
 

 

 

 

 

 

 

Architecture for Scalable, Self-human-centric, Intelligent, 

Secure, and Tactile next generation IoT 

 

 

 

 

 

D6.2 -Testing and integration plan – 

Initial 
 

 

Deliverable No. D6.2 Due Date 30/04/2022 (delivered June 1st, 

2022) 

Type Report Dissemination Level Public  

Version 1.0 WP WP6 

Description Includes testing plan, to be followed for all components belonging. The initial 

release outlines the initial plan, while second version will include plan update and 

results. 

 

 

  

This project has received funding from the European’s Union Horizon 

2020 research innovation programme under Grant Agreement No. 957258 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 2 of 50 

 

Copyright 

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved. 

 

The ASSIST-IoT consortium consists of the following 15 partners: 

 

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain 

PRODEVELOP S.L. Spain 

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland 

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece 

TERMINAL LINK SAS France 

INFOLYSIS P.C. Greece 

CENTRALNY INSTYUT OCHRONY PRACY Poland 

MOSTOSTAL WARSZAWA S.A.  Poland 

NEWAYS TECHNOLOGIES BV Netherlands 

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece 

KONECRANES FINLAND OY Finland 

FORD-WERKE GMBH Germany 

GRUPO S 21SEC GESTION SA Spain 

TWOTRONIC GMBH Germany 

ORANGE POLSKA SPOLKA AKCYJNA Poland 

 

Disclaimer 
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may 

not be reproduced or copied without permission. This deliverable contains original unpublished work except 

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others 

has been made through appropriate citation, quotation or both.  

The information contained in this document is the proprietary confidential information of the ASSIST-IoT 

Consortium (including the Commission Services) and may not be disclosed except in accordance with the 

Consortium Agreement. The commercial use of any information contained in this document may require a 

license from the proprietor of that information. 

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information 

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no 

liability for loss or damage suffered by any person using this information. 

The information in this document is subject to change without notice. 

The content of this report reflects only the authors’ view. The Directorate-General for Communications 

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is 

not responsible for any use that may be made of the information it contains.   



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 3 of 50 

 

Authors 
Name Partner e-mail 

Alejandro Fornés P01 UPV alforlea@upv.es  

Ignacio Lacalle P01 UPV iglaub@upv.es 

Eduardo Garro P02 PRO egarro@prodevelop.es  

Paweł Szmeja P03 IBSPAN pawel.szmeja@ibspan.waw.pl  

Katarzyna Wasielewska-Michniewska P03 IBSPAN katarzyna.wasielewska@ibspan.waw.pl  

Georgios Stavropoulos P04 CERTH stavrop@iti.gr  

Evripidis Tzionas P04 CERTH tzionasev@iti.gr 

Iordanis Papoutsoglou P04 CERTH ipapoutsoglou@iti.gr 

Aggeliki Papaioannou P06 INF apapaioannou@infolysis.gr  

Theoni Dounia P06 INF tdounia@infolysis.gr  

Óscar López P13 S21Sec olopez@s21sec.com 

Jordi Blasi P13 S21Sec jblasi@s21sec.com  

 

 

History 
Date Version Change 

17-Dec-2021 0.1 ToC and task assignments  

28-Feb-2022 0.2 ToC updates 

03-Mar-2022 0.3 First round of contribution 

01-Apr-2022 0.4 Update to ToC 

27-Apr-2022 0.5 Second round of contribution 

14-May-2022 0.8 IR Review 

30-May-2022 1.0 Final vesion after PIC review 

 

Key Data 
Keywords IoT, equipment, SDN, NFV, smart control, architecture… 

Lead Editor P04 CERTH – Georgios Stavropoulos  

 

  

mailto:alforlea@upv.es
mailto:iglaub@upv.es
mailto:egarro@prodevelop.es
mailto:pawel.szmeja@ibspan.waw.pl
mailto:katarzyna.wasielewska@ibspan.waw.pl
mailto:stavrop@iti.gr
mailto:tzionasev@iti.gr
mailto:ipapoutsoglou@iti.gr
mailto:apapaioannou@infolysis.gr
mailto:tdounia@infolysis.gr
file:///C:/Users/usuario/Desktop/ASSIST-IOT/WP6/Deliverables/olopez@s21sec.com
mailto:jblasi@s21sec.com


D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 4 of 50 

 

Executive Summary 
This deliverable is written in the framework of WP6 – Testing, Integration and Support of ASSIST-IoT project 

under Grant Agreement No. 957258. The deliverable is the first one of two deliverables for testing and 

integration within the ASSIST-IoT project. This first deliverable focuses on tools, testing phases, and test plan 

for the developed components of the project following the DevSecOps methodology. 

Essentially, DevSecOps methodology drives the adoption of tools and sets the testing phases for the Continuous 

Integration (CI). The document presents the current tools in place supporting the developing team of each 

partner to coordinate their work. The main tools are currently Gitlab and Kubernetes along with Gitlab Runner 

and Docker Registry. The tools will help in packaging the work and facilitate the future integration. The test 

strategy presents the testing phases to follow during the project in order to deliver functional components abiding 

by the requirements set in WP3 and technical WPs with special attention to security. Finally, the testing and 

integration plan includes details on the testing phases in the project, presents the environments to be involved 

during the tests, and presents the time plan and the status and provisional test results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.   



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 5 of 50 

 

Table of contents 

1 About this document 8 

1.1 Deliverable context 8 

1.2 The rationale behind the structure 8 

2 Integration infrastructure and tools 9 

2.1 Gitlab 9 

2.2 Gitlab Runner 9 

2.3 Docker registry 9 

2.4 Kubernetes 10 

3 Test Strategy 11 

3.1 Unit testing 11 

3.2 Functional testing 12 

3.3 Integration testing 12 

3.4 End-to-end testing 13 

3.5 Acceptance testing 15 

3.6 Performance testing 16 

4 Acceptance and integration test plan 18 

4.1 Development of the Testing Methodology 18 

4.2 Testing process in ASSIST-IoT 21 

4.2.1. Functional Testing of horizontal enablers 23 

4.2.2. Functional Testing of vertical enablers 32 

4.3 Test environment 39 

4.4 Time plan 39 

5 Conclusion / Future Work 41 

Appendix 1: Enabler’s status 42 

 

 

 

List of tables 

Table 1: Template for Integration Tests .............................................................................................................13 
Table 2: Software Test & Integration plan .........................................................................................................20 
Table 3: Smart Orchestrator's functional tests ....................................................................................................23 
Table 4:Traffic Classification's functional tests .................................................................................................24 
Table 5: Multi-link's functional tests ..................................................................................................................24 
Table 6: SD-WAN's functional tests ..................................................................................................................24 
Table 7: WAN Acceleration's functional tests ...................................................................................................25 
Table 8: VPN's functional tests ..........................................................................................................................26 
Table 9: Semantic Repository's functional tests .................................................................................................26 
Table 10: Semantic Translation's functional tests ..............................................................................................27 
Table 11: Semantic Annotation's functional tests ...............................................................................................28 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 6 of 50 

 

Table 12: Edge Data Broker's functional tests ....................................................................................................29 
Table 13: Long-Term Storage's functional tests .................................................................................................29 
Table 14: Tactile dashboard's functional tests ....................................................................................................30 
Table 15: Business KPI Reporting's functional tests ..........................................................................................30 
Table 16: PUD's functional tests ........................................................................................................................30 
Table 17: OpenAPI Management's functional tests ...........................................................................................31 
Table 18: Video Augmentation's functional tests ...............................................................................................31 
Table 19: MR's functional tests ..........................................................................................................................31 
Table 20: Self-healing's functional tests .............................................................................................................32 
Table 21: Automated Configuration's functional tests .......................................................................................32 
Table 22:Resource Provisioning's functional tests .............................................................................................32 
Table 23: Monitoring and Notifying's functional tests .......................................................................................33 
Table 24: Location Processing's functional tests ................................................................................................33 
Table 25: FL Training Collector's functional tests .............................................................................................34 
Table 26: FL Orchestrator's functional tests .......................................................................................................34 
Table 27: FL Repository's functional tests .........................................................................................................35 
Table 28: FL Local Operations' functional tests .................................................................................................35 
Table 29: Identity Manager's functional tests .....................................................................................................35 
Table 30: Authorisation's functional tests ..........................................................................................................36 
Table 31: Cybersecurity Monitoring's functional tests .......................................................................................36 
Table 32: Cybersecurity Monitoring Agent's functional tests ............................................................................37 
Table 33: Logging and auditing's functional tests ..............................................................................................37 
Table 34: Integrity Verification's functional tests ..............................................................................................37 
Table 35: Broker service's functional tests .........................................................................................................37 
Table 36: FL DLT's functional tests ...................................................................................................................38 
Table 37: Registration and status of enablers' functional tests ...........................................................................38 
Table 38: Device Management's functional tests ...............................................................................................38 

 

 

List of figures 

Figure 1. Unit Testing Life Cycle .......................................................................................................................12 
Figure 2. Functional Testing high level diagram ................................................................................................12 
Figure 3. Architectural diagram for Construction site access control sub-trial ..................................................14 
Figure 4. Acceptance Testing high level diagram ..............................................................................................16 
Figure 5. Performance Testing Life Cycle .........................................................................................................17 
Figure 6. Waterfall model of ASSIST-IoT Development Life Cycle.................................................................18 
Figure 7. V-model of ASSIST-IoT Development Life Cycle ............................................................................19 
Figure 8: DevSecOps embedded security control ..............................................................................................19 
Figure 9. Test environment to simulate pilot site premises ................................................................................22 
Figure 10. ASSIST-IoT testing and integration time plan ..................................................................................39 
 

 

 

  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 7 of 50 

 

List of acronyms 

Acronym Explanation 

AC Automated Configuration 

AD Active Directory 

API Application Programming Interface 

CI Continuous Integration 

CI/CD Continuous Integration/continuous delivery 

CNCF Cloud Native Computing Foundation 

DevSecOps Development Security Operations 

DLT Distributed Ledger Technology 

FAT Factory Acceptance Testing 

FL Federated Learning 

GUI Graphical User Interface 

IoT Internet of Things 

IPSec Internet Protocol Security 

JSON JavaScript Object Notation 

K8s Kubernetes 

KPI Key Performance Indicator 

LDAP Lightweight Directory Access Protocol 

LP Location Processing 

ML Machine Learning 

MQTT Message Queuing Telemetry Transport 

NG-IoT Next Generation IoT 

OAT Operational Acceptance Testing 

PAP Policy Administration Point 

PUD Performance and usage diagnosis 

RAM Random Access Memory 

REST Representational State Transfer 

SAT Site Acceptance Testing 

SD-WAN Software-defined wide area network 

SSD Solid State Drive 

SSO Single sign-on 

UI User Interface 

URL Uniform Resource Locator 

VPN Virtual Private Network 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 8 of 50 

 

1 About this document 

The key objective of this document is to provide the initial plan of testing and integration for the project. The 

testing and integration follow different phases for enforcing the DevSecOps methodology, and each phase can 

use tools and metrics to evaluate the performance. The final version and outcomes will be part of the second 

iteration of the deliverable scheduled for M30. 

 

1.1 Deliverable context 

 

Keywords Lead Editor 
Objectives O1: The deliverable aims to guarantee the architectural structure for NG-IoT and sets tests 

to facilitate the DevSecOps methodology. 

O2 to O5: Each of the implementations is a subject to testing. 

O6: The testing environment will be used for testing and integrating the developed solutions 

before validating them in the pilots. 

Work plan  

 

 

 

 

 

 

 

 

 

Milestones This deliverable does not mark any specific milestone completion. However, it contributes 

to the MS6 Software structure finished (M24) and MS7 – Integrated solution (M30). The 

deliverable is the basis for testing methods and integration. 

Deliverables Task 6.2 – Testing and Integration efforts resulted in this current deliverable. Other 

concurrent deliverables of WP6 are complementary to this deliverable, namely those 

devoted to the plan for release and distribution (D6.4 [1.]) and documentation (D6.5 [2.]). 

The next iteration is expected in M30. It partially draws from the D6.1 [3.] – DevSecOps 

methodology delivered in M6. 

 

1.2 The rationale behind the structure 
This deliverable follows a straightforward approach: Section 2, presents the infrastructure and tools in place; 

then, Section 3, the test strategy is elaborated; Section 4 presents the acceptance and integration test plan for the 

project. Finally, conclusions are drawn in Section 5, introducing the outcomes expected in the next iteration of 

the current deliverable. 

  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 9 of 50 

 

2 Integration infrastructure and tools 

2.1 Gitlab 
GitLab [4.] is a web-based Git repository that offers open and private repositories for free, as well as issue 

tracking and wikis. It is a suitable platform to apply DevSecOps methodology, as it allows developers to handle 

all aspects of a project, from project planning to source code management, monitoring and security. 

Furthermore, GitLab enables teams to cooperate and create better software. Teams can shorten product 

lifecycles and boost productivity resulting in greater value for customers. Users are not required to handle 

authorisations for each tool in the program. Roles and permissions are part of the project to evaluate access to 

individual components depending on the access rights. 

Security is a fundamental part of the methodology in ASSIST-IoT, as it becomes everyone’s responsibility. 

GitLab is a platform that facilitates and automates DevSecOps procedures with an updated approach depicted 

in a forum post [5.]. In detail, security testing is applied within the CI pipeline raising developers’ awareness of 

vulnerabilities introduced in their code and making it actionable to be corrected. Moreover, the CI pipeline is 

not costly, and a single license manages it. 

Apart from security being a focal point, GitLab is a platform that enterprises use in daily operations for different 

reasons. One reason is to support the collaboration between teams since this is vital for a successful project 

deployment. Moreover, GitLab available features like repositories, issues tracking and roles are helpful in 

project management by assisting the stages of software development. 

