the information that the agent

needs to collect from the monitored components running encapsulated.

Communication interfaces

No changes to D5.3.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 33 of 43

Enabler stories

No changes to D5.3.

3.4. DLT-based enablers

3.4.1. Logging and auditing enabler

Table 25. General information of the Logging and auditing enabler

Enabler Logging and auditing enabler

Id T54E1

Owner and support CERTH

Description and main

functionalities

This enabler will log critical actions that happen during the data exchange between AS-

SIST-IoT stakeholders to allow for transparency, auditing, non-repudiation and account-

ability of actions during the data exchange. It will also log resource requests and identified

security events to help to provide digital evidence and resolve conflicts between stake-

holders, when applicable. If any requirement of filtering prior to logging, a filtering mod-

ule will be considered to be deployed. The DLT API is the candidate component for per-

forming any filtering.

Vertical, related capabili-

ties and features
Security, privacy and trust

Plane/s involved

Device and edge plane – critical events are stored in the ledger

Rest of the Planes – any critical action of the rest of the planes can be stored

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-C-27: Automated accountability

 R-P1-1: CHE location services

 R-P2-1: Personal location tracking

 R-P2-2: Construction plant location tracking

 R-P2-7: Monitoring the weather conditions at the construction site

 R-P2-9: Assessment of Personal Exposure to UV Radiation capability

 R-P3A-6: Active monitoring mode initiation by the OEM software engineer

 R-P3B-19: Critical Damage Identification Time

Use case mapping

 UC-P1-1: Asset location management

 UC-P1-2: CHE location tracking

 UC-P2-1: Workers’ health and safety assurance

 UC-P2-2: Geofencing boundaries enforcement

 UC-P2-3: Danger zone restrictions enforcement

 UC-P2-4: Construction site access control

 UC-P2-5: Near-miss fall from height detection

 UC-P2-7: Health and safety inspection support

 UC-P3A-1: Fleet in-service emissions verification

 UC-P3B-1: Vehicle’s exterior condition documentation

Internal components
Logging and auditing business logic (Smart Contracts), Hyperledger Fabric peers and or-

derers, Certificate Authorities (CAs), REST API

High-level structure

No changes to D5.2.

Implementation technologies

No changes to D5.3.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 34 of 43

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

3.4.2. Data integrity verification enabler

Table 26. General information of the Data integrity verification enabler

Enabler Data integrity verification enabler

Id T54E2

Owner and support CERTH

Description and main

functionalities

This is an enabler responsible for providing DLT-based data integrity verification mech-

anisms that allow data consumers to verify the integrity of any data at question. Network

peers host smart contract (chaincode) which includes the data integrity business logic. It

stores hashed data in a data structure and it compares it with the hashed data of the queries

made by clients in order to verify their integrity.

Vertical, related capabili-

ties and features
Security, privacy and trust

Plane/s involved All planes – verification is performed specifically over data generated or processed at the

different planes

Requirements mapping

 R-C-6: Data Persistence and Trust

 R-C-7: Edge-oriented deployment

 R-P3A-9: Edge Intelligence

Use case mapping UC-P3A-1: Fleet in-service emissions verification

Internal components
Data integrity verification business logic (Smart Contracts), Hyperledger Fabric peers and

orderers, Certificate Authorities (CAs), REST API

High-level structure

No changes to D5.2.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

3.4.3. Distributed broker enabler

Table 27. General information of the Distributed broker enabler

Enabler Distributed broker enabler

Id T54E3

Owner and support CERTH

Description and main

functionalities

This enabler will provide a mechanism that will facilitate data sharing between different

heterogeneous IoT devices belonging to various edge domains and/or between different

enablers of the architecture. In coordination with other enablers that will ensure trust be-

tween data sources (i.e. Identity and Authorisation providers), it will deal with data source

metadata management and provide trustable, findable, and retrievable metadata for the

data sources.

