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Abstract—Ultraviolet (UV) radiation is part of the optical
spectrum of the solar light. Exposure to ultraviolet radiation
for prolonged periods of time can cause damage to skin cells
and lead to the development of both non-melanoma cancer
and melanomas. Workers in constructions sites are particularly
susceptible to exposure in UV radiation due to the prolonged
periods of staying in outdoors areas that offer no protection
from the sun rays. This paper presents a fuzzy logic system
that monitors the UV levels at particular construction sites,
the environmental conditions that can affect UV as well as the
location of workers and can provide notifications and alerts to
both the workers and health and safety managers at each site.

Index Terms—Adaptive expert systems; UV exposure; Fuzzy
multi-criteria analysis; IoT; Data analysis

I. INTRODUCTION

Sunlight is part of the electromagnetic radiation that is
emitted from the sun and propagates through space before
reaching the earth. The optical spectrum of the solar light
includes infrared light, visible light and ultraviolet (UV)
radiation as well as heat, with a wavelength ranging from
100nm to 400nm. These components of the solar spectrum
are referred to as optical radiation. The biological effects of
UV radiation vary significantly with wavelength and thus UV
is commonly classified into three bands; UVA, UVB and UVC.
UVA has a wavelength between 315 to 400nm, UVB 280nm
to 315nm and UVC 100nm to 280nm. UVC and most of
UVB radiation are filtered by the atmosphere and the ozone
layer, therefore almost all of the UV radiation that reaches
earth is UVA.

Limited absorption of UV radiation has benefits to humans,
including the production of vitamin D3 that is vital for
musculoskeletal health. However, an increased exposure can
cause several acute or long-term health effects; It can result
in inflammation of the skin and contributes to skin ageing
and wrinkling, as well as cause cataracts and immune system
damage. Moreover UV radiation is genotoxic and a known
carcinogen, leading to different forms of skin cancer, through
the accumulation of mutations caused by UV damage [1]. In
fact, melanoma and nonmelanoma skin cancer are the most
common types of cancer in white populations [2]. The World
Health Organization reports approximately 1.5 milion cases of
skin cancer in 2020 due to exposure to UV radiation.

The ASSIST-IoT EU project focuses on the design, imple-
mentation, and validation of an open, decentralized reference

architecture, associated enablers, services and tools, to assist
human-centric applications in multiple verticals. One such
vertical involves the safety of workers in construction sites
and aims to increase their occupational safety and health at
their complex and unpredictable work environment.

The work of this paper is focused on one vector of oc-
cupational health, the monitoring and decision making asso-
ciated with the exposure of workers in construction sites to
erythemally weighted UV irradiance, with the introduction of
a knowledge-based system. The workers’ location is constantly
tracked with the use of smart IoT devices and together with
environmental data on UV radiation levels, effective decisions
can be made, emulating the human decision making process.

The paper is structured as follows: Section II details past
research on fuzzy knowledge-based systems as well as on in-
telligent UV radiation protection systems. Section III presents
the architecture of the proposed knowledge-based system.
Section IV discusses the concept of fuzzy sets and details the
fuzzy knowledge modelling of the system. Finally, Section V
provides details on the implementation of an instance of
the proposed knowledge-based system for personalized UV
exposure management and decision making.

II. RELATED WORK

A growing number of studies on knowledge-based systems
has been published, although research on the use of such
systems for UV exposure management is limited. A supervised
knowledge-based decision support system for use in railway
operation control systems is detailed in [3]. The system is
based on dispatching experts knowledge, modelled as a series
of fuzzy “IF-THEN” rules. The rules are visualized and repre-
sented in a Fuzzy Petri Net notion to allow for the easier design
and maintenance of the knowledge base. Uricchio, Giordano
and Lopez [4] present a supervised knowledge-based system
that uses expert knowledge formalized as a set of fuzzy rules
to evaluate the environmental impact of human activities on
the quality of groundwater. A similar system is used in [5] on
a completely different area of research; the economic analysis
of RFID investment using a cost/benefit analysis. A fuzzy
knowledge-based system is used to calculate the expected
revenue increase due to the use of RFID tags in a distribution
centre, while the expected net present value of the investment
is simulated using a Monte Carlo method. Giordano and
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Fig. 1. Architecture of the proposed knowledge-based system

Liersch [6] use a fuzzy knowledge-based system together with
a GIS interface to support soil salinity monitoring.