As GitLab is already organized for testing and integration purposes, additional functionalities and details have 

also been set up. In detail, the established tools are GitLab runner and Docker Registry, and new tools can be 

added in the future for providing additional functionalities. A security policy with measurements is in place to 

safeguard the work developed in the project. Indicative rules applied on GitLab are the obligatory two-factor 

authentication and password update in timely intervals. The project has divided the GitLab platform into work 

packages and tasks for the most appropriate management. The partners can define their personnel, apply access 

rights, and integrate their work by uploading code and binaries on the platform. 

 

2.2 GitLab Runner 
GitLab Runner [6.] is introduced as the application for running CI/CD jobs in a pipeline, developed by GitLab. 

Generally, runners are agents that run jobs and communicate with the Gitlab instance. 

GitLab Runner was selected based on the matching features to the project’s specifications. A feature by GitLab 

Runner allows running Docker containers harmonised with the project’s idea for the containerisation of the 

designed enablers. Moreover, the application is able to run on a plethora of systems providing flexibility to the 

development. Finally, Prometheus analytics’ availability was deemed valuable for the project. 

 

2.3 Docker registry 
The Registry [7.] is a server-side application that stores and distributes Docker images. It is stateless, as the 

application does not read or store information about its state, and extremely scalable. The Registry is open-

source and licensed under the Apache permissive licence. 

Docker registry offers improved latency, better availability, greater integration with enterprise-grade AD/LDAP 

and SSO, better image access control, better security (protected from external threats), ability to run containers 

in private subnets and reduced cost. Authenticated users are able to push and pull Docker images.  

Docker Registry adds the functionality to store the project’s Docker images. Moreover, teams can manage the 

image versioning to streamline their work. Finally, the project’s partners are experienced in working with 

Docker registries. 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 10 of 50 

 

2.4 Kubernetes 
Kubernetes [8.], also referred to as K8s, is a system for orchestrating containerised workloads and has been 

chosen for the instantiation of the project’s enablers (or rather, their components). The system was originally 

deployed by Google, but the Cloud Native Computing Foundation (CNCF) and has become the de facto standard 

for container orchestration in production environments. 

Kubernetes extends the functionalities provided by Docker (understanding it as the engine for deploying 

containers). To begin with, Docker run workloads in a single node, which is a clear point of failure: in case this 

node fails, or an update is needed, the services/applications from the hosted containers are halted. K8s avoids 

this kind of issues by working with clusters with several nodes as well as with dedicated updating strategies, 

making it much more suitable for production environments.  

Enablers must be prepared and packaged to work in this environment, and therefore it should be part of the 

integration environment. 

  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 11 of 50 

 

3 Test Strategy 

This chapter lays the foundation for coordinating the tests to be performed over the technical components of the 

project. Definitions are provided to get familiar with the different testing cycles that should be followed to 

adhere to the DevSecOps methodology. 

 

3.1 Unit testing 
Unit testing is a term defined as a test executed by developers in a laboratory environment to demonstrate a 

program’s ability to meet the requirements set in the design specification [9.]. The units in this kind of testing 

can either be individual components or a bundle of them [10.]. The focus is set on the unit, while the general 

system is not part of the consideration during this testing. Runeson's survey indicates that the development team 

should conduct unit tests on the component. 

It is vital to determine the unit in terms of ASSIST-IoT project. The work in the architectural design defines a 

microservice architecture for the project where each component is responsible for the execution of a single 

function. In other words, the architectural design has divided the functionality into enablers. Enablers act as a 

bundle of internal components, such as databases, APIs, registries and services in general. Unit testing will be 

applied on the aforementioned individual components’ classes, methods and internal interfaces, as each enabler 

is a complex structure of individual components. 

The methodology that will be followed in ASSIST-IoT will not deviate from the general principles of unit 

testing. The idea is that a “unit” will be defined as the smallest testable part of each enabler’s component. Unit 

tests should be automated and written using a unit test framework, corresponding to the programming language 

that each developing team is making use of. For example JUnit for Java or unittest for Python etc.  

Unit testing should take place before (or in parallel with) uploading code into repositories, in order to ensure 

each unit’s correct behaviour, and only components that have passed all unit tests should be committed. 

Specifically for each major method – function – class (units) – internal API of each enabler’s component a 

single test should be implemented. Methods should have corresponding test-methods that with known inputs, 

produce expected outputs. Furthermore, classes should have abstract test classes implemented, to be initialized 

before the main classes are called. When calling the main program, the test methods – functions – classes will 

be called first and if unexpected outputs occur, there will be an error assertion that the test has failed. 

Some simple guidelines are: 

• Unit test means that each test tests exactly one thing. 

• Each test method is one test. 

• Each test method should have one assert (Pass/Fail). 

• Data inputs and outputs for the test should be deterministic. 

• Failing tests should have clear and unambiguous error messages. 

To further enhance the software quality, it is recommended to create a test for each bug occurrence with a 

concrete bug statement number to automate the bug tracking and fixing. There will be no criteria for test 

coverage percentage at this point of development. 

The unit testing considers the individual components and ignores the overall system. As enablers are natural to 

have dependencies on each other, these dependencies should be substituted by mock objects for running tests. 

There are different scenarios to cover during testing, like positive, negative, and limit tests. 

All in all, a unit test covers a specific functionality of the unit. Units with multiple functionalities should consider 

matching tests to these functionalities. Components meeting the acceptable behaviour should be the ones to be 

included in the system. 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 12 of 50 

 

 

Figure 1. Unit Testing Life Cycle 

3.2 Functional testing 
Functional testing is another testing method that ASSIST-IoT will incorporate into its pipeline to guarantee the 

system's functionality. In detail, the requirements are drafted in WP4 and WP5 and are to be validated with 

functional testing on the delivered platform. In this testing phase, the system will be given an appropriate input 

to examine the adherence to the requirements. 

Generally, functional testing is a black box test method that does not focus on the platform’s source code. An 

initial step for this test method is to define clearly the functions expected to be performed by the platform.  

 

Figure 2. Functional Testing high level diagram 

3.3 Integration testing 
The next phase of testing in the project is the integration testing. While the individual components of the system 

are tested in the unit testing, the integration focuses on the components’ interaction to provide higher-level 

functionality. Hence, integration testing considers runtime factors such as compatibility with interfaces, 

services, and dependency resolution. The collaboration of multiple units is under the integration testing concept. 

In ASSIST-IoT, the enablers are mainly part of the two technical work packages (WP4, WP5). The integration 

tests act as grey box tests meaning that a complete workflow and its results are to be tested. The workflow 

structure is set by the architectural structure that will be realised in the pilot sites. 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 13 of 50 

 

Since the testing strategy should follow a sequential manner, integration testing’s focus is built around the next 

phase of ensuring the correct behaviour of interacting internal components of an enabler. Essentially, we have 

to make sure that internal enablers’ APIs are working properly, by creating methods that are exchanging 

expected data, meaning that with the correct input we are expecting a desirable output between the internal 

components. There are tools and frameworks for integration testing that will be specific to programming and 

development environments, since the functionalities of each enabler differs in a variety of ways. The general 

idea is to develop tests for a specific use case or tool under test and deliver a corresponding template: 

Table 1: Template for Integration Tests 

ASSIST-IoT enabler # 

Tool / Use Case under Test 

Test 

ID 
Test Description Input Outputs 

Associated 

tool / Use case 

Test 

result 
Comment 

# Integration 

Describe the 

function, interaction, 

module, tool to test. 

Inputs for 

integration 

test 

Expected 

outputs 

Tool: Jenkins / 

Maven / Git 

 

Use case: 

Enabler #, Use 

case # 

Pass/Fail 
If failed, 

explain why 

#        

#        

 

The majority of the enablers follow the encapsulation logic for delivering their functionality in an independent 

manner. Messages and endpoints are vital parts in the execution of a pipeline between the different enablers that 

will support the successful integration testing. Hence, as a second phase of integration testing the approach 

should be to connect the enablers as a whole in a use case scenario, by developing the tests to establish the 

connection and determine the workflow of the use case. Use cases will be derived from D4.2, D5.2 and D5.3 

deliverables, in which every enabler has documented several cases of its internal components interacting with 

each other, and to be distinguished from end-to-end testing which will draw pilot trials from D7.2. Gitlab is the 

main tool for implementing this phase of testing, though many of the partners, who have already started 

developing integration tests are using their own frameworks, such as Citrus, FitNesse or Rational Integration 

Tester. Of course Docker and building test containers will be the major and vital part of this phase of integration 

testing, to follow the enablers’ encapsulation logic. 

 

3.4 End-to-end testing 

End to end testing is a methodology used in the software development lifecycle to test the functionality and 

performance of a given application from start to end. Today’s applications are rarely stand-alone products, and 

their effective operation requires a wide web of interconnected systems (e.g., networks, external databases etc.). 

In extension, the application requires multiple underlying subsystems to operate smoothly, and if one subsystem 

fails, the entire application fails as well. Hence, teams nowadays must not only test the high quality and 

performance of the application as a whole but also the interconnected subsystems and how they communicate. 

End-to-end testing is the most effective approach to the above. 

ASSIST-IoT is a foreground for conducting end-to-end testing in a vast environment of interconnected 

subsystems. The goal is to validate the system under test by validating the components of the project application 

(UI & API) and making sure the system behaves as expected. In a nutshell, the ultimate goal is to simulate a 

pilot trial and validate that the actual results are equal to expected. 

In general, the benefit of end-to-end testing in ASSIST-IoT is to confirm the applications’ health, expand the 

test coverage, detect bugs and, lastly, reduce the testing resources. Τhis testing phase considers the application 

as a unit to ensure the optimal operation of the workflow as a whole.  

For example we can refer to D7.2, pilot 2, trial #1 – Construction site access control sub-trial: 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 14 of 50 

 

 

Figure 3. Architectural diagram for Construction site access control sub-trial 

The above diagram’s flow is explained in D7.2 section 3.2.1. Here we are going to try to give the outlines of 

the end-to-end testing of this trial. 

• Develop a test for ensuring the connection of the camera to the image collector, a test for ensuring that 

the images arrive intact to Amazon Rekognition and a test for ensuring that the recognized persons & 

their PPE arrive at the Workplace safety controller. 

• Develop the tests that known location tags are parsed to the location tracking enabler, then collected by 

EDBE and finally arrive at the workplace safety controller, decoded and with the expected output. 

• Develop tests for the semantic repository and construction site controller to ensure that basic ontologies 

and configurations are loaded correctly. 

• Develop tests that ensure the flow of data from workplace safety controller -> EDBE -> LTSE -> 

Business KPI reporting -> Tactile Dashboard. 

• Develop Tests for the incident log has it parsed to the integrity verification enabler and from there to 

the tactile dashboard. 

• Develop tests that ensure that the identity manager and authorization enabler correctly identify and give 

access to the related authorized personnel. 

All the above actions consist an approach of developing test that give a holistic point of view of the construction 

site access control sub-trial, under the condition that the unit and integration testing have already taken place 

and passed. Thus far, the test will be conducted by developers and integration teams without end users involved.   

While the above is just an example, the exercise of drilling down the tests for every “end-to-end” trial is being 

performed for all cases. In ASSIST-IoT, pilots are composed of trials (3 in pilot 1, 3 in pilot 2 and 2 in pilot 3 – 

divided in 1 for the pilot 3A and 1 for the pilot 3B), thus this will be the structure followed in T6.3 for the 

testing. This activity has been initiated across the board, but details on sub-tasks have not been able to be 

completed by the time of submitting this deliverable. Technical teams have been focused on delivering MVPs 

of the enablers, as well as on producing enough documentation for M18 (D6.5, D4.2 and D5.3). On the other 

hand, the diagrams that are being used as the baseline for devising testing plans (see Figure 3) have been just 

generated to be included in D7.2. It is, thus, planned, to elaborate those detailed end-to-end testing scenarios 

during the next weeks and to apply them as soon as the software artefacts will be ready. 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 15 of 50 

 

These plans will be detailed (both in terms of planning and the evidences of its performance) in deliverable 

D6.3, by the time of finishing the work package (M30 – April 2023). 

 

3.5 Acceptance testing 
Validation in ASSIST-IoT is accomplished through Factory Acceptance Testing (FAT) and Site Acceptance 

Testing (SAT). Before deploying the system to the actual production environment, a vendor usually conducts 

factory acceptance testing. The goal of FAT is to ensure that the created systems meet the stated or contractually 

promised specifications and regulatory obligations prior to delivery and final installation. The system can be 

then installed in a real-world production environment, and site acceptance testing can be performed. 

User tests in FAT, which are typically conducted by business experts or end-users, are neither focused on minor 

issues or errors nor on major software/services crashes, which are supposed to be acknowledged and fixed in 

earlier unit testing, integration testing and system testing phases. The FAT simulates real-world and real-time 

settings and operates as a final verification of the system’s required business functionality and appropriate 

operation. If the software performs as expected and without major issues during routine operation, the same 

level of stability can be anticipated in production. 

After FAT is conducted, the Site Acceptance Testing will occur on the pilot site. As a part of a quality 

management system, Operational Acceptance Testing (OAT) is used to measure the operational readiness 

testing of the solution in general. 

SAT, a common type of non-functional software testing, concentrates on the system’s operational readiness to 

be supported and/or integrated into the production environment. Prior to handing over the system to the final 

users on the pilot site, SAT serves as a final verification of the system’s required functionality and proper 

performance. It tackles the problems of interfering with the already installed system by covering key quality 

attributes of functional stability, portability, and reliability, as well as procedures for disaster recovery, end-user 

training, maintenance and security. 

