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Abstract. The aim of this contribution is to analyse practical aspects of use of REST 

API and gRPC to realize communication tasks in applications in microservice-based 
ecosystems. On the basis of performed experiments, classes of communication tasks, 

for which given technology performs data transfer more efficiently have been 

established. This, in turn, allows formulation of criteria for the selection of 
appropriate communication methods for communication tasks to be performed in an 

application using microservices architecture. 
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1. Introduction 

The main impulse behind data transfer research is the optimisation of communication 

between components in a distributed system, with particular emphasis placed on 

microservice architectures [1]. In such architecture, the performance of the developed 

system is directly influenced by the choice of communication mechanisms between 

individual microservices. Note that, today, microservices have become more and more 

popular and find their way to large-scale heterogeneous deployments, such as in the 

Internet of Things (IoT) and/or Industry 4.0 [2-5]. During preliminary research work, the 

popularity of various communication technologies that can be used in this context, was 

analysed using, among others, Google Trends. Here, the level of interest in particular 

technologies has been reported in [6]. The conclusion was simple. The undisputed leader 

among web application interfaces, in the IT market, is the REST API [7-9]. The second, 

in terms of popularity, turned out to be the gRPC framework [10-11]. Currently, gRPC 

is less popular than REST API, but it is worth noting the growing interest in this 

architecture, as evidenced by its inclusion in the CNCF (Cloud Native Computing 

Foundation) project [12].  

While there exist multiple reasons for selecting either of the two solutions, it is worthy 

to observe that practical performance in large-scale distributed deployments (e.g. in IoT 

ecosystems) is likely to dominate the discussion. This is because the size (understood, 

for instance, in terms of number of components that have to communicate or the physical 

and logical distributions of the virtual elements to connect) of actual IoT deployments 



will grow. The growth will be influenced not only by the size of individual IoT 

ecosystems, but also by the need to combine (join) them to deliver more advanced 

services to the users. Thus, the main objective of this work was to address the question: 

which of the above technologies performs the data transfer process more efficiently for 

a specific type of communication tasks. In this context, it was decided that the analysis 

will be carried out when service implementations are built using the .NET platform and 

the C# programming language [13]. Obviously, it is possible to claim that different 

results could have been obtained when different implementation decisions were made. 

However, this argument could be seen as an opportunity for other works to step in and 

propose such analysis using different stacks and setups. According to the authors, this is 

much needed in the context of software design for large-scale, distributed, 

communication-driven ecosystems.  

It is also worth noting that, at the initial stage of application design, or when planning 

integration of existing systems, analysts should have guidelines on what type of 

communication technologies should be used for specific microservices transmitting a 

given type of data. In highly interconnected systems, even a small reduction in 

communication delays between microservices can, through synergistic effects, 

significantly reduce the responsiveness of the entire system. The results of the 

preliminary research work, which are presented in what follows, allow formulation of 

criteria for selecting REST and gRPC technologies that should be considered depending 

on the specific types of communication tasks. 

1.1. Available comparisons and reports 

Currently, there are few studies that address (and compare) communication performance 

of REST API and gRPC. The book [1] presents the use of REST, gRPC, and other 

technologies for synchronous and non-synchronous communication in the design of 

microservice architecture applications. Its authors identified REST and gRPC as the most 

widely used protocols for synchronous messaging, in line with observations before. 

However, the comparison is limited only to a theoretical description, which points out 

the potential advantage of the gRPC framework, due to its support of the HTTP/2 

protocol. Work reported in [14] compares battery consumption (on Android phones) 

using communication based on REST, SOAP, Socket, and gRPC. A similar approach 

can be found in [15], which concerns migrating complex computational processes from 

a phone to an external server, using different implementations of the gRPC framework, 

on Linux Debian and Android operating systems. Here, authors refer to the research 

conducted in [14]. While interesting, battery consumption, as communication 

performance indicator is given little attention in comparison to others. For instance, it is 

usually downgraded when analysing communication in large-scale industrial IoT 

deployments.  