Vertical, related capabili-

ties and features
Security, privacy and trust

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 35 of 43

Enabler Distributed broker enabler

Plane/s involved All planes – data source metadata are stored in the ledger

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-P3A-1: Monitored Data channels*

 R-P2-15: BIM data models and interoperability compliance

Use case mapping

 UC-P2-2: Geofencing boundaries enforcement

 UC-P2-3: Danger zone restrictions enforcement

 UC-P2-6: Safe navigation instructions

 UC-P2-7: Health and safety inspection support

 UC-P3A-1: Fleet in-service emissions verification*

 UC-P3A-2: Vehicle non-conformance causes identification*

 UC-P3A-3: Updating the diagnostics methods pool*

Internal components
Distributed broker business logic (Smart Contracts), Hyperledger Fabric peers and order-

ers, Certificate Authorities (CAs), REST API

* Pending to be confirmed

High-level structure

No changes to D5.2.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3

3.4.4. DLT-based FL enabler

Table 28. General information of the DLT-based FL enabler

Enabler DLT-based FL enabler

Id T54E4

Owner and support CERTH

Description and main

functionalities

This enabler will foster the use of DLT-related components to exchange the local, on-

device models (or model gradients) in a decentralised way. The DLT can act as a compo-

nent to manage AI contextual information and prevent any alteration to the data. The al-

teration of data is a threat to the Federated Learning approach and the DLT can help in

mitigating the threat. Moreover, the enabler will allow mitigating single-point of failures.

Finally, the enabler can be charged with validating the individually trained models to rule

out malicious updates that can harm the global model.

Vertical, related capabili-

ties and features
Security, privacy and trust

Plane/s involved
Device and edge plane – metadata are stored in the ledger

Data management plane – metadata are stored in the ledger

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-C-22: Support for data privacy during the training process

 R-P3A-9: Edge Intelligence

 R-P3A-12: Edge Connectivity

Use case mapping
 UC-P3A-2: Vehicle’s non-conformance causes identification

 UC-P3B-1: Vehicle’s exterior condition documentation

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 36 of 43

Enabler DLT-based FL enabler

Internal components
DLT-base FL business logic (Smart Contracts), Hyperledger Fabric peers and orderers,

Certificate Authorities (CAs), REST API

High-level structure

No changes to D5.2.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

No changes to D5.3.

3.5. Manageability enablers

3.5.1. Enablers manager

Table 29. General information of the Enablers manager

Enabler Enablers manager

Id T55E1

Owner and support UPV

Description and main

functionalities

This enabler will serve as a registry of enablers and, in case they are deployed, the retrieval

of their status. In particular, it will:

 Enable registering enabler repositories.

 Allow the deployment of an enabler (this is, from an ASSIST-IoT repository), as well

as its termination, re-instantiation and elimination. Deployments can be made in spe-

cific clusters or nodes, or in all clusters.

 Retrieve a list of currently-running enablers, with access to dedicated graphical man-

agement interfaces (when available) as well as logs (if the enabler with log collection

capabilities is in place).

Vertical, related capabili-

ties and features
Manageability

Plane/s involved All planes – as it can manage enablers belonging to any of them.

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-C-9: Workload placement

 R-C-28: Distributed Configuration

Use case mapping All use cases will require of this enabler to be fulfilled

Internal components Dashboard and Backend

High-level structure

No changes to D5.3, although the naming of the enabler has been changed.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 37 of 43

The stories depicted in deliverable D5.3 remain valid (show deployed enablers – ES1, deploy an enabler – ES2,

terminate an enabler – ES3, delete an enabler – ES4, and show enabler logs – ES5). The logic of the backend

will be modified to support an additional enabler story (#6), which will consist in deploying a previously

terminated enabler. The flow will be as follows, essentially identical to the second story described in D5.3,

with some modifications in the backend’s logic:

STEP 1: The user interacts with the tactile dashboard and clicks on the “re-deploy enabler” button, starting the

flow.

STEP 2: The dashboard sends an HTTP POST request to its backend to re-deploy a terminated enabler.

STEP 3: Before asking for it, the backend request information about the terminated enabler to the Smart Or-

chestrator API.

STEP 4: Once the backend has it, it interacts with the Smart Orchestrator API again to re-deploy it, which

returns the result of the operation.

STEP 5: If the enabler has been deployed successfully, the dashboard shows to the user the updated list of

enablers. To that end, the first enabler story takes over. It should include the recently-added enabler.