The strategy followed by ASSIST-IoT platform is built in a sense of beta testing. The already tested pilot trials 

should be now tested by end users and vendors to assess if the system can support day-to-day business and 

ensure that the system is sufficient and correct for business usage. After building the test scenarios, which in 

our case will be structured around the pilot trials, the approach is to provide guidelines to the users on how to 

operate the platform and get feedback if their requirements are met. 

The flow can be described in the following steps: 

• Set up the operational environment for the tests and connect the interfaces. 

• Perform the actions needed with desired inputs. 

• After ensuring the delivery of expected outputs in real time, deploy the tests in the pilot site 

environment. 

• After ensuring the user/vendor criteria is met proceed to disaster recovery, training of end users, 

maintenance and security guidelines. 

There are several tools providing complete solutions for UAT. In ASSIST-IoT, as GitLab is the already used 

platform for developing and integrating software, it will be the main choice for testing as well. It is one of the 

most common software to design and execute tests, which allows to track issues, bugs and other work items 

through a predefined workflow that users can modify to fit their requirements. Other solutions could include 

Jira, Zephyr for Jira tool, which can be integrated with a variety of automated testing frameworks, such as 

Jenkins CU, Selenium, Appium and SmartBear products. Finally, Rally Software and qTest platform are popular 

solutions in the field of testing, by providing KPI tracking and reporting, high scalability and issue tracking. In 

a Consortium including as many partners as ASSIST-IoT (used/forced/set up to use specific tools already in 

place), it is not straightforward to oblige on a unified framework for executing the required test methodology, 

because it is not easily applicable for all the technologies involved. Using more than one tool is probably 

required, though it is not mandatory.  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 16 of 50 

 

 

Figure 4. Acceptance Testing high level diagram 

3.6 Performance testing 
The goal of performance testing mainly revolves around responsiveness and stability under predetermined 

conditions. Furthermore, it is a suitable testing phase to produce notions for the scalability and reliability of the 

system. There are different test methods for gauging the system’s performance. Apart from the methods, 

measurements and goals should be clearly defined for the complete testing. An early definition of performance 

testing points to the evaluation from a user’s perspective [11.]. All in all, the goal of performance testing goal 

lies in alleviating performance bottlenecks rather than concerning bugs. 

The methods for performance testing covered in the literature [12.] are numerous. The methods are briefly 

described as follows: 

• Load testing: focuses on the application’s ability to perform under the expected loads by a user. The 

goal is to catch bottlenecks before the application’s production phase. 

• Stress testing: gauges the limits of a system as extreme workloads are applied on the software.  

• Endurance testing: estimates the behaviour of the system over a long time period as systems have to 

sustain the continuous load. 

• Spike testing: tests the application for unexpected changes in user loads. Spikes are causes for system 

failures. 

• Configuration testing: is to test the developed system with a combination of software and hardware to 

gauge the functional requirements. 

 

Performance testing comes last in the testing pipeline, which means that it will take place after acceptance 

testing. Essentially, if we consider that the final product of ASSIST-IoT is ready, operational and deployed on 

the pilot sites, then it is the time for conducing performance tests. This process will include the integration team 

in collaboration with developers and the stakeholders, who better understand the scenarios that performance is 

critical and vital for providing optimal solutions.  

Load, stress, endurance ,and spike testing are not mandatory for all enablers, due to the nature that they will not 

be used uniformly throughout the project. The suggestion is to apply the above tests in the essential enablers 

realized in WP4 and WP5, that provide the vital and most used functionalities of the project. Nevertheless the 

developing and integration teams may apply the tests in their enablers even if they are not essential ones, to 

optimize their product. Configuration testing should apply at all enabler in order to find the best balance between 

performance and scalability, taking into account both software and hardware infrastructure. 

GitLab uses k6, a free and open source tool, for measuring the system performance of applications under load. 

It can be exploited as the main tool for performance testing along with some suggested tools such as LoadNinja, 

Apache Jmeter for Java apps, Gatling, Webload, SmartMeter, LoadRunner etc. They all provide virtual users 

and/or machines to manually load the system and inspect its behaviour in a real-world and real-time “heavy 

load” scenario.  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 17 of 50 

 

 

Figure 5. Performance Testing Life Cycle 

  

  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 18 of 50 

 

4  Acceptance and integration test plan 

This section will present for each ASSIST-IoT component, the acceptance and integration test cases that will be 

executed in order to have a successful ASSIST-IoT platform. Apart from the description of the test cases, the 

time schedule of their activities is also presented. 

4.1 Development of the Testing Methodology 
Different development methodologies determine the software development lifecycle and the testing 

methodologies. Such well-known cases for methodologies are the waterfall model and the V-model. The 

waterfall method defines fixed steps in a downwards structure, as one can observe in ¡Error! No se encuentra 

el origen de la referencia.. The general steps for the waterfall method are the definition of user requirements, 

the architecture and technical specifications, unit implementation and testing, system integration, and 

maintenance. The V-shape method extends the waterfall method by clearly associating each step with a 

corresponding testing phase to evaluate the results of the development, as it can be seen in ¡Error! No se 

encuentra el origen de la referencia.. The aforementioned methods possess weaknesses for developing a novel 

NGIoT architecture for humans. The waterfall method postpones the testing and security for the final stages in 

a separate step, while the V-shape is a rigid method and hard to apply for the novelty of architecture. Another 

method of bringing security in earlier stages and allowing a flexible adaptation to foster innovation is required 

by the project. For that reason, DevSecOps is the selected methodology to apply to the project and harmonise 

the testing around the software cycle of the methodology. 

 

 

Figure 6. Waterfall model of ASSIST-IoT Development Life Cycle 

 

The previous development methods reserved a place for security and testing at the end as an individual and 

separate procedure. The growing security threats for IoT devices require an active approach to solving security 

threats prior to the deployment of the software in the production environment. The shift from DevOps to 

DevSecOps is detailed in the project’s publication [13.] as security moves to the left and is part of every phase 

of the development. 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 19 of 50 

 

 

Figure 7. V-model of ASSIST-IoT Development Life Cycle 

 

ASSIST-IoT adopts the following phases for executing the DevSecOps methodology: Plan, Code, Build, Test, 

Release, Deploy, Operate, and Monitor. The plan phase begins before the code development for considering 

potential threats and is a dynamic process changing within the project’s lifecycle. The code phase sets guidelines 

to be followed and enforced through plug-ins for the Integrated Development Environment (IDE). During the 

build phase, developers are to solve dependencies issues. The test phase harmonises the hardware and software 

into one functioning system where unit and system integration security tests are conducted. If the software 

successfully clears the tests, the release phase has the software packaged in an artifact repository like Gitlab. In 

the deployment and configuration phases, the application of different environments like staging, preproduction, 

and production are to be developed to permit the execution of validation and acceptance testing. 

 

 

Figure 8: DevSecOps embedded security control 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 20 of 50 

 

The general activities, frequency and responsibilities for ASSIST-IoT testing and integration methodology is 

summarized in the table below: 

Table 2: Software Test & Integration plan 

Level of 

Testing 
Activities 

Test 

environments 

Frequency of 

testing 

Responsible 

Writing test 

cases 

Providing 

test data 
Running tests 

Unit 

Select test 

cases 

Write 

automated 

tests cases 

Developer 

environment 

Continuous 

Integration 

Infrastructure 

Create test 

before / while 

developing 

Automated 

tests run 

continuously 

when 

component is 

built on the CI 

Infrastructure 

Developer Developer 
Component/Unit 

provider 

Functional 

Select test 

cases 

according to 

requirements 

Prepare 

demos with 

test data 

Run demos 

Developer 

environment 

CI 

Infrastructure 

Create tests 

whenever a 

new 

functionality 

is introduced 

Run tests 

continuously 

when adding 

the 

functionality 

to the enabler 

Developer 

Integration 

team 

Developer 

Integration 

team 

Developer 

Integration team 

Integration 

Select test 

cases 

Manage unit 

dependencies 

Write 

automated 

tests 

Prepare non 

automated test 

cases 

CI 

Infrastructure 

Automated 

tests run 

continuously 

when binding 

enabler’s 

components 

together 

Manual 

testing each 

time a new 

component is 

introduced to 

the enabler 

Developer 

Developer 

Integration 

team 

Developer 

Integration team 

End-to-end 

Design and 

prepare tests 

around pilot 

trials 

Automate 

tests and run 

them 

Design, 

prepare, and 

run manual 

tests 

CI 

Infrastructure 

Automated 

tests run 

continuously 

when all the 

enablers of a 

pilot trial are 

ready 

Manual tests 

run whenever 

a new version 

of an enabler / 

component is 

introduced in 

the trial 

Integration 

team 

Integration 

team 
Integration team 

Factory / 

Site 

Acceptance 

Define test 

cases 

according to 

the pilot trials 

Factory / Pilot 

Site 

environment 

Tests run on 

the integrated 

/ production 

platform 

Integration 

team 

Pilot site 

stakeholders 

Integration 

team 

Pilot site 

stakeholders 

End users / 

vendors / pilot 

site stakeholders 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 21 of 50 

 

Level of 

Testing 
Activities 

Test 

environments 

Frequency of 

testing 

Responsible 

Writing test 

cases 

Providing 

test data 
Running tests 

Prepare test 

data for real 

time case 

scenario 

Run the 

integration 

tests of the 

system 

Identify the 

observations 

and track the 

issues 

Acceptance 

test review 

which will be 

used, 

whenever a 

trial is 

validated 

Performance 

Design test 

cases for 

scalability, 

stress, load, 

endurance and 

extreme 

unlikely 

scenarios 

Run the tests 

along with 

integration 

team and pilot 

site 

stakeholders 

Define the 

boundaries 

that the trials 

cannot 

perform at 

their best 

Factory / Pilot 

Site 

environment 

After the 

application 

has passed all 

test levels, 

validate the 

scenarios in 

which the 

designed 

application 

has the 

desirable 

performance 

Developers 

Integration 

team 

Pilot site 

stakeholders 

Developers 

Integration 

team 

Pilot site 

stakeholders 

Developers 

Integration team 

Pilot site 

stakeholders 

 

4.2 Testing process in ASSIST-IoT 
Unit testing is about automated tests for testing each component’s functionality in the enablers’ functionality. 

The developing teams of each partner are to specify the individual tests to run as the responsible developers. 

Unit tests can be run in each version, and updates of the enablers to realise the DevSecOps methodology. 

Unit tests should be implemented on each class and method uniquely. The architectural structure of the project 

defined by the WP3 actions defines the highest grade of unit testing, as enablers are to be the highest component 

in granularity for testing. Since unit testing is about testing the smallest testable units, each method, class and 

enabler’s internal API should have its own test case to achieve as quickly as possible bug fixing. Only 

components that pass all unit tests should be allowed to be committed to the source code repository since they 

assure the correct behaviour of the unit. An important note is that unit testing will take place before any 

containerisation or deployment of the code to ensure the system’s functionality. 

It is also recommended to develop a new unit test for each detected bug, to further improve software quality. 

After fixing a bug, the commitment should state a bug number in order to automate the tracking of bug fixes. 

For functional testing, it is important to draft into a table each test to run to prove the functionality of each 

enabler. The definition for its functional test will take place after the definition of deliverables D4.2 and D5.3 

after consulting each responsible partner. The basic steps for functional testing will be to understand the 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 22 of 50 

 

functional requirements for the aforementioned deliverables, clearly define the test input and data based on 

requirements, run the tests on the input to compute the expected outcomes, and finally compare actual and 

computed expected results. In the Annex, the table will be filled with the tests, criteria, and the verdict for each 

enabler. 

A first step to enabling integration testing is the availability of a testbed to run the developed system. Essentially, 

machines will be available to replicate the conditions that the pilot sites will have. The review of the work from 

WP3 and WP7 led the project to the initial specifications for 3 machines of i5 processor, 16GB RAM, and 1TB 

SSD. The work in WP3 (D3.5 [15.], D3.6 [16.]) provides the functional requirements per pilot site to consider 

for this testing. The functionalities will be achieved with the combination of multiple enablers running in a 

system. Essentially, it is the lab test prior to the pilot release where issues on the harmonisation of the different 

components will come to the surface. 

 

 

Figure 9. Test environment to simulate pilot site premises 

 

End-to-end testing is about testing the functionality and performance of a given trial of ASSIST-IoT. The 

scenarios for this kind of testing are closely related to WP7 work on the pilots and the project’s validation 

efforts. The proposed architecture and developed components are to be tested in the pilot premises. In D7.2 

[17.], each pilot sets several trials to cover the needs and make use of ASSIST-IoT’s enablers. The trials are 

detailed in the aforementioned deliverable, and they are the following: 

• Port automation: 

o Tracking assets in the terminal yard 

o Automated CHE cooperation 

o RTG remote control with AR support 

• Smart safety of workers: 

o Occupational safety and health monitoring 

o Fall-related incident identification 

o Health and safety inspection support 

• Vehicle in-service: 

o Fleet in-service emission verification 

• Vehicle exterior condition: 

o Vehicle exterior condition inspection and documentation 

Finally, acceptance and performance testing will commence at the same time. The acceptance testing will use 

as a basis for the WP3 and WP8 work, where KPIs and other measurements are provided. The KPIs and 

measurements will guide the acceptance testing, as the tests will be formulated in the most appropriate way to 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 23 of 50 

 

measure them. The performance testing will provide the details of the system performance while operating with 

the enablers. It is essential for testing the load on the system as the built system refers to IoT devices. 

 

4.2.1. Functional Testing of horizontal enablers 

This chapter aims to present the functional testing for each enabler. The functional testing is closely related to 

the deliverables detailing the enablers operations (D4.1 [18.], D4.2 [19.], D5.1 [20.], D5.2 [21.]), where the 

basic functionalities are described. 

 

Smart Network and Control Plane 

Smart Orchestrator Enabler 

Table 3: Smart Orchestrator's functional tests 

Nº Test Description Evaluation criteria Results 

1 Add cluster 

A K8s cluster is attached to the 

orchestrator to allow deploying 

enablers on it. 