Significant research also exists on intelligent UV exposure
management systems. Tsantarliotis et al. [7] propose a system
that delivers intelligent indications for sun radiation protection.
The purpose of this system is to fill the gap of personal solar
protection in a novel way, by computing a tailored index
of solar dangers linked with the user and the surrounding
environment. The system is divided into two parts: a sensing
device that detects solar radiation in real time and an appli-
cation that interprets the data from the sensory equipment.
The program analyzes the user’s attributes and solar radiation
data to calculate the recommended periods of safe exposure in
direct sunlight. Correa [8] present UVBoost, a hybrid model
that integrate the accuracy of a Radiative Transference Model
(RTM) with the efficiency of ML CatBoost. UVBoost is made
up of a robust, detailed, and accurate database provided by an
RTM, used to train the regression model and allow for the
estimation of surface ultraviolet radiation (UVR) using sun
position, Total Ozone Content and Aerosol Optical Depth as
independent predictive variables. The authors simulate daily
UVR at eight distinct sites across the world. The results reveal
that UVBoost is highly effective at replicating cumulative
UVR doses over the day, with minor variations. Nielsen et
al. [9] simulate the transmission of solar radiation through
the skin by merging a bio-optical model of human skin with
advanced radiative transfer theory. The computed optical fea-
tures of the skin are subsequently paired with action spectra of
various photobiological processes to create efficiency spectra
for different skin types. The authors demonstrate that the
interaction of solar radiation with skin exhibits significant
temporal fluctuations as a result of dynamic changes in the
optical characteristics of the skin caused by solar radiation. Oh
et al. [10] present a mobile deep learning system that estimates
UVI based on illuminance data acquired from mobile devices
at the users’ location. The suggested technique examines the
relationship between illuminance and UVI using the natural
light DB gathered by real-life measurements. The suggested
technique allows for the delivery of UV information to users
through smart devices with illuminance sensors, even in the ab-
sence of UVI measurement equipment. When the experiment
results are compared to that of the spectrometer, it is shown
that the suggested approach can provide UV information with
an accuracy of 90− 95%.

III. SYSTEM ARCHITECTURE

The system presented in this paper is a Fuzzy Logic
Device (FLD). It is the result of mapping deterministic inputs,
starting from a set of rules relating linguistic variables to one
another using fuzzy logic. For the mapping to be performed,
deterministic values are converted into fuzzy values, and vice-
versa [11]. As depicted in Figure 1, the proposed FLD consists
of four main modules; fuzzification, knowledge base, decision
making and defuzzification.

Environmental data on UV levels, cloud coverage, ozone
levels, time of year and time of day are fed into the system by
an external service. Location data of construction site workers
are provided to the proposed FLD through the use of IoT
wearables. Personalized information on the skin type of each
individual as well as the SPF of any sun protection used is
also available for each worker.

The data input is received by the FLD as crisp numerical
values instead of fuzzy sets. For this reason, a fuzzification
module has been introduced, being responsible for the map-
ping of such values to fuzzy sets. The resulting sets can be
used in turn to activate all relevant rules by calculating their
membership functions. The knowledge base is the process
model of the system. It consists of a database that contains the
rule structure for each different construction site, containing
information about the site’s layout, covered areas and the
relevant materials (e.g., trees, completed buildings etc.) that
affect the reflection of the UV radiation and the denseness of
the shadow (i.e., the protection it will offer to the worker).

The fuzzy rules, together with the input from the fuzzifica-
tion module are combined to generate output by the decision
making module. The defuzzification module aggregates the
rule consequents, and selects the highest-rated to produce a
crisp output as the outcome of the FLD.

The output of the defuzzification module is forwarded to the
IoT wristbands of the construction workers, to notify them
of prolonged exposure to UV radiation. The information is
augmented with operational information in a clear and logic
way. The next section details extensively the methodology
used for the implementation of the proposed FLD.

IV. FUZZY KNOWLEDGE MODELLING

In a real world scenario, information can be affected by
uncertainty. Then, it is often not easy or desirable to group
pieces of information into crisp sets (sets with a binary
membership where objects are either members of the set or
not) based on precise parameters. Instead, fuzzy sets can be
used for information classification based on imprecise criteria.



Let us consider for example the monitoring of workers in
a construction site for UV exposure by a health and safety
manager. The manager analyzing the radiation levels will
not, in most cases, be able to determine whether they have
exceeded the threshold for the creation of erythema, as it
depends on many factors, such as the skin type of each worker,
the sunscreen, the levels of cloud coverage or whether they
work in a shared area (e.g., a completed part of the building).
Instead, it may be inferred whether a worker is exposed to too
much or too little UV radiation.