Figure 10. Enablers manager ES6 (re-deploy a terminated enabler)

3.5.2. Composite services manager

Table 30. General information of the Composite services manager

Enabler Composite services manager

Id T55E3

Owner and support UPV

Description and main

functionalities

This enabler provides a graphical environment where ASSIST-IoT administrators can

connect different enablers to compose a chain, or composite service, easing the realisation

of data pipelines. To do so, this enabler is able to provision basic agents to ease data

movement among other enablers, by:

 Bridging protocols (HTTP & MQTT, at least)

 Offering graphical configuration possibilities

 Deploying these agents in the right spot of the computing continuum

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 38 of 43

Enabler Composite services manager

 Abstracting IP addresses and port-related information of the involved services

 Transmitting payloads as they come, or performing basic payload transformations.

Vertical, related capabili-

ties and features
Manageability

Plane/s involved
Data management plane – it will primarily work with enablers that manage data. Some

enablers belonging to the Device and edge plane might also be involved

Requirements mapping

 R-C-7: Edge-oriented deployment

 R-C-9: Workload placement

 R-C-28: Distributed Configuration

 R-C-29: Configurable data flows

Use case mapping All use cases will require of this enabler to be fulfilled

Internal components Dashboard and Backend

High-level structure

No changes to D5.3, although the naming of the enabler has been changed. Regarding its backend logic, this

enabler will not have the ability to deploy enablers in case these are not already present in a system, and therefore

is features have been changed from the previous deliverable iteration.

Implementation technologies

No changes to D5.3 (PUI9, Vue, Java, Spring and PostrgreSQL) besides the selection of the visual technology

that will be used in the frontend:

Table 31. Implementation technologies for the Composite service manager

Technology Justification Component(s)

Node-RED

This technology is used to graphically setup the agents to interconnect services, gen-

erating a JSON file with data related to the involved services, protocols and payload

transformations, if any. The dashboard will send the generated file to the backend.

Dashboard

Communication interfaces

No changes to D5.3.

Enabler stories

Four enabler stories are foreseen for this enabler. The first one involves listing the existing pipelines present

in the system. From this list, a user can add pipelines with new agents, modify or delete existing ones. Its flow

and steps are the following:

Figure 11. Composite services manager ES1 (list pipelines)

STEP 1: The user interacts with the tactile dashboard to retrieve the pipelines deployed, starting the flow.

STEP 2: The dashboard sends an HTTP POST request to its backend to get the current list of active pipelines.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 39 of 43

STEP 3: Then, the backend request information about the active pipelines to the Smart Orchestrator API.

STEP 4: The answer from the Orchestrator is sent to the backend, which makes a first filtering of information

which is later on formatted in the dashboard.

The second enabler story consists in the creation of new pipelines, and in this case the interaction is the

following:

Figure 12. Composite services manager ES2 (create pipeline)

STEP 1: The user interacts with the tactile dashboard, specifically with the graphical Node-RED interface, and

sets up the pipeline (selecting the involved input-output protocols, endpoints and specifying the data transfor-

mations, if any).

STEP 2: The dashboard sends an HTTP POST request to its backend to deploy the required agents. To that end,

the backend interprets the JSON file received from the dashboard and translates it to commands that the Or-

chestrator can manage.

STEP 3: The backend asks to deploy the required agent/s to the Orchestrator.

STEP 4: Once these are deployed, a confirmation message is sent to the backend.

STEP 5: If the pipeline has been deployed successfully, the dashboard shows to the user the updated list of

pipelines. To that end, the first enabler story takes over. It should include the recently-added pipeline.

The third enabler story comes to play when a pipeline is to be deleted. In this case, the flow and involved

steps are the ones indicated below:

STEP 1: The user interacts with the tactile dashboard, specifically with the list of deployed pipelines, to delete

one of them.

STEP 2: The dashboard sends an HTTP POST request to its backend to remove the involved agent/s. Then,

backend recovers the data related to this pipeline.

STEP 3: The backend asks to remove the required agent/s to the Orchestrator.

STEP 4: Once these are removed, a confirmation message is sent to the backend.

STEP 5: If the pipeline has been deleted successfully, the dashboard shows to the user the updated list of

pipelines. To that end, the first enabler story takes over. It should not include the recently-removed pipeline.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 40 of 43

Figure 13. Composite services manager ES3 (delete pipeline)

The fourth and last enabler story corresponds to the modification of an existing pipeline. Right now, the flow

is quite straightforward, consisting in a deletion of the previous version (ES#3) and followed by the creation of

a new pipeline (ES#4). In future versions, the feasibility of updating on the fly those agents that do not need to

be reallocated in other spots of the computing continuum will be considered, only deleting and creating those

that actually need reallocation.