A K8s test cluster is provisioned correctly, and 

a test enabler is deployed to assess that it is 

working. A Helm repository must have been 

added previously to complete the test. 

Pass/Fail 

2 Get clusters 
The clusters joined are returned as a 

JSON. 

An API call is performed, returning a JSON 

with the test cluster added, or empty in case it 

has not been provisioned. 

Pass/Fail 

3 
Delete 

cluster 

A K8s cluster is removed from the 

orchestrator system. 

An API call is made to remove the K8s test 

cluster, and it is not possible to instantiate 

enablers in it anymore. It can be removed only 

if any enabler is running in it. 

Pass/Fail 

4 
Add 

repository 

A Helm repository is registered in 

the orchestrator system. 

A Helm repository is added, and the test enabler 

it contains can be instantiated. 
Pass/Fail 

5  
Get 

repository 

The Helm repositories registered are 

returned in JSON format. 

An API call is performed, returning a JSON 

with the test repository added, or empty in case 

it has not been provisioned. 

Pass/Fail 

6 
Delete 

repository 

A Helm repository is removed from 

the orchestrator system. 

An API call is made to remove the test 

repository, and it is not possible to instantiate 

the test enabler from it anymore. 

Pass/Fail 

7 
Add enabler 

manually 

An enabler is instantiated in a K8s 

cluster selected by a user. 

An API call is made to deploy a test enabler in 

a cluster chosen, action that can be checked 

with calls to the K8s API. 

Pass/Fail 

8 Get enablers 
The enablers deployed and running 

are returned in JSON format. 

An API call is performed, returning a JSON 

with the test enabler instantiated, or empty if it 

was not placed and running. 

Pass/Fail 

9 
Terminate 

enabler  

An enabler is stopped and prepared 

to be deleted. 

An API call is made to terminate the test 

enabler, which stops its execution and cannot 

be accessed to perform any work. 

Pass/Fail 

10 
Delete 

enabler 

The terminated enabler is deleted 

from the system. 

An API call is made to delete the test enabler, 

which is completely removed from the system, 

leaving no traces in the enabler. 

Pass/Fail 

11 

Automatic 

enabler 

placement 

An enabler is placed automatically 

in one of the added K8s clusters 

depending on the resources 

available and the placement policy 

The enabler is deployed in the correct cluster 

depending on the placement policy chosen. 

Three cases will be assessed (after setting up a 

realistic environment to evaluate it): 

• Most traffic: the cluster with more data 

traffic. 

• Best fit: the cluster with less resources 

available. 

Pass/Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 24 of 50 

 

Nº Test Description Evaluation criteria Results 

• Worst fit: the cluster with more resources 

available.  

12 Login 

A client is authenticated by the 

smart orchestrator by returning an 

access token. 

A set of queries are executed to the API with 

right and wrong credentials. Valid returns, or 

authentication error messages, should be 

returned depending on the case. 

Pass/Fail 

 

Traffic Classification Enabler 

Table 4:Traffic Classification's functional tests 

Nº Test Description Evaluation criteria Results 

1 Train model 

With a dedicated model and a 

database present in the host, the 

training module will be able to train 

a model to classify packets. 

An API call will be made to train a model with 

test samples and will substitute the former 

model. Error handling (e.g., database not 

present, bad labelling) will be evaluated. 

Pass/Fail 

2 
Classify 

packet 

The classifier will classify packets 

according to different classes. 

A set of API calls with extracted packet features 

will be made to test the capability to classify 

packets. 

Pass/Fail 

 

Multi-link enabler 

Table 5: Multi-link's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Add 

interface 

Adds a tunnel interface to be 

managed by the enabler. 

An API call will be made to train a model with 

test samples and will substitute the former model. 

Error handling (e.g., database not present, bad 

labelling) will be evaluated. 

Pass/Fail 

2 
Delete 

interface 

Delete a tunnel interface that was 

previously added. 

The successful deletion of an inserted channel by 

a public key. 
Pass/Fail 

3 

Primary 

channel 

transmission 

Data should transmit normally 

using the primary wireless 

channel. 

Two wireless networks will be considered for the 

test (WiFi vs 3G/4G/5G), and data packets will 

travel through the primary one. 

Pass/Fail 

4 

Backup 

channel 

transmission 

In case the primary channel is 

down, a backup one should take 

over. 

The primary WiFi channel will be manually 

deactivated, traffic should swap over the second 

one in less than 50 ms. 

Pass/Fail 

5 

Primary 

channel 

recovery 

In case that the primary channel is 

recovered while in backup 

transmission, the former should 

take over 

In case that the primary WiFi channel is 

recovered, traffic should swap back from the 

backup one to the primary one. 

Pass/Fail 

 

SD-WAN enabler 

Table 6: SD-WAN's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Add hub 

cluster 

A hub cluster is provisioned so 

traffic between edge clusters and 

from/to Internet travels through it. 

The hub cluster is added correctly to the overlay 

managed by the enabler. 
Pass/Fail 

2 
Add edge 

cluster 

A dedicated IPSec tunnel is 

established to connect an edge 

cluster to the SD-WAN. 

Two edge clusters will be added to the overlay, 

so two IPSec tunnels will be established 

automatically with the hub cluster so that traffic 

between them travels through them. A traffic 

sniffer will be used to check this performance 

(e.g., Wireshark). 

Pass/Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 25 of 50 

 

Nº Test Description Evaluation criteria Results 

3 Get overlay 

Lists all the resources managed or 

defined in the overlay (edge/hub 

clusters belonging, IPSec data, IP 

ranges, etc.) 

An API call will be made to obtain these data, 

which should include the clusters added in the 

previous tests. Although not included as tests, 

IP ranges and IPSec proposals must have been 

previously provisioned. 

Pass/Fail 

4 
Delete edge 

cluster 

An edge cluster is removed from the 

overlay of the SD-WAN, and its 

IPSec tunnel eliminated. 

The edge cluster is detached from the hub, and 

the IPSec tunnel removed. Traffic might travel 

between edge clusters, but insecure (without 

tunnel). 

Pass/Fail 

5 Delete hub 
The hub cluster is reconfigured and 

detached from the SD-WAN. 

The hub cluster is removed from the overlay. It 

can only be done if edge clusters are not 

connected to it with dedicated IPSec tunnels. 

Pass/Fail 

 

WAN Acceleration enabler 

The following tests are defined to be performed in consecutive order, as the execution of some of them require 

that previous steps are performed before their execution. 

Table 7: WAN Acceleration's functional tests 

Nº Test Description Evaluation criteria Results 

1 Get services 
Lists all the operation allowed by the 

enabler. 

Returns the result of an API query, with the set 

of services allowed (should be firewall, mwan3, 

IPSec-related). 

Pass/Fail 

2 
Get 

interfaces 

Lists all the available interfaces and 

their specific information 

Returns the result of an API query, with the set 

of interfaces managed by the enabler. 
Pass/Fail 

3 
Enable 

interfaces 

The interfaces of the system can be 

enabled (and disabled), so WAN 

rules can be applied over them or 

not. 

An interface is enabled, and the next tests will 

affect this and the rest of enabled interfaces. It 

is considered successful if the following tests 

apply to the newly enabled interface. 

Pass/Fail 

4 
Add WAN 

policy 

Define how traffic will be routed 

through the WAN interfaces. 

A test WAN policy is introduced via custom 

resource with the K8s API. This is not working 

until attached to a “rule”. 

Pass/Fail 

5 
Get WAN 

policies 

Lists the WAN policies added to the 

enabler. 

Returns the result of an API query, with the test 

WAN policy recently added. 
Pass/Fail 

6 
Add WAN 

rule 

A policy is attached to a rule (i.e., to 

act when traffic matches a specific 

port and/or IP source and/or destiny, 

IP traffic type, or protocol. 

A test WAN rule is added via custom resource 

with the K8s API. The effect of the test policy 

is evaluated with traffic tools (to define). 

Pass/Fail 

7 
Get WAN 

rules 

Lists the WAN rules added to the 

enabler. 

Returns the result of an API query, with the 

WAN rule recently added. 
Pass/Fail 

8 
Delete WAN 

rule 

Deletes a test WAN rule from the 

enabler.  

Test #7 is executed to check that this WAN rule 

is no longer part of the system. 
Pass/Fail 

9 
Delete WAN 

policy 

Deletes a test WAN policy from the 

enabler.  

Test #5 is executed to check that this WAN 

policy is no longer defined in the system. 
Pass/Fail 

10 
Add firewall 

zone 

Groups one or many interfaces to be 

source or destination for 

forwardings, rules and redirects. 

A set of interfaces are added to a firewall zone 

via custom resource with the K8s API. It is 

considered successful if the following tests 

apply to the defined zone. 

Pass/Fail 

11 
Get firewall 

zones 

Lists the interfaces belonging to a 

test zone. 

Returns the result of an API query, with the set 

of interfaces belonging to the test zone. 
Pass/Fail 

12 
Add firewall 

rule 

Adds a firewall rule to a zone (i.e., 

accept, drop and reject rules for 

specific ports or hosts). 

A test rule is introduced via custom resource 

with the K8s API. The effect of the test rule is 

evaluated with traffic tools (to define). 

Pass/Fail 

13 
Get firewall 

rules 

Lists all the firewall rules introduced 

in the enabler. 

Returns the result of an API query, with a JSON 

containing the previously-added test firewall 

rule (if added correctly). 

Pass/Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 26 of 50 

 

Nº Test Description Evaluation criteria Results 

14 
Delete 

firewall rule 

Deletes a test firewall rule from the 

enabler. 

Test #13 is executed to check that this firewall 

rule is no longer defined in the system. 
Pass/Fail 

15 
Delete 

firewall zone 

Deletes a test firewall zone from the 

enabler. 

Test #11 is executed to check that this firewall 

zone is no longer defined in the system. Rules 

cannot be applied to it. 

Pass/Fail 

 

VPN Enabler 

The tests related to the management of VPN clients (generation of keys, provisioning, enabling, disabling and 

deleting them) are those stated for the VPN enabler, and have to be passed also under the scope of this enabler 

as the underlying technology is different. Also, the following tests have to be passed: 
Table 8: VPN's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Interface 

info 

The enabler returns the information 

about the network interface of the 

VPN server 

The information about the network interface of 

the VPN server successfully obtained and is not 

empty. 

Pass/Fail 

2 
Generate 

keys 

The enabler generates the needed 

keys (public, private and pre-shared) 

to create a new VPN client. 

The generated keys are successfully generated 

and are obtained in JSON format. 
Pass/Fail 

3 Create client 
The enabler creates a new VPN 

client. 

The client is listed in the information about the 

network interface of the VPN server and a VPN 

connection can be stablished using the 

generated client (test #7).  

Pass/Fail 

4 Delete client The enabler deletes a VPN client. 

The client is not listed in the information about 

the network interface of the VPN server and a 

VPN connection cannot be stablished using the 

generated client (test #7). 

Pass/Fail 

5 
Enable 

client 

A VPN client is enabled (that was 

previously disabled). 

The client is listed in the information about the 

network interface of the VPN server and a VPN 

connection can be stablished using the enabled 

client (test #7). 

Pass/Fail 

6 
Disable 

client 

A VPN client is disabled (not 

eliminated). 

The client is not listed in the information about 

the network interface of the VPN server and a 

VPN connection cannot be stablished using the 

disabled client (test #7). 

Pass/Fail 

7 
Connect to 

VPN 

A user connects to the VPN using a 

VPN client program configured with 

a previously created client. 

Make a ping to the IP address of the VPN server 

network interface and, depending on the VPN 

network configuration, to other hosts and 

services that are only accessible via the VPN. 

Furthermore, the VPN client program provides 

information about the VPN connection status.  

Pass/Fail 

 

 

Data management Plane 

 

Semantic Repository enabler 

Table 9: Semantic Repository's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Add model 

group 
An empty model group is created. 

A model group is created. This request should 

be rejected if the declared model group 

namespace already exists. 

Pass/Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 27 of 50 

 

Nº Test Description Evaluation criteria Results 

2 
Get model 

groups 

Retrieve the list of existing model 

groups. 

An API call is performed, returning a JSON 

with all existing model groups. 
Pass/Fail 

3 
Add model 

(default) 

A model is added with default 

options, to a model group. 

A model is added to an empty existing model 

group, is assigned the default metadata, and the 

‘latest’ version tag is pointed at it. 

Pass/Fail 

4 

Add model 

(with 

metadata) 

A model is added to a model group. 

A model is added to a model group, under the 

declared version tag, and with attached 

metadata. Overwriting existing versioned 

model should be possible only, if the ‘force 

overwrite’ parameter is set. 

Pass/Fail 

5 

Get models 

in model 

group 

Retrieve all models with versions 

under a given model group 

An API call is performed, returning a JSON 

with the list of all models and their metadata, 

under the given model group. 

Pass/Fail 

6 Get model A model is retrieved 

An API call is performed, returning a model 

file, provided, that a model with given group 

name, name and version exists. Using the 

‘latest’ version tag should return the same 

model, as explicitly using the version tag 

pointed to by the ’latest’ tag. 

Pass/Fail 

7 
Remove 

model 
A model is removed 

A model is removed by group, name and 

version. This should be possible only, if the 

‘allow removal’ parameter is set. The call 

should be rejected, if the model with given IDs 

does not exist, or if the version tag is ‘latest’ 

(version tags must be explicit when removing 

models). 

Pass/Fail 

8 
Remove 

model group 
A model group is removed 

Remove a model group by name. Removing an 

existing group should be possible only, if the 

‘allow removal’ parameter is set, and the model 

group does not contain any models. Otherwise, 

the request should be rejected. 