The fuzzy set theory was first introduced in the seminal
paper by Zadeh [12] as an extension of classical fuzzy
models. A fuzzy set is a collection of objects that don’t have
explicitly defined criteria of membership. Instead of a binary
membership (i.e. 0 or 1) to a set, each object has a grade of
membership ∈ [0, 1] instead, that indicates its degree of truth
in a subjective way. In other words its degree of membership
indicates how that object “fits” into the set.

In complex emergency management scenarios, there are
two distinct types of problem knowledge that can usually be
inferred for a situation, objective knowledge and subjective
knowledge [13]. Objective knowledge refers to quantitative
variables that can be used to accurately represent information.
Subjective knowledge on the other hand corresponds to usually
not-quantifiable knowledge in the form of verbal statements
- If you have been exposed to too much UV radiation, find
a shaded area. Obtaining objective knowledge for a specific
event, area or situation though is not easy and can often be
inaccurate or not applicable; many times gaining subjective
knowledge through the interaction with experts is better suited
to capture the imprecise modes of reasoning that is essential
for the ability of people to make decisions in an uncertain
environment [14]. This type of linguistic information is close
to the human cognitive processes, more reliable, and better
informative for the progress of the decision making prob-
lem [15].

This paper uses both types of information to create fuzzy
antecedent-consequent “IF-THEN” rules that can be used to
propose different courses of actions. One such example that
describes a straightforward course of action is - If workers are
exposed to increased levels of UV radiation for a prolonged
period of time, guide them to a shaded area. In this example,
the notion of increased levels of UV radiation is a linguistic
variable that forms the antecedent part of the rule and can have
a different meaning in different settings. The notion of guide
them to a shaded area represents a crisp course of action and
is the consequent part of the rule.

A rule Ri can be formally expressed as follows:

Ri(wRi
) : IF P is µP︸ ︷︷ ︸

antecedent

THEN A is a︸ ︷︷ ︸
consequent

(1)

The problem is to infer the consequent A is a from the
antecedent P is µP . Every rule Ri is associated with a rule
weight wRi

∈ [0, 1], that is determined from feedback pro-
vided by site experts. The weight of the rule corresponds to

the degree of truth of its statement. The precondition P is a
linguistic variable characterized by an appropriate degree of
membership µP ∈ [0, 1] to a particular fuzzy set. The degree of
membership of P reflects the subjective willingness to accept
it as a member to some set S [16]. A value of µP equal to
unity indicates a strong membership of P to S while a value of
zero indicates a strong rejection from S. The consequent part
of a rule consists of an action A that defines its outcome. It is
associated with a degree of confidence a ∈ [0, 1] and is a linear
combination of the rule’s inputs - it is therefore proportional
to both the degree of membership of the rule’s precondition
and the rule’s weight. Given a degree of membership µP of a
precondition and a weight wRi

of a rule, the action confidence
a can be computed as:

a = µP × wRi (2)

A rule can also consist of multiple preconditions P1, . . . , Pn

from fuzzy sets S1, . . . , Sn:

Ri(wRi) : IFP1 is µP1 . . .AND Pn is µPn︸ ︷︷ ︸
antecedent

THEN A is a︸ ︷︷ ︸
consequent

(3)
To determine the membership function of the intersection of

the fuzzy sets in the antecedent, the fuzzy AND operator can
be used since it is implied that the intersection corresponds to
the AND in human thinking [17]. For two preconditions, P1

and P2, their intersection µ can be expressed as P1 AND P2

and is defined as:

µ = γ ×MIN(µP1
+ µP2

) +
(1− γ)(µP1

+ µP2
)

2
(4)

The parameter γ indicates the degree of nearness to the
strict logical meaning of AND [18]. This paper uses a value
of γ = 0, reducing equation (4) to the arithmetic mean of sets
S1 and S2, however experimentation with different values of
γ can be also performed.

To combine multiple rules with the same action ai, aj , the
fuzziness reduction method introduced in [19] is used. For two
actions, A1 is a1 and A2 is a2, the method is defined as:

a = t1 ×MAX(a1, a2) + t2 × (a1 + a2 − a1 × a2) (5)

where t1, t2 ∈ [0, 1] and t1+t2 = 1. The aggregated value is
a combination between MAX(a1, a2) and (a1+a2−a1×a2)
with the support for each of the operators being controlled
by parameters t1 and t2. For the proposed FLD, the values
t1 = t2 = 0.5 were used.

From a top-down perspective, the knowledge-based system
of this paper can be represented as an adaptive network, a
multi-layered feed-forward network of nodes that are con-
nected through directional links [20]. Each of the nodes
performs a specific function on some input using a formula
and generates the appropriate output. Some of the nodes have
different input parameters that affect their output, and these
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Fig. 2. The proposed FLD as an adaptive network

parameters can adapt based on feedback from experts from
each construction site. For easier identification, these nodes
are visualized as squares. Fixed nodes are drawn as circles
instead.