3.5.3. Clusters and topology manager

Table 32. General information of the Clusters and topology manager

Enabler Clusters and topology manager

Id T55E4

Owner and support UPV

Description and main

functionalities

Integrated in the tactile dashboard, the main functionality of this enabler will be to register

new clusters of computing nodes (or a single computing node) in an ASISST-IoT deploy-

ment. Additionally:

 It will perform all the necessary actions to provision the necessary actions related to

K8s networking connectivity (e.g., cluster mesh)

 It will manage also those clusters added via VPN or SD-WAN technologies

 It will allow monitoring any registered node in the deployment, including its status

(i.e., availability and used resources) and current instantiated enablers’ components

Vertical, related capabili-

ties and features
Manageability

Plane/s involved

Device and edge plane – addition of computing node to an ASSIST-IoT deployment

Smart network and control plane – manageability actions related to K8s networking and

topology management

Application and services plane – as a service for system administrators, it will allow de-

ploying enablers in specific computing nodes.

Requirements mapping RC7: Edge-oriented deployment

Use case mapping This enabler will be present at all use cases, for administration purposes

Internal components Dashboard and Backend

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 41 of 43

High-level structure

No changes to D5.3, although the naming of the enabler has been changed.

Implementation technologies

No changes to D5.3.

Communication interfaces

No changes to D5.3.

Enabler stories

The stories depicted in deliverable D5.3 are valid (show registered clusters – ES1, register a new K8s cluster –

ES2, and delete cluster – ES3), but two of them have suffered some minor modifications. In the case of

registering a cluster (ES2) and deleting a registered cluster (ES3), when interacting with the Smart Orchestration

API, some operations related to the configuration of the selected CNI plugin of K8s (i.e., Cilium multi-cluster)

need to be performed. In any case, the overall flow is barely affected (some additional API calls between the

backend and the orchestrator).

Besides, the logic of the backend has been modified to support additional enabler stories. The fourth story

consists in depicting the topology of the deployment, including the clusters and the nodes managed by the

system as well as showing the enablers deployed in each computing node. Its flow and steps are the following

ones:

Figure 14. Clusters and topology manager ES4 (depict topology)

STEP 1: The user interacts with the tactile dashboard to get topology information (if clicking on a computing

node, the interface will show additional information from it, as the enablers deployed on it).

STEP 2: The dashboard sends an HTTP POST request to its backend to gather the requested data from the

Smart orchestrator.

STEP 3: Once the data is available, the dashboard formats it conveniently.

Finally, the fifth enabler story consists in the possibility of manually deploying an enabler in a specific node

of the topology, with the interface of the previous story as stating point. Its flow is as follows:

STEP 1: The user interacts with the tactile dashboard, specifically with the topology view, to select a computing

node to deploy an enabler on it.

STEP 2: The form to deploy enablers is shown to the user, but with some fields locked and filled with default

information. Then, the enablers manager takes over.

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 42 of 43

Figure 15. Clusters and topology manager ES5 (deploy enabler in target node)

D5.4 – Software Structure and Final Design

Version 1.0 – 31-OCT-2022 - ASSIST-IoT© - Page 43 of 43

4. Conclusions

This document is an update and extension of the specifications provided in the first iteration of this deliverable

series constituting a final design of enablers proposed in WP5. It provides insight about the design and technical

information for the transversal enablers, extending concepts introduced in deliverables D5.1, D5.2 and D5.3.

The software outcomes of WP5 are at different levels of development, but mostly advanced enough to be inte-

grated and validated in pilots. Specifically, some of them are containerised, others integrated with K8s (mani-

fests ready) or prepared for packaging (in Helm charts), whereas the implementation of all of them is beyond

minimum viable version. Although this document should mark the finalisation of the design of the enablers, as

an agile approach is followed in the project, further improvements are expected from their deployment in inte-

gration and pilot environments.

The enablers developed so far allows for continuing efforts related to this and other work packages:

 To finish the development of the components of the enablers (WP5).

 To containerise, and/or generate the K8s manifests required to deploy them in those cases that have not

virtualised the overall solution (WP5).

 To perform the testing and integration methodologies for each enabler (WP6).

 To package, publish and release the enablers as Helm charts (WP6).

 To start implementing them in pilots (WP7) for further validation and assessment (WP8), either fully

or partially packaged.