Pass/Fail 

 

Semantic Translation enabler 

Table 10: Semantic Translation's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Add 

alignment 

An alignment is loaded into internal 

persistent storage. 

User uploads an alignment file. The request 

should be rejected, if the alignment file contents 

are not correct (wrong format, not enough 

metadata, no alignment cells), or if the 

alignment with given metadata already exists in 

the internal persistent storage. 

Pass/Fail 

2 
Get 

alignment 
An alignment is retrieved. 

An API call is performed, returning an 

alignment file, provided that an alignment with 

given ID was previously uploaded. 

Pass/Fail 

3 
Delete 

alignment 

An alignment is removed from 

internal persistent storage. 

Alignment is removed by ID, provided that it 

exists, and there are no active translation 

channels, that use the alignment. 

Pass/Fail 

4 

Add 

translation 

channel 

A translation channel is created. 

A translation channel with the given pair of 

alignments (input and output alignment) is 

created, and input and output topics are 

exposed. Clients should be able to write to the 

input topic and receive data at the output topic. 

Pass/Fail 

5 

Remove 

translation 

channel 

A translation channel is destroyed. 

A translation channel stops accepting new 

messages and shuts down after a configured 

timeout to allow flushing of messages that are 

being process at the time, when the shutdown 

Pass/Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 28 of 50 

 

Nº Test Description Evaluation criteria Results 

request comes. After or before the timeout, the 

channel should no longer exist. 

6 
Translate 

batch data 
One-time translation is performed. 

An API call is made to translate attached 

payload using a chain of alignments specified 

by ID, provided, that the alignments were 

uploaded previously. The returned payload 

should be equivalent to streaming translation 

through channels that use the same alignments. 

Pass/Fail 

7 

Send data 

through 

translation 

channel 

Data is translated in a stream. 

Send a message to an input topic of a translation 

channel. The message should be processed 

(semantically translated) and pushed to the 

output topic of the translation channel. 

Pass/Fail 

 

 

Semantic Annotation Enabler 

Table 11: Semantic Annotation's functional tests 

Nº Test Description Evaluation criteria Results 

1 

Convert 

YARRML to 

RML 

Annotation formats are converted. 

Using the web GUI user converts YARRML 

into RML, provided that the YARRML is 

syntactically correct. 

Pass/Fail 

2 Test RML Test data is annotated. 

Using the web GUI user declares some data and 

annotation file contents in RML. The data is 

annotated using provided RML and displayed 

back to the user. 

Pass/Fail 

3 
One-time 

annotation 
Data is annotated using RML. 

A one-time API call is made with payload, that 

contains both data to be annotated, and 

annotation rules in RML. Annotation result is 

returned to the user. 

Pass/Fail 

4 

Add 

streaming 

annotation 

file 

An annotation file is loaded into 

internal persistent storage. 

User uploads an annotation file with given 

metadata and received auto-generated ID. 
Pass/Fail 

5 

Get 

streaming 

annotation 

file 

An annotation file is retrieved. 

An API call is performed, returning an 

annotation file, provided that an annotation 

with given ID was previously uploaded. 

Pass/Fail 

6 

Delete 

streaming 

annotation 

file 

An annotation file is removed from 

internal persistent storage. 

Annotation file is removed by ID, provided that 

it exists, and there are no active annotation 

channels, that use the annotation file. 

Pass/Fail 

7 

Add 

streaming 

annotation 

channel 

An annotation channel is created. 

An annotation channel using the given 

annotation file is created, and input and output 

topics are exposed. Clients should be able to 

write to the input topic and receive data at the 

output topic. 

Pass/Fail 

8 

Remove 

annotation 

channel 

An annotation channel is destroyed. 

An annotation channel stops accepting new 

messages and shuts down after a configured 

timeout to allow flushing of messages that are 

being process at the time, when the shutdown 

request comes. After or before the timeout, the 

channel should no longer exist. 

Pass/Fail 

10 

Send data 

through 

annotation 

channel 

Data is annotated in a stream. 

Send a message to an input topic of an 

annotation channel. The message should be 

processed (semantically annotated) and pushed 

to the output topic of the annotation channel. 

Pass/Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 29 of 50 

 

 

Edge Data Broker enabler  

Table 12: Edge Data Broker's functional tests 

Nº Test Description Evaluation criteria Results 

1 

Send and 

receive Raw 

Data 

Subscribe to a test topic (two clients, one publisher 

and one consumer). The publisher sends raw data to 

the topic and the consumer receives the data. 

The consumer receives the 

data. 

Pass / 

Fail 

2 

 Send data 

and filter 

them (not 

passing the 

filter) 

A publisher subscribes to a test topic and a consumer 

subscribes to the filtered test topic. The publisher 

sends raw data that does not pass the filter threshold 

to the test topic, and the consumer does not receive 

the data. 

The consumer does not 

receive any data. 

Pass / 

Fail 

3 

Send data 

and filter 

them (passing 

the filter 

A publisher subscribes to a test topic and a consumer 

subscribes to the filtered test topic. The publisher 

sends raw data, that pass the threshold of the filter, to 

the test topic and the consumer receives the data. 

The consumer receives the 

data. 

Pass / 

Fail 

4 

Create an 

alert with a 

preconfigured 

rule 

A rule is created on the rule engine that specifies two 

test topics (topic1 and topic2). One publisher client 

subscribes to topic1 and one publisher client 

subscribes to topic2. One consumer client subscribes 

to the test alert topic topic3. The publisher clients 

send data that trigger the rules. The rule engine create 

an alert to the topic3. The consumer client receives 

the alert. 

The consumer receives the 

alert. 

Pass / 

Fail 

 

Long-Term Storage Enabler 

Table 13: Long-Term Storage's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Authorized 

access 

The LTSE API needs to 

communicated with the IdM and 

Authorization enablers in order to 

confirm the read-and-write 

permissions of an enabler 

The IdM and Authorization enablers provides 

the access rights of the connected enabler 
Pass/Fail  

2 
Manage 

SQL server 

Create the SQL tables for storing 

SQL information from authorized 

enablers via LTSE API 

The success of the operation can be checked by 

exploring the existence of the SQL tables.  
Pass/Fail 

3 

Manage 

noSQL 

cluster 

Create the noSQL indices for storing 

corresponding noSQL information 

from authorized enablers via LTSE 

API 

The success of the operation can be checked by 

exploring the existence of the noSQL indices. 
Pass/Fail 

4 
Ingest Raw 

SQL Data 

The authenticated enabler sends raw 

data to the corresponding SQL table 

of the LTSE via the LTSE API. 

The SQL raw data is collected into the 

corresponding LTSE SQL table. If the enabler 

is not authorized a denied permission is 

provided. 

Pass/Fail 

5 
Ingest Raw 

noSQL Data  

The authenticated enabler sends raw 

data to the corresponding noSQL 

index of the LTSE via the LTSE 

API. 

The noSQL raw data is collected into the 

corresponding LTSE noSQL index. If the 

enabler is not authorized a denied permission is 

provided. 

Pass/Fail 

6 

Retrieves 

filtered SQL 

data  

An authenticated enabler requests 

some filtered SQL data to the LTSE 

through the LTSE API. 

The range of requested data is successfully 

obtained in XML format. If the enabler is not 

authorized a denied permission is provided. 

Pass/Fail 

7 

Retrieves 

filtered 

noSQL data  

An authenticated enabler requests 

some filtered noSQL data to the 

LTSE through the LTSE API. 

The range of requested data is successfully 

obtained in JSON format. If the enabler is not 

authorized a denied permission is provided. 

Pass/Fail 

 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 30 of 50 

 

 

Application and Services Plane 

Tactile dashboard 

Table 14: Tactile dashboard's functional tests 

Nº Test Description Evaluation criteria Results 

1 

Integration 

with other 

ASSIST-IoT 

enablers 

The tactile dashboards of ASSIST-

IoT will be the main User Interface 

presented to the 

stakeholders to configure the values 

of their deployed enablers, and/or to 

visualize their pilots results or 

potential notifications/alerts. 

The backend component of the different 

implemented dashboards in each pilot will 

communicate through rest API messages with 

the supported APIs of the deployed enablers.  

Pass/Fail  

 

Business KPI Reporting enabler 

Table 15: Business KPI Reporting's functional tests 

Nº Test Description Evaluation criteria Results 

1 

Integration 

with the 

tactile 

dashboard 

The Business KPI enabler is 

conceived as a web iFrame that will 

be embedded within the tactile 

dashboard.  

The Business KPI enabler helm chart must be 

properly integrated within the tactile 

dashboard. 

Pass/Fail  

2 

Integration 

with pilots 

databases 

for historical 

data 

The business KPI enabler visualizes 

in the form of graphs/charts 

different filtered data extracted from 

the historical time-series data stored 

in the pilots repositories 

The Business KPI enabler API must be 

properly connected with the LTSE NoSQL 

cluster 

Pass/Fail 

3 

Integration 

with pilots 

gateways for 

real-time 

data 

The business KPI enabler visualizes 

in the form of graphs/charts 

different filtered data extracted from 

the real time data collected in the 

pilots gateways storage 

The Business KPI enabler API must be 

properly connected with the GWEN storage 
Pass/Fail 

 

Performance and usage diagnosis (PUD) enabler  

Table 16: PUD's functional tests 

Nº Test Description Evaluation criteria Results 

1 

Monitoring 

other 

enablers  

Enablers metrics should be collected 

and stored in Prometheus time series 

database. 

 

Other enablers that should be monitored, such 

as Edge data broker, should appear as a target 

with its state as “UP” on the Prometheus UI and 

its metrics should be collected, stored in 

Prometheus time series database and be 

accessible through its UI. 

Pass / 

Fail 

2 

Elasticsearch 

as persistent 

storage for 

Prometheus 

metrics 

Elasticsearch should be able to 

receive and store the same 

metrics stored in Prometheus time 

series database. 

Metrics that are stored in Prometheus time 

series database and appear in its UI should be 

permanently stored in elasticsearch cluster and 

appear in Kibanas UI as well. 

Pass / 

Fail 

 

OpenAPI Management Enabler 

https://gitlab.assist-iot.eu/wp5/t54/integrity-verification


D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 31 of 50 

 

Table 17: OpenAPI Management's functional tests 

Nº Test Description Evaluation criteria Results 

1 Add Service 
Creates a new service that is 

pointing to an OpenAPI 

An new service is created through the OpenAPI 

Manager given its URL where the service 

listens for requests 

Pass/Fail 

2 Add Route 

Creates a new route in order for the 

service to be accessible through the 

OpenAPI Gateway 

If the OpenAPI gateway receives a (http/https) 

request that matches the route’s path it sends it 

back to the URL/path address  

Pass/Fail 

3 Add plugin 

A plugin is added to an existed 

service that can provide 

authentication, security, monitoring 

etc. 

The generated plugin is attached to the service 

in order to authenticate and secure the API  
Pass/Fail 

4 
Add 

Consumers 

Consumers develop the applications 

that use APIs 

With an authenticated API, it is necessary to 

generate apikey before calling API. Routes 

with GET method will be assigned for 

READER consumers and routes with 

POST/DELETE/PATH method will be 

assigned for EDITOR consumers 

Pass/Fail 

5 
Inspect 

Functionality 

OpenAPI manager GUI displays 

basic information about the 

Gateway instance  

An Admin user can obtain details about the 

performance of the API gateway by accessing 

Dashboard menu  

Pass/Fail 

6 Backup 

Administrator user backup, restore 

and move OpenAPI configuration 

across different nodes 

Through the OpenAPI manager GUI an Admin 

chose to backup, restore and save gateway’s 

configuration  

Pass/Fail 

 

Video Augmentation enabler 

Table 18: Video Augmentation's functional tests 

Nº Test Description Evaluation criteria Results 

1 

FL 

repository 

integration  

The Video Augmentation enabler 

may use an already stored ML 

model or obtain new ones from the 

FL repository 

The Video Augmentation API must 

successfully obtain the requested configuration 

of an ML model stored in the FL repository 

Pass/Fail 

2 
Inference 

model 

The Video Augmentation enabler 

provides the ability to perform ML 

model inference over new cameras 

deployed in ASSIST-IoT pilots 

The already trained ML model is properly 

inferenced through Video Augmentation API 

over stored pictures/videos or from streaming 

real-time RTP messages 

Pass/Fail  

 

MR Enabler 

The MR enabler will not be evaluated in automated way through the platform, as the under-development 

software (in *.appx file) will be deployed in specific hardware (Microsoft Hololens 2) and cannot be 

encapsulated (see deliverable 3.6 [16.], Chapter 5.2 Encapsulation exceptions). Nevertheless, the testing 

procedures will be followed in accordance with ASSIST-IoT methodology, which means that unit testing will 

be executed offline and integration tests will be performed with the rest of the required components, as follows:  

Table 19: MR's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Receive 

alerts 

Receiving alert messages from real-

time data streams and displaying 

them to the device. 

MQTT messages will be send to MR enabler in 

order to visualise them. 

Pass / 

Fail 

2 
Send  

Data 

The MR enabler will send reports 

(data and image) to the LTSE. 
Verify that the data is stored to the LTSE. 

Pass / 

Fail 

3 
Performance 

metrics 

Health metrics will be generated in 

the MR enabler and will be sent to 

the PUD enabler via APIs 

Verify the PUD has received the health metrics 

through the provided API 

Pass / 

Fail 

https://gitlab.assist-iot.eu/wp5/t54/integrity-verification


D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 32 of 50 

 

 

4.2.2. Functional Testing of vertical enablers 

 

Self-enablers 

Self-healing enabler 

Table 20: Self-healing's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Hardware testing 

(RAM/CPU) 

The self-healing enabler 

provides different methods for 

monitoring HW resources.  

The self-healing UNIX commands 

implemented over its NodeRed flows 

must receive the numerical values of 

the resources’ status. 