Figure 2 presents an example of such a network for two
fuzzy rules R1 and R2, associated with weights wR1

and wR2

respectively. Both rules have as an input the numerical values
x and y (i.e. time of day, cloud coverage). Rule R1 then has
as an antecedent the linguistic variables P1 and P2 (i.e. too
hot, extended exposure) and as a consequent the action A1,
while rule Rule R2 has as an antecedent the linguistic variables
P3 and P4 and action A2 as a consequent. Rule 1 has the
form of R1(wR1) : IF P1 is µP1(x) AND P2 is µP2(y) THEN
A1 is a1. Rule 2 has the form of R2(wR2) : IF P3 is µP3(x)
AND P4 is µP4

(y) THEN A2 is a2.
• Layer 1: Every square node of this layer calculates

the membership functions µP1
(x), µP2

(y), µP3
(x) and

µP4
(y) for P1, P2, P3 and P4 respectively based on

input x and y, to determine the degree of truth of the
preconditions. The membership functions can be any bell-
shaped functions, such as Gaussian but for the proposed
FLD, the following function from [20] is used:

1

1 + [(x−ci
ai

)2]bi
(6)

where {ai, bi and ci} is the parameter set that controls
the shape of the bell. Parameters ai, bi and ci are referred
to as antecedent parameters. Figure 3 depicts an example
membership function modelled after the set S of “UV ex-
posure”. With this function, the UV exposure in Standard
Erythema Dose (SED), a standardized measure of erythe-
mogenic UV radiation, of a worker is divided into three
fuzzy sets, represented by “Low”, “Medium” and “High”,
based on the worker’s skin type. For example, exposure
of 4 SED has an µLow = 0.073, µMedium = 0.811 and
µHigh = 0.272 for Skin types V, II respectively

• Layer 2: For rules with multiple preconditions, the layer 2
circle nodes calculate their intersection based on equation
(4). The result is forwarded to the next layer.

• Layer 3: The circle nodes of this layer utilize the
fuzziness reduction method of equation (5) to combine
multiple rules with an identical consequent

• Layer 4: The square nodes in layer 4 compute the level of
confidence a of each rule Ri proportionally to the mean

0 3 6

0.5

1

Low Medium High

Fig. 3. Membership function for “UV exposure”

degree of membership µP of that rule and that rule’s
weight wRi

, using equation (2). The level of confidence
a is referred to as consequent parameter

• Layer 5: The circle node in the last layer receives the
level of confidence of each combined rule a1, . . . , an as
an input and returns the rule with the highest confidence
level a = max(a1, . . . , an) as an output of the adaptive
network

V. EXPERIMENTAL METHODOLOGY

The ability of UV radiation to induce an acute cutaneous
inflammatory reaction of the skin, also refered to as solar
erythema, is strongly dependent on its wavelength. The term
Standard Erythema Dose is used to refer to erythemal effective
radiant exposures [21]. One SED is equivalent to an erythemal
effective radiant exposure of 100Jm−2 [22]. An exposure
of about 3 SED can produce just minimal erythema in the
unacclimatized white skin of the most common northern
European skin types. An exposure of 5 − 8 SED will result
in moderate sunburn while 10 SED or more can result in a
painful, blistering sunburn [23].

According to [24], the exposure time tE in minutes required
to induce solar erythema (acute cutaneous inflammatory re-
action of the skin to UV radiation) on an individual can be
calculated by:

tE =
4000

60
× MEDF × SPF

UV I
(7)

where MEDF refers to the skin type of the individual,
as described in [25] and listed in Table I, SPF is the sun
protection factor of any sunscreen applied to exposed skin
while UV I is a measure of the level of [sunburning] UV
radiation.