Interesting, from the point of view of the conducted research, there is an article available 

on the blog of the developers of the gRPC framework. It compares the performance of 

synchronous communication in client applications on Android [16]. In the experiments 

the speed of data transfer from an HTTP JSON application, and a gRPC-based client was 

examined. It was focused on a separate comparison of the receiving and the sending 

phases of the process. In practice, this mainly boils down to a comparison of data 

serialization and deserialization performance for JSON and Protobuf (the information 

exchange mechanism of gRPC). In [17], the authors compared the performance of REST, 

gRPC and THRIFT, measured in terms of the load on individual elements of the NUMA 



machine on which the client applications reside; where the application server was built 

following a microservice structure. The authors pointed out the advantages of gRPC and 

THRIFT technologies over REST. 

The available analyses focus mainly on the description of applications of the discussed 

technologies and the comparison of their performance in narrow scenarios and/or 

application areas. It can be also observed that they are often focused on mobile 

applications. Therefore, it has been decided to slightly broaden the spectrum of analyses, 

by using different scenarios found in practical applications. The selected test scenarios 

are based on authors experiences in the industry and in EU-funded research. They 

represent most common classes of communication tasks, used in the design and 

implementation of microservice-based systems. 

2. Methodology and experimental setup 

To carry out the proposed explorations, implementations of REST and gRPC services 

were prepared. They were built using the .NET 5 platform, with the use of ready-made 

templates: NET Core Web API – generating code for a web application, compliant with 

the assumptions of the REST standard, using communication with HTTP JSON; NET 

Core gRPC Service – implementation of the gRPC framework in the form of a file 

structure, allowing to build web applications. 

Originally, various types of software performance testing methods [18-21], including: 

load testing, stress testing, endurance testing, spike testing, volume testing, have been 

considered. Upon further analysis of the context (large-scale, distributed, message driven 

ecosystems) a combination of several test types were chosen. One of the main parameters 

checked, when testing communication characteristics of a system, is the response time. 

It consists of times needed to (1) establish a connection, (2) send a request, (3) process 

the service logic, and (4) return a response. The tests were carried out using the Apache 

JMeter application [22-23], a testbed using Novus One Plus platform and the IxLoad 

application [24]. Two groups of devices (client and servers) were used to perform the 

tests to simulate the communication of microservices over an actual network connection. 

At this stage of the work, Network Emulator II [25] was also used to monitor interference 

on the communication path used by microservices located on individual machines. A 

schematic of the test stand is shown in Figure 1. 
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Figure 1. Test stand scheme 

The purpose of each test scenario is to measure the server response time to a request sent 

by the test application. The structure of a sample request along with an indication of the 

tested time range is shown in Figure 2. 
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Figure 2. Diagram of a sample request detailing the range of time measured during the test 

 

Most of the measurements were performed using the JMeter application. However, 

additional validation measurements were performed, on an additional test stand, using 

the Ixia Novus One Plus system with the IxLoad application.  

2.1. Research scenarios 

Each test scenario studies the behaviour of a different type of services depending on 

different operating parameters. The main factor tested during the study was the response 

time of the service (see above). It is the time measured from the moment of sending a 

request, from the testing application, to the end of receiving a response from the 

microservice (see Figure 2). To enrich the testing, the behaviour of the application has 

been emulated under different conditions, via setting different options (varying among 

tests). These parameters include: type of tested service method; number of sent requests 

per time unit; use of data encryption (TLS protocol). For the tests, two microservices, 

implemented as web services, based on the .NET platform were prepared. The first one 

is a standard REST application, using data exchange (in JSON format). The second 

application is a service implementing the gRPC framework, using data transport in a 

binary form. In each application, a set of methods was created. Once started, 

implemented methods return data in response to incoming requests. When building the 

application, care was taken to ensure the diversity of supported data. As a result of 

method calls, primitive data types, arrays, objects, or file data could be received. All 

requests have REST and gRPC counterparts. This means that methods, tested in a given 

scenario, have identical input data structure and return the same responses. The following 

communication tasks were used in the tests: 

 Text cloning – takes as parameter any character string and a number that 

indicates how many times the provided string should be cloned in the response. 

Returns a cloned character string, depending on the given parameters. The size 

of the listed data is proportional to the input value.  



  Get integer – parameterless method that returns the number 2147483647, which 

is the maximum number in the range of the Int32 type in the .NET libraries. The 

number of data exchanged during the request is small. 