Pass/Fail  

2 
Hardware testing 

(network) 

The self-healing enabler 

provides different methods for 

monitoring device’s network 

interfaces.  

The self-healing UNIX commands 

implemented over its NodeRed flows 

must receive the status of the network 

device manager. 

Pass/Fail  

3 
Hardware remediation 

(RAM/CPU/network) 

The self-healing enabler 

performs remediation actions 

over the HW which it is 

deployed and being monitored.  

The self-healing UNIX commands 

implemented over its NodeRed flows 

must perform the remediation actions 

over the device’s resources. 

Pass/Fail  

 

Automated Configuration enabler 

Table 21: Automated Configuration's functional tests 

Nº Test Description Evaluation criteria Results 

1 Add resource 

The Automated Configuration (AC) 

enabler should allow adding a new 

(configurable) resource 

A new resource with a provided initial 

configuration is created. 

Pass / 

Fail 

2 

Modify 

resource 

configuration 

The AC enabler should allow 

updating an existing resource 

configuration. 

An update action to an existing resource 

configuration is performed and verified via a 

set of predefined tests. 

Pass / 

Fail 

3 

Delete 

resource 

configuration 

The AC enabler should allow 

removing an existing resource 

configuration. 

A resource delete request is issued to the 

enabler. The request should be rejected if the 

resource specified does not exist. 

Pass / 

Fail 

4 

(Re)configure 

sample test 

resource 

The AC enabler has to perform non-

trivial configuration with fallbacks 

of the test resource. 

The test configuration has to execute a set of 

predefined integration tests. 

Pass / 

Fail 

 

 

Resource Provisioning enabler 

Table 22: Resource Provisioning's functional tests 

Nº Test Description Evaluation criteria Results 

1 Get artifacts 

It returns a list with the enablers and 

components correctly configured 

and ready to be optimised. 

Correctly configured enablers and components 

are successfully obtained in JSON format. 

Pass / 

Fail 

2 Train model 

The training of the model is 

performed for each component with 

historical data. 

It will be possible to check the training result in 

the future database with the new trained data 

and without duplicates. 

Pass / 

Fail 

3 Get range 

The enabler returns the training 

range based on both historical and 

predicted data. 

The range of training data is successfully 

obtained in JSON format. 

Pass / 

Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 33 of 50 

 

Nº Test Description Evaluation criteria Results 

4 
Update 

range 

The data range values of historical 

and predicted data are updated. 

The evaluation criterion will be linked to the 

verification of the change of variables by 

performing test #3. 

Pass / 

Fail 

5 Inference 

Data inference is performed on each 

component of each enabler based on 

the latest training. 

An update is performed on the 

HorizontalPodAutoscaler object of each 

managed component. 

Pass / 

Fail 

6 

Select 

enablers to 

manage 

Add or remove the enablers or 

components that you want to apply 

the inference. 

The success of the operation can be checked by 

performing the inference based on test #5. 

Pass / 

Fail 

 

Monitoring and Notifying enabler 

Table 23: Monitoring and Notifying's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Receive data from 

IoT/Edge devices 

Monitor the status of devices by 

subscribing to topics created by 

the Edge Data Broker enabler and 

ensuring the data delivery. 

The data arrives intact, and the user sees it 

on his consumer dashboard.  

Pass / 

Fail 

2 Create notification 

Create a notification when a 

monitored device’s threshold is 

breached. 

The notification is successfully created. 
Pass / 

Fail 

3 Push notification 

The notifications created in test 

#2 should be pushed to the 

responsible operator. 

The notification (alongside with the related 

data) is successfully obtained by the correct 

operator, and can be seen on the dashboard. 

Pass / 

Fail 

4 

Store 

notifications/critical 

events 

The notifications created in test 

#2 should be stored in the 

enabler’s database for future 

consuming. 

The notification (alongside with the related 

data) is successfully stored in the database 

in JSON format. 

Pass / 

Fail 

5 

Query 

notifications/critical 

events 

The notifications stored in the 

database, in test #4, should be 

able to be queried. 

Successfully see the queried critical events 

from the database. 

Pass / 

Fail 

 

Location Processing enabler 

Table 24: Location Processing's functional tests 

Nº Test Description Evaluation criteria Results 

1 Add region 

The Location processing (LP) 

enabler should allow adding a 

new region. 

A new region with a provided initial 

geometry is created. 

Pass / 

Fail 

2 Modify region 

The LP enabler should allow 

updating an existing region 

geometry. 

An update action to an existing region 

geometry is performed. The request should 

be rejected if the region specified does not 

exist. 

 

Pass / 

Fail 

3 Delete region 
The LP enabler should allow 

removing an existing region. 

A region delete request is issued to the 

enabler. The request should be rejected if 

the region specified does not exist. 

Pass / 

Fail 

4 

Query position(s) 

wrt sample test 

region 

The LP enabler has to allow 

checking if a given location lays 

within a specified region. 

The test configuration has to execute a set 

of predefined, location specific, integration 

tests. 

Pass / 

Fail 

 

Federated machine learning enablers 

FL Training Collector enabler 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 34 of 50 

 

Table 25: FL Training Collector's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Send training 

configuration 

FL Training Collector should be 

able to receive configuration for 

the training job to be run via API. 

The API request is correctly handled and a 

message confirming a successful execution 

of a requested operation (accept 

configuration) is send in response. 

Pass / 

Fail 

2 Request job status 

FL Training Collector should be 

able to provide status of a job 

which configuration it received. 

The API request is correctly handled and in 

response all necessary information about 

job with a given it status are given 

Pass / 

Fail 

 

FL Orchestrator 

Table 26: FL Orchestrator's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Web GUI app 

integration 

The Web GUI application of the 

ASSIST-IoT FL system will 

provide a human friendly 

interface. It will provide to the 

end user the ability of configuring 

the FL training graphically. To do 

so, it should be properly 

integrated with the FL 

Orchestrator. 

The different action buttons, forms, or edit 

fields must connect with the FL 

orchestrator API, which in turn is 

connected with the FL workflow manager 

that is in charge of properly configuring the 

JSON documents distributed with the rest 

of FL enablers  

Pass/Fail  

2 

Integration with FL 

Repository for 

retrieving ML 

models 

The FL Orchestrator needs to be 

integrated with the FL repository 

in order to have access to the 

different ML models supported, 

as 

 well as to obtain their 

corresponding model_id field 

The FL orchestrator API must successfully 

connect with the FL repository databases  
Pass/Fail 

3 

Integration with FL 

Training Collector 

for sending 

customized training 

configuration  

The FL Orchestrator needs to be 

integrated with the FL Training 

Collector to inform about the new 

Federated Learning process to be 

performed 

The FL orchestrator API must send in 

JSON documents, the FL configuration to 

the FL Training Collector, which will 

acknowledge about its successful 

reception. 

Pass/Fail 

4 

Integration with FL 

Local Operations 

for sending 

customized training 

configuration 

The FL Orchestrator needs to be 

integrated with the FL Local 

Operations to inform about the 

new Federated Learning process 

to be performed 

The FL orchestrator API must send in 

JSON documents, the FL configuration to 

the FL Local Operations, which will 

acknowledge about its successful 

reception. 

Pass/Fail 

5 

Get status of FL 

Training Collector / 

FL Local 

Operations  

The FL Orchestrator needs to be 

aware of the current job status of 

the FL process by being 

integrated with the FL Training 

Collector and the FL Local 

Operations 

The FL orchestrator API must periodically 

receive in raw text the status of the FL 

Training Collector and the FL Local 

Operations (either ON or OFF). 

Pass/Fail 

6 
Get finished FL 

training round  

The FL Orchestrator needs to be 

aware of the last training round 

performed by the FL training 

collector 

The FL orchestrator API must periodically 

receive in raw text (or via a JSON message) 

an ending notification of a new round from 

the FL Training Collector. 

Pass/Fail 

7 
Get finished FL 

training process 

The FL Orchestrator needs to be 

aware of the ending of the FL 

training from the FL training 

collector 

The FL orchestrator API must receive in 

raw text (or via a JSON message) an ending 

notification of FL training from the FL 

Training Collector. 

Pass/Fail 

 

FL Repository enabler 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 35 of 50 

 

Table 27: FL Repository's functional tests 

Nº Test Description Evaluation criteria Results 

1 ML model storage 

ML model is send to FL 

Repository to be stored. Using the 

model's id and version the same 

model is retrieved from the 

repository. Finally the model is 

deleted from the repository. 

Each API request is correctly handled and 

a message confirming a successful 

execution of a requested operation is send 

in response. 

Pass / 

Fail 

2 
ML algorithm 

storage 

ML algorithm is send to FL 

Repository to be stored. Using the 

algorithm’s id and version the 

same algorithm is retrieved from 

the repository. Finally the 

algorithm is deleted from the 

repository. 

Each API request is correctly handled and 

a message confirming a successful 

execution of a requested operation is send 

in responses. 

 

Pass / 

Fail 

3 

ML training 

collector algorithm 

storage 

ML training collector algorithm 

is send to FL Repository to be 

stored. Using the training 

collector algorithm’s id and 

version the same algorithm is 

retrieved from the repository. 

Finally the algorithm is deleted 

from the repository. 

Each API request is correctly handled and 

a message confirming a successful 

execution of a requested operation is send 

in responses. 

 

Pass / 

Fail 

 

FL Local Operations enabler 

Table 28: FL Local Operations' functional tests 

Nº Test Description Evaluation criteria Results 

1 Send configuration 

FL Local Operations should be 

able to receive configuration for 

the training job to be run via API. 

The API request is correctly handled and a 

message confirming a successful execution 

of a requested operation (accept 

configuration) is send in response. 

Pass / 

Fail 

2 Send model 

FL Local Operations should be 

able to accept a model identified 

with a given id and version. 

The API request is correctly handled and a 

message confirming a successful execution 

of a requested operation (accept model) is 

send in response. 

Pass / 

Fail 

3 Request status 

The Local Operations enabler 

should be able to provide its 

status. 

The API request is correctly handled and in 

response status information is given. 

Pass / 

Fail 

 

 

Cybersecurity enablers 

Identity Manager enabler 

Table 29: Identity Manager's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Ports 

exposed 

Identity Manager enabler 

needs to expose a set of 

external ports to check the 

service is up and running  

A Dynamic Unit Test is deployed to verify that after the 

deployment of the enabler ports are responding 

accordingly to the definition on docker-compose. Ports 

8080 and 2020 

Verification can be done in CI/CD pipeline using 

https://github.com/gauntlt/gauntlt 

 

Pass / 

Fail 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 36 of 50 

 

Nº Test Description Evaluation criteria Results 

2 

API REST 

exposed 

Keycloak 

Identity Manager enabler 

needs to expose REST API  
http://<host>/auth/realms/ 

Pass / 

Fail 

3 
API REST 

exposed 

Identity Manager enabler 

needs to expose REST API 
http://:2020/health 

Pass / 

Fail 

4 

Key Cloak 

API 

response 

Enabler rest interfaces needs 

to process the response from 

the Keycloak API 

Different static tests are deployed in order to process 

real and simulated connection attempts to the backend 

 

Described and documented in GitLab 

 

https://gitlab.assist-iot.eu/wp5/t53/identity-manager/-

/blob/main/restenabler/test_keycloakapiconnector.py 

Pass / 

Fail 

5  

Rest 

Connector 

API 

response 

Enabler rest interfaces needs 

to process the response from 

the Rest Connector  

Different static tests are deployed in order to process 

real and simulated connection attempts to the backend 

 

Described and documented in GitLab 

https://gitlab.assist-iot.eu/wp5/t53/identity-manager/-

/blob/main/restenabler/test_restconnector.py 

Pass / 

Fail 

 

Authorisation enabler 

Table 30: Authorisation's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Ports 

exposed 

Authorization 

Server enabler 

needs to expose 

a set of external 

ports and API 

URL to check 

the service is up 

and running  

A Dynamic Unit Test is deployed to verify that after the deployment of 

the enabler ports are responding accordingly to the definition on 

docker-compose. 

Port MySQL 3306 and 9000 

Verification can be done in CI/CD pipeline using 

https://github.com/gauntlt/gauntlt 

 

 

 

Pass / 

Fail 

2  
API REST 

AuthServer 

Authorization 

Server needs to 

expose REST 

API  

Dynamic Unit Test to verify REST API 
 

http://<host>:9000/DcAuthzPap/rest/evaluate?resource=a&action=ib&code=c 

 

The response is a JSON  

Pass / 

Fail 

3  
API REST 

PAP 

Authorization 

Server needs to 

expose REST 

API for PAP 

http://<host>:9000/DcAuthzPap/ 
Pass / 

Fail 

 

Cybersecurity Monitoring enabler 

Table 31: Cybersecurity Monitoring's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Ports 

exposed 

Security monitoring enabler 

needs to expose a set of 

external ports to check the 

service is up and running  

A Dynamic Unit Test is deployed to verify that after 

the deployment of the enabler ports are responding 

accordingly to the definition on docker-compose. 

Verification can be done in CI/CD pipeline using 

https://github.com/gauntlt/gauntlt 

 

Pass / 

Fail 

 

Cybersecurity Monitoring Agent enabler 

https://github.com/gauntlt/gauntlt


D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 37 of 50 

 

Table 32: Cybersecurity Monitoring Agent's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Ports 

exposed 

Security monitoring agent 

enabler needs to expose a set 

of external ports to check the 

service is up and running  

A Dynamic Unit Test is deployed to verify that after the 

deployment of the enabler ports are responding 

accordingly to the definition on docker-compose. 

Verification can be done in CI/CD pipeline using 

https://github.com/gauntlt/gauntlt 

 

Pass / 

Fail 

 

DLT based enablers 

Logging and auditing 

Table 33: Logging and auditing's functional tests 

Nº Test Description Evaluation criteria Results 

1 Push logs 

The DLT has to have an 

operating API to receive 

messages. 