Skin type Description Scale
I Celtic 2− 3
II Pale 2.5− 3
III Caucasian 3− 5
IV Mediterranean 4.5− 6
V S. American 6− 20
VI Negroid 6− 20

TABLE I
SKIN TYPE CLASSIFICATION BASED ON THE FITZPATRICK SCALE



Additional factors that affect the UV exposure of an indi-
vidual also include [26]:

• Solar elevation. UV levels vary with the solar zenith
angle, the angle between the sun’s rays and the vertical
direction. The altitude of the sun depends on the time of
year and time of day, as well as on the local Longitude
and Latitude

• Altitude. UV levels increase by approximately 10% for
every 1000m in altitude. As measured in Switzerland and
Austria [27], the increase is approximately 8% per 1000m
of total irradiance, 9% per 1000m of UVA irradiance and
18% per 1000m for erythemal effective irradiance during
the summer

• Clouds. UV radiation is only weakly absorbed by the
aerosol particles in the clouds but at the same time can
be attenuated by scattering. The impact of an overcast
cloud layer is highly variable due to the variability of
the optical properties and geometry of the cloud. An
annual reduction in UV levels is reported in [21] of
approximately 25 − 33% when clouds are present as
opposed to clear skies. A reduction of UV-Biometer
intensities is mentioned in [28] to 30% of the clear-sky
value at 30o solar zenith angle, 37% at 40o, and 41% at
70o

• Atmospheric attenuation. Thw UV radiation is absorbed
by the ozone layer in the stratosphere and scattered by
other molecules such as N2 and O2

• Surface reflections. Reflective surfaces, such as snow,
water, sand and paint, can increase significantly the
surrounding levels of UV radiation

The decisions of the FLD are influenced by the above
conditions. The FLD can have three possible outputs per
individual:

• “No action” - The individual is exposed in no particular
UV radiation-related risk

• “Warning” - The individual is exposed to significant
levels of UV radiation, it is suggested to move to a shaded
or indoors area

• “Emergency” - The individual is in risk of erythemal
effective irradiance, it is strongly recommended to a
shaded or indoors area

The decisions are transmitted to that worker’s smart device
indicating a warning that the UV exposure is starting to build
up significantly or that the upper threshold of UV exposure
has been reached and thus the participant is strongly urged
to seek a shadowed area within the site to avoid the chance
of skin damage. The safety and health manager of the site
is also notified to ensure that the worker complies with the
notification.

For the evaluation of the proposed FLD of this paper,
first the measurement and monitoring infrastructure used is
detailed. Then, the conditions that influence the decision
making process are detailed and the rules that consist the
knowledge base of the FLD are described.

Fig. 4. Experimental Results

Data from geographical locations of volunteers from the
CERTH national center for research and technology were
collected and used for preliminary measurements. On a later
stage of the project, the proposed FLD will be utilized as part
of the actual ASSIST-IoT scenario for construction workers.
Garmin Fenix 7 smart watches were used to collect data, which
were subsequently exported from the implementation of this
model in gpx format.

Data for UV index forecasting have been collected using the
OpenUV application [29], taking into account the solar zenith
angle (SZA) and ozone forecast fields. A representation of the
format for data collected is shown in Table II below.

Timestamp Latitude Longitude Elevation UV
1657726209 40.600221 22.994122 100.800003 0.0388
1657726210 40.600212 22.994122 101.000000 0.0388
1657726214 40.600100 22.994135 102.000000 0.0388

TABLE II
SAMPLE OF COLLECTED DATA FOR UV EXPOSURE

Finally, the time that the workers were in the shade, was
also taken into consideration, to ensure that the data were more
accurate in terms of the worker’s exposure to UV radiation.



VI. EVALUATION

The proposed system was able to estimate SED as a
function of time. The diagrams in Fig. 4 demonstrate two
different routes recorded during the summer, in three different
conditions; early morning (just after the sunrise), midday and
cloudy-rainy day.

As can be seen from the Fig. 4, in both cases under overcast
conditions the results are very positive. In contrast, in the first
case where the worker was exposed to the sun very early
in the morning, after a period of about 1.5 hours harmful
dose detected in the case of route-2 while route-1 was not
long enough to go over the limit. Finally, in the midday
conditions, the sun became harmful to the workers’ health
after approximately 50 minutes in both routes.

Utilizing 7, and assuming a Caucasian skin type (the most
common for Europeans) and SPF protection of 30, in the
midday cases, the time required to induce solar erythema
would be 24 and 17 minutes for the two routes. In the
overcast cases, the respective times are 247 and 555 minutes,
demonstrating the effect of the weather. Considering route-1-
midday scenario, if the worker uses higher protection (e.g.,
SPF 50 or 100) the time to solar erythema from 24 minutes
increases to 40 and 80 minutes respectively, signifying the
importance of proper sun protection when working outside.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an initial implementation and evalu-
ation of a fuzzy knowledge-based system for estimating the
UV exposure for workers in constructions sites. The proposed
system can be proven a useful tool to avoid erythema and
more serious skin damages. An initial evaluation of the FLD
presented in this paper was performed with data captured from
volunteers at the CERTH national center for research and
technology. Additional experiments will be performed during
the pilot demonstrations of the ASSIST-IoT H2020 project.
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