 Getting an array of consecutive integers – contains one parameter, which is the 

number of elements of the returned array. It has a significant impact on the size 

of the information sent in the request. 

  Fetch text file – a parameterless method that returns a binary string representing 

a text file of size equal to 455 KB. The file data is returned as a bit array. 

 Download PDF file – a parameter-free method that returns a binary string 

representing a PDF file, of size equal to 3.4 MB. This request exchanges 

relatively large amount of information. Data is transferred as a bit array.  

For the sake of uniformity, each test performs a fixed number of requests to the 

application over the course of five minutes, allowing for easy comparison of results from 

several scenarios. The performance testing of the services will be analysed for operations 

using information encryption – the TLS protocol. Each test scenario will contain two 

time runs, the first without the use of encryption (HTTP requests) and the second with 

its use (HTTPS requests). It is also worth mentioning that the tested applications do not 

use a database – the mechanism responsible for the returned responses was implemented 

inside the libraries. In standard (web-based) applications, access to the database usually 

accounts for a large part of the service response time. However, for communication 

performance analysis purpose this seems unnecessary, as both scenarios (REST and 

gRPC) have been designed without this element, removing any potential bias element 

related to database read/write operations. Additionally, the response time of identical 

queries to the database considerably varies between requests. However, this study 

focuses on analyzing the behavior of the data transport layer only. Therefore, lack of 

database, and other external factors, was an explicit decision aimed at minimizing the 

risk of a their non—negligible impact on the timing results. 

3.  Experimental results 

In this section, we present results of the tests conducted for individual services under the 

assumption of a low load of requests. Specifically, it was assumed that, for this 

configuration, in each scenario, the service will send requests at the rate of one request 

per second (i.e. three hundred requests in five minutes, see above). Both the “without 

encryption” and “with encryption” variants have been tried. 
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Figure 3. Service response times for test Scenario I: a. without encryption; b. with encryption 

The first test, Scenario I, focuses on comparing the response times generated by the 

services method, cloning text with low data overhead. The text "Hello World!" was 



passed as a parameter in the form of a string of characters. The service returned an 

identical string as a response. The response times are shown in Figures 3a and 3b. There 

are discrete spikes in the values, which could have been caused by various factors, such 

as the way tasks are queued in the operating system, or the availability of computing 

power. For the first graph, the median response times was 4 ms for REST applications 

and 8 ms for gRPC. Additionally, all requests sent to the REST applications were handled 

faster, compared to the requests sent to the gRPC applications. The situation is slightly 

different for the test with data encryption (3b). In this case, the medians are very similar, 

i.e. 22 ms and 21 ms for the REST and the gRPC services, respectively. The values 

obtained were higher and had slightly more fluctuations, especially in the initial phase 

of the test. In contrast to the previous test variant, the gRPC service obtained results 

similar to the REST. 
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Figure 4. Service response times for test Scenario II: a. without encryption; b. with encryption 

In the next test, Scenario II, the same method was used, but it was parameterized in such 

a way that the received response has a larger size. One paragraph of the popular typeface 

presentation text "Lorem ipsum..." was sent as a parameter. Its length is 615 characters. 

To further increase the amount of information returned, a second parameter (number) 

was used to make the service clone the received text 1000 times and submit it as a 

response. Graphs showing the response rates of the services are presented in Figure 4. In 

both cases, the advantage of the REST service is evident, both for the case without data 

encryption (4a) and with its application (4b). In the first configuration, the median 

response time of the REST service was 57 ms, while it was 68 ms for the gRPC service. 