Send data to verify that the API receives them and stores 

them in the ledger  

Pass / 

Fail 

2 Store Logs 
Store logs with critical data 

to the DLT 
Run a query to verify the data exists on the ledger 

Pass / 

Fail 

3 
Retrieve 

specific log 

Retrieve a log with critical 

data that is stored in the 

ledge 

Provide a specific hash ID of the log to query the log 

 

Pass / 

Fail 

 

Integrity Verification 

Table 34: Integrity Verification's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Push 

hashed data 

The DLT has to have an 

operating API to receive 

messages. 

Send data to verify that the API receives them and stores 

them in the ledger  

Pass / 

Fail 

2 
Store 

hashed data 

The DLT stores the hashed 

data 
Run a query to verify the data exists on the ledger 

Pass / 

Fail 

3 
Verification 

mechanism 

The DLT has to verify the 

integrity of the data. 

Send hashed data (that already exists in the ledger) to 

verify that the verification mechanism works and 

matches the data with the already stored data 

Pass / 

Fail 

       

 

 

 

Broker service 

Table 35: Broker service's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Push 

metadata 

The DLT has to have an 

operating API to receive 

messages. 

Send data to verify that the API receives them and stores 

them in the ledger  

Pass / 

Fail 

2 
Store 

metadata 
Store metadata to the DLT Run a query to verify the data exists on the ledger 

Pass / 

Fail 

        

Federated Learning DLT 

https://gitlab.assist-iot.eu/wp5/t54/integrity-verification
https://gitlab.assist-iot.eu/wp5/t54/federated-learing


D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 38 of 50 

 

Table 36: FL DLT's functional tests 

Nº Test Description Evaluation criteria Results 

1 Push model 

The DLT has to have an 

operating API to receive 

messages. 

Send a model to verify that the API receives them and 

stores them in the ledger  

Pass / 

Fail 

2 Store model Store a model to the DLT Run a query to verify the model exists on the ledger 
Pass / 

Fail 

 

Manageability enablers 

Enabler for registration and status of enablers 

Table 37: Registration and status of enablers' functional tests 

Nº Test Description Evaluation criteria Results 

1 
Show 

enablers list 

The enabler provides the list 

of the deployed enablers. 
The list of the deployed enablers is shown in a table. 

Pass / 

Fail 

2 
Deploy 

enabler 

Deploys a new enabler using 

the Smart Orchestrator under 

the hood. 

The new enabler is shown in the table of the deployed 

enablers and its operational status is “running”. 

Pass / 

Fail 

3 
Terminate 

an enabler 

Terminates a deployed 

enabler, interacting with the 

Smart Orchestrator under the 

hood. 

The enabler is shown in the table of the deployed 

enablers and its operational status is “terminated”. Now, 

the enabler can be deleted. 

Pass / 

Fail 

4 
Delete an 

enabler 

Deletes a terminated enabler 

using the Smart 

Orchestrator. 

The enabler is not shown in the table of the deployed 

enablers. 

Pass / 

Fail 

5 
Show 

enabler logs 

Shows the logs of the 

enabler. 
The list of logs of the selected enabler is shown. 

Pass / 

Fail 

 

Enabler for management of services and enablers’ workflow 

The component is in an early development stage, as it greatly depends on its interaction with other enablers (and 

hence, need to have their APIs and environment variables in place). At the moment, it is not possible to describe 

concise functional tests, therefore for the sake of avoiding adding content that might be likely modified, 

functional tests are not indicated yet. 

 

 

Device Management enablers 

Table 38: Device Management's functional tests 

Nº Test Description Evaluation criteria Results 

1 
Show 

clusters list 

The enabler provides the list 

of the registered K8s 

clusters. 

The list of the deployed enablers is shown in a table. Pass/Fail 

2 
Register 

cluster 

Registers a new K8s cluster 

using the Smart 

Orchestrator. 

The new cluster is shown in the table of the registered 

clusters and its status is “ENABLED”. 
Pass/Fail 

3 
Delete 

cluster 

Deletes a K8s cluster using 

the Smart Orchestrator. 

The K8s cluster is not shown in the table of the 

registered K8s clusters. 
Pass/Fail 

 

 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 39 of 50 

 

4.3 Test environment 
Generally, the different test phases will be executed in different environments. For example, the environment 

for unit testing can be the local system where the unit is developed as unit testing is defined by the development 

team. The below environments are to be considered for the testing phases building towards the validation 

process of the pilot cases: 

• Local system: Each developers’ local machine environment. (unit testing) 

• Development premises: Developers’ local machines along with Gitlab testing environment. (integration 

testing) 

• Staging: As previously mentioned, three machines provided by CERTH will be available for integration 

testing. The aim is to provide a staging environment for developers to test their components in a 

laboratory environment. This environment will present bottlenecks between the developed components 

prior to the final testing environment, the pilot sites. (integration testing, some end-to-end testing and 

some performance testing) 

• Pilots: In D7.2, there are diagrams for the pilots’ implementations that will used for the validation of 

the developed architecture. (final end-to-end testing, acceptance testing and final performance testing) 

 

4.4 Time plan 
ASSIST-IoT aims to introduce a reference architecture for the NG-IoT and use it in a human-centric manner. 

Three different pilot sites are in place to implement and test the developed architecture of the project. As the 

integration and testing are demanding, a time plan is advised to be followed. 

The time plan aims to facilitate the implementation of the DevSecOps methodology. While the contemporary 

literature [22.], [23.] on the testing phases proposes incremental, step-by-step testing, the DevSecOps 

philosophy aims to operate within a cycle and include the testing within this cycle. For that reason, the testing 

phases will coexist for the duration of the project, and the maturity of the development will have to initiate a 

different testing phase during the progression of the project. 

The initial time plan foresees the continuous testing of the developed tools. The testing methods beginning 

earlier than the rest of the methods are the unit and functional testing, which does not require the deployment 

of the whole system. As the development of the enablers matures, the integration testing is to follow. 

 

Figure 10. ASSIST-IoT testing and integration time plan 

Acceptance and performance testing are tests that will be realised in a later stage of the project, while the 

maturity of the development and integration will be higher. To elaborate more on the time plan, we should 

mention that unit testing begins with the first code commitment on the Gitlab repositories. It is part of CI/CD 

and therefore new bugs and issues can come up unexpectedly. All these should be assessed in parallel with 

functional testing, as the internal components of enablers are responsible for providing the complete 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 40 of 50 

 

functionality of use cases. Following the testing workflow, integration testing comes next which begins as soon 

as the units of an enabler are already tested and need to be integrated in an enabler to be seen as a complete 

application. The main issue here is that integration testing is also part of CI/CD, hence until the enablers are put 

in a real pilot trial scenario, bugs and issues are continuously arising and have to be dealt with. The procedure 

continues with end-to-end testing, when enablers responsible for a pilot trial application scenario are ready to 

be integrated and tested. After ensuring that the requirements are met, we proceed to the UAT/FAT in which 

we deploy the platform to the pilot premises and apply beta testing by end users and stakeholders. Finally, 

performance testing as the last part of the testing lifecycle, begins when acceptance testing is finished, the 

product requirements are met, and we are ready to enter to the phase of maintaining the product, tackle rare 

scenarios, configure and optimize the product. 

 

 

 

  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 41 of 50 

 

5 Conclusion / Future Work 

The current deliverable aims at establishing the testing and integration strategy for the project. The strategy 

follows the DevSecOps methodology defines the tools, the procedures, and tests for the project to incorporate 

security in the deployed architecture. The current tools that contribute to the continuous integration and namely, 

are GitLab, GitLab Runner, Docker registry, and Kubernetes. The introduced tools are open-source tools 

enhancing the auditability of the project. More tools can be introduced to grow the capabilities of the pipeline 

depending on the needs for testing and the demands of the pilot cases. 

The test strategy familiarises the readers with the testing methods that are to be in place for the project 

implementation. Tests are devised to include units ranging in scale, from the smallest ones like functions up to 

the whole system. The tests are to pinpoint bottlenecks in the code and application prior to the deployment and 

alleviate the burden on the development team. The deliverable provides details to be followed in each test phase. 

While a time plan is included, the development and testing follow a circular application. 

The update of the current deliverable will be with the conclusion of the project on M30 presenting the final 

results. As the elapsed time between this version and the final is considerable, updates on the methodology and 

strategy are to be included within deliverables of other work packages such as WP7 and WP8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 42 of 50 

 

Appendix 1: Enabler’s status 
This chapter aims to provide an overview of the enablers defined in published deliverables architectural 

deliverables (D3.5) and detailed in core enablers (D4.1) and transversal enablers (D5.1). Updated versions of 

the deliverables are to be available at the same time as this deliverable, so changes and updates are included in 

D3.6, D4.2, and D5.2. 

The following subchapters present the work on each separate enabler in a concise table. The readers can 

familiarise themselves with the enabler’s functionality. The connection with other enablers can help the next 

step of testing and integration for the project as it can provide the initial points to focus on. Due to the project’s 

phase, the majority of enablers are in the development process with the next stages to be the testing and 

integration. 

Smart Network and Control 

Enabler 

ID 
Enabler Name Enabler Description 

Development 

Status 

T42E1 

Smart 

Orchestration 

enabler 

This enabler facilitates the interaction of user interfaces 

and other enablers with the main components of the 

MANO framework, namely the Network Function 

Virtualisation Orchestrator (NFVO) and the Kubernetes 

clusters, exposing only the required inherent 

functionalities. In particular, this enabler will control 

the whole lifecycle of Virtualised Network Functions 

(VNFs), from their instantiation to their termination, 

allowing their deployment in any k8s cluster available. 

50% 

T42E2 SDN Controller 

The SDN Controller is the key element of an SDN-enabled 

network, being the software that takes over the 

responsibilities of the control plane from the hardware 

elements (switches mostly), including monitoring and 

management of packet flows. 

70% 

T42E3 

Auto-

configurable 

network enabler 

This enabler provides optimised network routing 

configuration capabilities to the SDN Controller of an 

ASSIST-IoT ecosystem. This enabler will consist of an 

application that consumes the northbound APIs of the SDN 

Controllers to generate a policy that improves the 

performance of one/many KPIs of the network (e.g., latency). 

50% 

T42E4 

Traffic 

classification 

enabler 

The aim of this enabler is to classify network traffic into a 

number of application classes (video streaming, VoIP, 

Network control, best effort, OAM, etc.), making use of an 

AI/ML framework and dedicated algorithms. The traffic 

classification enabler can be seen as a service of the 

application layer of the general SDN architecture. 

20% 

T42E5 
Multi-link 

enabler 

Multi-link wireless network capabilities provide the 

possibility of sending video streams of data over different 

Radio Access Networks and different channels in each of 

them (for instance, regarding cellular, using more than 1 

connection). Besides, it should provide reliability 

mechanisms: in case one channel is down, the signal cannot 

be lost or at least it should be recovered almost in real-time. 

15% 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 43 of 50 

 

T42E6 
SD-WAN 

enabler 

The objective of this enabler is to provide access between 

nodes from different sites based on SD-WAN technology. 

0% 

T42E7 

WAN 

acceleration 

enabler 

This enabler aims at increasing the efficiency of data transfer 

in Wide Area Network. This enabler will contain a set of 

independent, standalone VNFs with that purpose. These 

functions can be either chained (so data that requires of 

different techniques travels through the different functions) 

or selected for specific purposes. 

0% 

T42E8 VPN enabler 

This enabler will facilitate the access to a node or device from 

a different network to the site’s private network using a 

public network (e.g., the Internet) or a non-trusted private 

network. 

50% 

 

Data Management 

Enabler 

ID 
Enabler 

Name 
Enabler Description 

Development 

Status 

T44E1 

Semantic 

repository 

enabler 

This enabler offers a “Nexus” for data models and ontologies, 

that can be uploaded in different file formats, and served to users 

with relevant documentation. This enabler is aimed to support 

files that describe data models or support data transformations, 

such as ontologies, schema files, semantic alignment files etc. 

70% 

T44E2 

Semantic 

translation 

enabler 

Semantic Translation enabler offers a configurable service to 

change the contents of semantically annotated data in 

accordance with translation rules – so-called “alignments”, or 

alignment files. 

50% 

T44E3 

Semantic 

annotation 

enabler 

This enabler offers a syntactic transformation service, that 

annotates data in various formats and lifts it into RDF. The full 

list of formats is yet to be decided and the first version will 

support JSON. 

70% 

T44E7 

Edge data 

broker 

enabler 

This enabler enables the efficient management of data demand 

and data supply from/to the Edge Nodes. It optimally distributes 

data where it is needed for application, services, and further 

analysis. 

50% 

T44E8 

Long-term 

data storage 

enabler 

The role of this enabler is to serve as a secure and resilient 

storage, offering different storage sizes and individual storage 

space for other enablers (which could request back when they 

are being initialising in Kubernetes pods). It also guarantees that 

the data will be kept safe, in face of various kinds of 

unauthorised access requests, or hardware failures, by only 

allowing access to the data once the Identity Manager and the 

Authorisation enablers have confirmed their access rights. 

65% 

 

 

 

 

 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 44 of 50 

 

Application and Services 

Enabler 

ID 
Enabler Name Enabler Description 

Development Status 

T44E1 

Tactile 

Dashboard 

enabler 

The Tactile Dashboard enabler has the capability 

of representing data stored in the ASSIST-IoT 

pilots, through meaningful combined 

visualisations in real-time. It also provides 

(aggregates and homogenises) all the User 

Interfaces for the configuration of the different 

ASSIST-IoT enablers, and associated 

components. 