The configuration using HTTPS presents median results with values of 76 ms and 82 ms 

– for the REST and the gRPC applications, respectively. The speed advantage for REST 

was slightly offset in the second variant of the test, but it was still evident.  
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Figure 5 Service response times for test Scenario III: a. without encryption; b. with encryption 

For the next test (Scenario III), the methods that return integer value 2147483647 was 

used. This parameterless method generates answers with very low data overhead. The 

results are shown in Figures 5a and 5b. Here, it can be seen that the response times of 



both applications are very small. This is mainly due to the size of the data that had to be 

returned to the requester. Regarding the response times, in the first configuration, the 

median was 3 ms for the REST service and 7 ms for the gRPC service. For the data 

encryption, it was 22 ms for the REST and 21 ms for the gRPC. Thus, with requests of 

this type, REST performed better in the scheme without data encryption, while using 

HTTPS allowed gRPC to gain an almost imperceptible advantage in response speed. 
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Figure 6. Service response times for test Scenario IV: a. without encryption; b. with encryption 

The next test, Scenario IV, involves sending requests to a method that returns a sequence 

of numbers from 0 to 10,000 in the form of an array. Compared to the previous case, the 

amount of data returned is significantly larger. The results are presented in Figures 6a 

and 6b. In the test scenario in the transmission without data encryption, once again, the 

response times of the REST service were faster with a median of 8 ms. Meanwhile, the 

gRPC application completed requests with a median value of 12 ms. When using the 

service versions in conjunction with HTTPS, the median time was 27 ms and 25 ms for 

the REST and the gRPC, respectively, indicating a minimal advantage for the framework 

using binary information transfer. 
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Figure 7. Service response times for test Scenario V: a. without encryption; b. with encryption 

Microservices, in most cases, use representation of information in the form of objects. 

The next test (Scenario V) analyzes the process of retrieving data with such a structure. 

It uses a method that returns sample data of small size. The results are shown in Figures 

7a and 7b. The medians of the results received for the first graph were 3 ms for the REST 

service and 8 ms for the gRPC service. When data encryption was used, the median 

response times of the REST application were 22 ms, while for the gRPC application the 

median was 1 ms less. Note that in the second configuration, the gRPC framework 

showed more fluctuation in request response times, especially in the initial phase of the 

test. Similar to the previous test scenarios, the difference in service response speed is 

bridged in the case of HTTPS.  

The next test, Scenario VI, was conducted to examine the behavior of both server-side 

services (REST- and gRPC-based) when sending small-sized files to the client. A method 



that returns a text file in response was used. The test results are shown in Figures 8a and 

8b. In this test scenario, it was the first time that the gRPC service showed an advantage 

in both configurations. Requests without data encryption generated results with a median 

of 57 ms for the REST application and 53 ms for the gRPC. The advantage was even 

more pronounced when using HTTPS, where the medians took values of 75 ms for the 

REST and 66 ms for the gRPC framework. This result may be related to the fact that the 

gRPC service does not need to convert the bitstream of the file, sending it to the client in 

the same form. The REST application interface bases its operation on the transport of 

information in the text form (JSON), forcing an additional conversion.  
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Figure 8. Service response times for test Scenario VI: a. without encryption; b. with encryption 

The next test, Scenario VII, was similar to the previous test (Scenario VII) and examined 

the performance of the services when sending a (slightly larger) file. For this purpose, a 

method was used that returns a sample PDF file. Application response times are 

presented in Figures 9a and 9b. 
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Figure 9. Service response times for test Scenario VII: a. without encryption; b. with encryption 

Use of the gRPC service in transferring a file of significant size also shows better 

performance compared to the REST. In the test presented in Figure 9a, the median value 

obtained was 416 ms for the application with the REST interface, while it was only 361 

ms for the application based on the gRPC framework. The data encryption, presented in 

Figure 9b, shows median values of 473 ms and 370 ms for the REST and the gRPC, 

services, respectively. In both cases, the difference in the received response times is 

significant. This provides clear indication of the advantage of data transfers using the 

gRPC framework when dealing with larger binary-formatted files.  

The architecture of the Ixia Novus One Plus traffic generator and the IxLoad application 

minimizes the latency contributed by the operating system, within which the client 

sending the requests resides. This software/hardware measurement system (which uses 

FPGAs), does not currently support tests for the gRPC technology. Validation tests are 

therefore limited to the REST technology. However, this approach will allow us to verify 

that fully software-based measurements (using JMeter) are affected by significant 



measurement errors (latency contributed by the measurement application itself). In other 

words, the tests conducted in this scenario were set up to determine whether the software-

based latency measurement architecture, used in Scenarios I through VII had any 

significant impact on the results. In this Scenario VIII, which is a mapping of Scenario 

VI, response times during text file retrieval were studied. The times were generated only 

for the REST service. The results of the test are shown in Figures 10a and 10b. 
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Figure 9. Service response times for test Scenario VIII: a. without encryption; b. with encryption 

The median REST application response time, measured using IxLoad, was 69.2 ms for 

the configuration without data encryption, while it was 74.82 ms when using encryption. 