75% 

T44E2 
Business KPI 

reporting enabler 

This enabler will illustrate valuable KPIs within 

Graphical User Interfaces embedded into the tactile 

dashboard. It will facilitate the visualisation and 

combination of charts, tables, maps, and other 

visualisation graphs in order to search for hidden 

insights. 

80% 

T44E3 

Performance and 

usage diagnosis 

(PUD) enabler 

PUD enabler aim at collecting performance metrics 

from monitored targets by scraping metrics HTTP 

endpoints on them and highlighting potential 

problems in the ASSIST-IoT platform so that it could 

autonomously act in accordance or notify to the 

platform administrator to fine-tuning machine 

resources. 

50% 

T44E4 

OpenAPI 

management 

enabler 

The OpenAPI management enabler will be an API 

Manager that allows enablers that publish their APIs, 

to monitor the interfaces lifecycles and also make 

sure that the needs of external third parties (including 

granted open callers), as well as applications that are 

using the APIs, are being met. 

35% 

T44E5 

Video 

Augmentation 

enabler 

This enabler receives data (mainly images or video 

streams) captured either from ASSIST-IoT Edge 

nodes, or from ASSIST-IoT databases, and by means 

of Machine Learning Computer Vision 

functionalities, it provides object 

detection/recognition of particular end-user assets 

(e.g., cargo containers, cars’ damages). 

40% 

T44E6 MR enabler 

The MR enabler receives data and transforms it into 

a format suitable for visualisation through head-

mounted MR devices. Data, which may come from 

long-term storage or real-time data streams, are 

requested according to their relevance to the user. 

70% (1st release is 

ready, but the 

integration with the 

other enablers is not 

developed yet) 

 

 

 

 

 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 45 of 50 

 

Self-* 

Enabler 

ID 
Enabler Name Enabler Description 

Development 

Status 

SELF11 
Self-healing device 

enabler 

This enabler aims at providing to IoT devices with the 

capabilities of actively attempting to recover themselves 

from abnormal states, based on a pre-established routines 

schedule. Hence, it should not require high computation 

capabilities in order to be deployed on any customizable 

device. 

80% 

SELF12 

Resource 

provisioning 

enabler 

This enabler will be able to horizontally scale (up or 

down) the resources devoted to a specific enabler (inside 

a node) in a dynamic fashion. 

50% 

SELF13 
Monitoring and 

notifying enabler 

This is an enabler responsible for monitoring the 

uninterrupted functionality of devices and notifying in 

case of malfunction incidents. Specifically, it has to 

ensure the departure of data, the arrival, the validity and 

its own self-monitoring functionality. 

50% 

SELF14 
Geo(Localisation) 

enabler 

To solve challenges of pilots we need to localize physical 

objects (containers in ports, workers on construction 

sites), some devices should be aware of their position in 

relation to each other (aligning cranes and tractors). This 

enabler will provide that functionality and will be directly 

used in pilot usages varying from coordinating heavy 

machinery in port to locating workers on construction 

site. This enabler will be a basic building block providing 

Self-awareness (about the location of devices) to the 

ASSIST-IoT deployment 

10% 

SELF15 

Automated 

configuration 

enabler 

This enabler aims to keep heterogeneous devices and 

services synchronised with their configurations. Users 

can update configuration and define its fallback versions 

in case of errors. Self-* component will detect if fallback 

configuration should be used. Self-* component will be 

responsible for reacting to changes in the environment 

and updating configuration as necessary/required. 

20% 

 

Cross-context Federated Machine Learning 

Enabler 

ID 
Enabler 

Name Enabler Description 
Development 

Status 

T52E1 
FL 

Orchestrator 

The FL orchestrator is responsible of specifying details of FL 

workflow(s)/pipeline(s). This includes FL job scheduling, 

managing the FL life cycle, selecting, and delivering the initial 

version(s) of the shared algorithm, as well as modules used in 

various stages of the process, such as training stopping criteria. 

Finally, it can specify ways of handling different “error 

conditions” that may occur during the FL process. 

50% 

T52E2 
FL Training 

Collector 

The FL training collector will consist of two components: (i) the 

combiner responsible of providing updates with respect to the 

shared averaged model, and (ii) the I/O component which will 

75% 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 46 of 50 

 

carry out the input and output communications of the enabler. 

T52E3 
FL 

Repository 

This repository will store (and deliver upon request/need) the 

ML algorithms or ML models. The FL repository will consist of 

four main components: ML Algorithms libraries (that gathers 

ML algorithms without involving any modelling associated 

with a particular training data set), ML models libraries (which 

have been already trained with a particular data set), Collectors 

(averaging algorithms to be used on the FL training process), 

and Auxiliary component (for any needed additional module, 

such as privacy mechanisms or stopping criteria). 

70% 

T52E4 
FL Local 

Operations 

The FL Local Operation enabler will consist of four 

components: Local data transformer component (that will be in 

charge of guaranteeing that data is appropriately formatted for 

the FL model in use), Local Model training component, Local 

Model inference component, and Communication component 

(to enable in and out communications between involved local 

parties and FL orchestrator and FL collector). 

50% 

 

Cybersecurity components 

Enabler 

ID Enabler Name Enabler Description 
Development Status 

T53E1 
Authorization 

Enabler 

The authorisation server offers a decision-

making service based on XACML policies. It 

has different modules that interact and can be 

deployed independently such as, PEP (Policy 

Enforcement Point), PAP (Policy 

Administration Point), PIP (Policy 

Information Point) and PDP (Policy Decision 

Point). 

50% (Authorization Server 

mvp development completed. 

docker compose completed) 

T53E2 

Identity 

Manager 

Enabler 

This enabler will facilitate the use of OAuth2 

protocol and will offer a federated 

identification service where service requester 

and provider will be able to establish a trusted 

relation without previously knowing each 

other. This way a secure identification 

process is completed without the service 

provider having received the requester 

credentials. 

50% (API development 

completed. Pending interface 

requirements. IdM basic 

deployment completed. 

Pending definition of usecase 

needs and architecture to 

complete integration.) 

 

T53E3 

Cybersecurity 

monitoring 

enabler 

This enabler provides security awareness and 

visibility and infrastructure monitoring. 

Having raw data as input, the enabler will set 

a series of processing steps that will enable 

the discovery of cybersecurity threats, going 

through a sequence step: (i) collecting, 

parsing, and normalizing input events, (ii) 

enriching normalized events, (iii) correlating 

events for detecting cybersecurity threats. 

70% (docker-compose 

orchestration tested on a 

virtual environment, two use 

cases on Windows and Linux 

operating systems, monitoring 

all the agents, the status and 

security of the hosts.) 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 47 of 50 

 

T53E4 

Cybersecurity 

monitoring 

agent enabler 

This enabler performs functions of an 

endpoint detection and response system, 

monitoring and collecting activity from end 

points that could indicate a threat. Security 

agent runs at a host-level, combining 

anomaly and signature-based technologies to 

detect intrusions or software misuse. 

70% (docker-compose 

orchestration, tested on a 

virtual environment two use 

cases on Windows and Linux 

operating systems, agents 

located on hosts sending status 

and security to the wazuh-

server) 

 

DLT decentralized infrastructure for privacy, trust, and interoperability 

Enabler 

ID 
Enabler 

Name Enabler Description 
Development 

Status 

T54E1 
Logging and 

auditing 

This enabler will log critical actions that happen during the 

data exchange between ASSIST-IoT stakeholders to allow for 

transparency, auditing, non-repudiation, and accountability of 

actions during the data exchange. 

75% 

T54E2 
Data integrity 

verification 

This enabler will provide DLT-based data integrity 

verification mechanisms that allow data consumers to verify 

the integrity of the exchanged data. 

50% 

T54E3 
Distributed 

broker service 

This enabler will provide secured data sharing mechanisms as 

regards the data exchange between different heterogeneous 

IoT devices belonging to various edge domains and/or 

between different enablers of the architecture. 

50% 

T54E4 

DLT-based 

Federated 

Learning 

This enabler will foster the use of DLT-related components to 

exchange the local, on-device models (or model gradients) in 

a decentralised way avoiding single points of failure acting as 

a component to manage AI contextual information in an 

immutable form and avoiding alteration as well to the data. 

50% 

 

 

Manageability and control 

Enabler 

ID 
Enabler Name Enabler Description 

Development 

Status 

T54E1 

Management of 

enablers existence in 

a deployment 

This enabler will log critical actions that happen during 

the data exchange between ASSIST-IoT stakeholders 

to allow for transparency, auditing, non-repudiation, 

and accountability of actions during the data exchange. 

50% 

T54E2 
Management of 

service and enablers 

This enabler will provide DLT-based data integrity 

verification mechanisms that allow data consumers to 

verify the integrity of the exchanged data. 

50% 

T54E3 Management of 

devices in an 

This enabler will provide secured data sharing 

mechanisms as regards the data exchange between 

65% 



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 48 of 50 

 

ASSIST-IoT 

deployment 

different heterogeneous IoT devices belonging to 

various edge domains and/or between different 

enablers of the architecture. 

 

  



D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 49 of 50 

 

References 

[1.] ASSIST-IoT (2022). D6.4: Release and Distribution Plan. Deliverable of the Horizon-2020 ASSIST-

IoT project, Grant Agreement No. 957258. 

[2.] ASSIST-IoT (2022). D6.5: Technical and Support Documentation. Deliverable of the Horizon-2020 

ASSIST-IoT project, Grant Agreement No. 957258. 

[3.] ASSIST-IoT (2021). D6.1: Devsecops Methodology and tools. Deliverable of the Horizon-2020 

ASSIST-IoT project, Grant Agreement No. 957258. 

[4.] Gitlab website. https://about.gitlab.com/ 

[5.] Gitlab. (2021, 1 June). GitLab is setting the standard for DevSecOps. 

https://about.gitlab.com/blog/2021/06/01/gitlab-is-setting-standard-for-devsecops/ 

[6.] Gitlab. Gitlab Runner. https://docs.gitlab.com/runner/ 

[7.] Gitlab. Gitlab Registry. https://docs.docker.com/registry/ 

[8.] Kubernetes. https://kubernetes.io/ 

[9.] Koomen, T., & Pol, M. (1999). Test Process Improvement: A practical step-by-step guide to 

structured testing. Addison-Wesley Longman Publishing Co., Inc.. 

[10.] Runeson, P. (2006). A survey of unit testing practices. IEEE software, 23(4), 22-29. 

[11.] Vokolos, F. I., & Weyuker, E. J. (1998, October). Performance testing of software systems. In 

Proceedings of the 1st International Workshop on Software and Performance (pp. 80-87). 

[12.] Mustafa, K. M., Al-Qutaish, R. E., & Muhairat, M. I. (2009, December). Classification of 

software testing tools based on the software testing methods. In 2009 Second International Conference 

on Computer and Electrical Engineering (Vol. 1, pp. 229-233). IEEE. 

[13.] Óscar López, Jordi Blasi, Mikel Uriarte, Ignacio Lacalle, Gonzalo Galiana, Carlos E. Palau, 

Eduardo Garro, Maria Ganzha, Marcin Paprzycki, Piotr Lewandowski, Katarzyna Wasielewska, 

Konstantinos Votis, Georgios Stavropoulos, Iordanis Papoutsoglou, DevSecOps Methodology for NG-

IoT Ecosystem Development Lifecycle – ASSIST-IoT perspective, Journal of Computer Science and 

Cybernetics, 37(3):321-33, Sept 2021. 

[14.] Kumar, R., & Goyal, R. (2020). Modeling continuous security: A conceptual model for 

automated DevSecOps using open-source software over cloud (ADOC). Computers & Security, 97, 

101967. 

[15.] ASSIST-IoT (2021). D3.5: ASSIST-IoT Architecture Definition. Deliverable of the Horizon-

2020 ASSIST-IoT project, Grant Agreement No. 957258. 

[16.] ASSIST-IoT (2022). D3.6: ASSIST-IoT Architecture Definition. Deliverable of the Horizon-

2020 ASSIST-IoT project, Grant Agreement No. 957258. 

[17.] ASSIST-IoT (2022). D7.2: Pilot Scenario Implementation. Deliverable of the Horizon-2020 

ASSIST-IoT project, Grant Agreement No. 957258. 

[18.] ASSIST-IoT (2021). D4.1: Initial Core Enablers Specification. Deliverable of the Horizon-

2020 ASSIST-IoT project, Grant Agreement No. 957258. 

[19.] ASSIST-IoT (2022). D4.2: Core Enablers Specification and Implementation. Deliverable of the 

Horizon-2020 ASSIST-IoT project, Grant Agreement No. 957258. 

[20.] ASSIST-IoT (2021). D5.1: Software Structure and Preliminary Design. Deliverable of the 

Horizon-2020 ASSIST-IoT project, Grant Agreement No. 957258. 

https://about.gitlab.com/
https://about.gitlab.com/blog/2021/06/01/gitlab-is-setting-standard-for-devsecops/
https://docs.gitlab.com/runner/
https://docs.docker.com/registry/
https://kubernetes.io/


D6.2 Testing and integration plan - Initial 

Version 1.0 – 1-June-2022 - ASSIST-IoT© - Page 50 of 50 

 

[21.] ASSIST-IoT (2022). D5.2: Traversal Enablers Development Preliminary Version. Deliverable 

of the Horizon-2020 ASSIST-IoT project, Grant Agreement No. 957258. 

[22.] Guru99. (2022, 16 April). Integration Testing: What is, Types, Top Down & Bottom Up 

Example. Source. Accessed on 3rd of May 2022. https://www.guru99.com/integration-testing.html 

[23.] Software testing fundamentals. (2020, 13 September). Integration testing. Source. Accessed on 

3rd of May 2022. https://softwaretestingfundamentals.com/integration-testing/  

 

https://www.guru99.com/integration-testing.html
https://softwaretestingfundamentals.com/integration-testing/