These results are reasonably close to the results obtained in the Scenario VI. This 

demonstrates the reliability of reported results. It should be stressed that similar results 

were obtained for the other six scenarios. It is also noteworthy that the graphs obtained 

using IxLoad, do not have discrete value spikes, which appeared in the tests performed 

using the JMeter toolset.  

3.1. Additional analysis of results 

Further analysis of the obtained results allows development of criteria for the selection 

of a given communication technology in the context of the implemented communication 

tasks in distributed message-driven ecosystems. The resulting list of criteria, and results 

of their application, is presented in Table 1. Based on the analysis of the individual 

scenarios, the table indicates the areas, in which a given technology (REST or gRPC) is 

characterized by better communication efficiency. In the case of similar results in a given 

area, both technologies were indicated as suitable for use by microservices. 

Table 1. Evaluation of REST and gRPC technologies in terms of their exploitation areas 

Area examined 
No encryption With encryption 

REST gRPC REST gRPC 

Transmission of text data (Scenario I, Scenario II) ×  × × 

Transmission of numerical data (Scenario III) ×  ×  

Transmission of numerical data – large data size (Scenario IV) ×  × × 

Transmission of structured data in the form of tables and 

objects (Scenario V) 
×  × × 

File transfer - small-sized (Scenario VI)       × ×  × 

File transfer - large-sized (Scenario VII)        ×  × 

 

The selection criteria shown in Table 1 can be used to choose the optimal operating 

conditions for both technologies with respect to given communication tasks and their 

implementation in .NET. The REST based interface can be used for most standard 



servers that transfer simple data of relatively small size, which is retrieved according to 

the current needs of the client. The legitimacy of the REST applications is also valid for 

the textual data, e.g.: a service, returning to the browser client a ready-made HTML page 

structure, or data in an XML format. The use of the gRPC interface is justified in specific 

applications, e.g. in systems that periodically, or continuously, transfer large (and very 

large) files. Another application, where the use of the gRPC is worth considering, is in 

systems where a high volume of data is “non-stop” exchanged between microservices. 

Performed experiment has also have shown that when using data encryption, in standard 

applications, the gRPC framework gains a slight advantage over the REST, in terms of 

communication performance.  

It should be stressed that, in the case of the need for continuous information exchange, 

when the number of messages transmitted between applications is very large, even small 

differences in the latency of individual exchanges can have very large impact on the 

performance of the distributed system as a whole. Such situation may occur relatively 

often in applications with microservices architecture and in large distributed IoT 

ecosystems. For this reason, the proper selection of inter-node communication 

technology methods can be very important. 

4. Concluding remarks 

The contribution analyses the performance of communication tasks realized using the 

two most popular technologies of message exchange in applications built on the basis of 

microservices, i.e. REST API and gRPC. At the initial stage of research, core 

communication tasks, encountered in applications built for research and commercial 

purposes were selected. For each such operation, performance tests, comparing the 

execution times of communication tasks were performed. On this basis, a set of initial 

recommendations has been developed, which can be used when building applications 

with a highly distributed architecture with heterogeneous inter-node query structure. This 

approach seems to be appropriate both in the case of IoT, and for Industry 4.0 

applications. Departure from the homogeneous (realized exclusively by a single 

standard) structure of message handling, in a given application, may significantly reduce 

the overall delay in the responsiveness of the system as a whole, especially whenever the 

number of messages exchanged between applications is expected to be large.  

In further work, additional technologies will be evaluated such as: GraphQL, OData, 

WSDL, and the set of partial communication tasks will be extended. In addition, others 

works may replicate this  experiment with different stacks (not .NET services, other 

testing tools, varying message loads). This should allow extending the set of 

recommendations and, eventually, they may result in the development of an expert 

system that supports the design decision-making process during the development of 

application architecture. 
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