

Architecture for Scalable, Self-*, human-centric,

Intelligent, Secure, and Tactile next generation IoT

ASSIST-IoT Technical Report #11

 Eficiency of REST and gRPC realizing communication

tasks in microservice-based ecosystems

 Marek BOLANOWSKI, Kamil ŻAK, Andrzej PASZKIEWICZ, Maria GANZHA,

Marcin PAPRZYCKI, Ignacio LACALLE, Carlos E. PALAU,

Accepted at SOMET 2022 conference, KitaKyushu, Japan

(20-22 September 2022)

This project has received funding from the European’s Union Horizon 2020 research

innovation programme under Grant Agreement No. 957258

Eficiency of REST and gRPC realizing

communication tasks in microservice-based

ecosystems

Marek BOLANOWSKI1, Kamil ŻAK, Andrzej PASZKIEWICZ1, Maria GANZHA2,

Marcin PAPRZYCKI2, Ignacio LACALLE3, Carlos E. PALAU3,
1

 Rzeszow University of Technology, Rzeszów, Poland
2 Polish Academy of Sciences, Warszawa, Poland

3 Communications Department Universitat Politècnica de València, Valencia, Spain

Abstract. The aim of this contribution is to analyse practical aspects of use of REST

API and gRPC to realize communication tasks in applications in microservice-based
ecosystems. On the basis of performed experiments, classes of communication tasks,

for which given technology performs data transfer more efficiently have been

established. This, in turn, allows formulation of criteria for the selection of
appropriate communication methods for communication tasks to be performed in an

application using microservices architecture.

Keywords. REST, gRPC, .NET, distributed systems, IoT, microservices, adaptive

networks.

1. Introduction

The main impulse behind data transfer research is the optimisation of communication

between components in a distributed system, with particular emphasis placed on

microservice architectures [1]. In such architecture, the performance of the developed

system is directly influenced by the choice of communication mechanisms between

individual microservices. Note that, today, microservices have become more and more

popular and find their way to large-scale heterogeneous deployments, such as in the

Internet of Things (IoT) and/or Industry 4.0 [2-5]. During preliminary research work, the

popularity of various communication technologies that can be used in this context, was

analysed using, among others, Google Trends. Here, the level of interest in particular

technologies has been reported in [6]. The conclusion was simple. The undisputed leader

among web application interfaces, in the IT market, is the REST API [7-9]. The second,

in terms of popularity, turned out to be the gRPC framework [10-11]. Currently, gRPC

is less popular than REST API, but it is worth noting the growing interest in this

architecture, as evidenced by its inclusion in the CNCF (Cloud Native Computing

Foundation) project [12].

While there exist multiple reasons for selecting either of the two solutions, it is worthy

to observe that practical performance in large-scale distributed deployments (e.g. in IoT

ecosystems) is likely to dominate the discussion. This is because the size (understood,

for instance, in terms of number of components that have to communicate or the physical

and logical distributions of the virtual elements to connect) of actual IoT deployments

will grow. The growth will be influenced not only by the size of individual IoT

ecosystems, but also by the need to combine (join) them to deliver more advanced

services to the users. Thus, the main objective of this work was to address the question:

which of the above technologies performs the data transfer process more efficiently for

a specific type of communication tasks. In this context, it was decided that the analysis

will be carried out when service implementations are built using the .NET platform and

the C# programming language [13]. Obviously, it is possible to claim that different

results could have been obtained when different implementation decisions were made.

However, this argument could be seen as an opportunity for other works to step in and

propose such analysis using different stacks and setups. According to the authors, this is

much needed in the context of software design for large-scale, distributed,

communication-driven ecosystems.

It is also worth noting that, at the initial stage of application design, or when planning

integration of existing systems, analysts should have guidelines on what type of

communication technologies should be used for specific microservices transmitting a

given type of data. In highly interconnected systems, even a small reduction in

communication delays between microservices can, through synergistic effects,

significantly reduce the responsiveness of the entire system. The results of the

preliminary research work, which are presented in what follows, allow formulation of

criteria for selecting REST and gRPC technologies that should be considered depending

on the specific types of communication tasks.

1.1. Available comparisons and reports

Currently, there are few studies that address (and compare) communication performance

of REST API and gRPC. The book [1] presents the use of REST, gRPC, and other

technologies for synchronous and non-synchronous communication in the design of

microservice architecture applications. Its authors identified REST and gRPC as the most

widely used protocols for synchronous messaging, in line with observations before.

However, the comparison is limited only to a theoretical description, which points out

the potential advantage of the gRPC framework, due to its support of the HTTP/2

protocol. Work reported in [14] compares battery consumption (on Android phones)

using communication based on REST, SOAP, Socket, and gRPC. A similar approach

can be found in [15], which concerns migrating complex computational processes from

a phone to an external server, using different implementations of the gRPC framework,

on Linux Debian and Android operating systems. Here, authors refer to the research

conducted in [14]. While interesting, battery consumption, as communication

performance indicator is given little attention in comparison to others. For instance, it is

usually downgraded when analysing communication in large-scale industrial IoT

deployments.

Interesting, from the point of view of the conducted research, there is an article available

on the blog of the developers of the gRPC framework. It compares the performance of

synchronous communication in client applications on Android [16]. In the experiments

the speed of data transfer from an HTTP JSON application, and a gRPC-based client was

examined. It was focused on a separate comparison of the receiving and the sending

phases of the process. In practice, this mainly boils down to a comparison of data

serialization and deserialization performance for JSON and Protobuf (the information

exchange mechanism of gRPC). In [17], the authors compared the performance of REST,

gRPC and THRIFT, measured in terms of the load on individual elements of the NUMA

machine on which the client applications reside; where the application server was built

following a microservice structure. The authors pointed out the advantages of gRPC and

THRIFT technologies over REST.

The available analyses focus mainly on the description of applications of the discussed

technologies and the comparison of their performance in narrow scenarios and/or

application areas. It can be also observed that they are often focused on mobile

applications. Therefore, it has been decided to slightly broaden the spectrum of analyses,

by using different scenarios found in practical applications. The selected test scenarios

are based on authors experiences in the industry and in EU-funded research. They

represent most common classes of communication tasks, used in the design and

implementation of microservice-based systems.

2. Methodology and experimental setup

To carry out the proposed explorations, implementations of REST and gRPC services

were prepared. They were built using the .NET 5 platform, with the use of ready-made

templates: NET Core Web API – generating code for a web application, compliant with

the assumptions of the REST standard, using communication with HTTP JSON; NET

Core gRPC Service – implementation of the gRPC framework in the form of a file

structure, allowing to build web applications.

Originally, various types of software performance testing methods [18-21], including:

load testing, stress testing, endurance testing, spike testing, volume testing, have been

considered. Upon further analysis of the context (large-scale, distributed, message driven

ecosystems) a combination of several test types were chosen. One of the main parameters

checked, when testing communication characteristics of a system, is the response time.

It consists of times needed to (1) establish a connection, (2) send a request, (3) process

the service logic, and (4) return a response. The tests were carried out using the Apache

JMeter application [22-23], a testbed using Novus One Plus platform and the IxLoad

application [24]. Two groups of devices (client and servers) were used to perform the

tests to simulate the communication of microservices over an actual network connection.

At this stage of the work, Network Emulator II [25] was also used to monitor interference

on the communication path used by microservices located on individual machines. A

schematic of the test stand is shown in Figure 1.

Novus One Plus and
IxLoad application

Application server

LA
N

 N
et

w
or

k

Client

REST
gRPC

REST

REST
gRPC

Figure 1. Test stand scheme

The purpose of each test scenario is to measure the server response time to a request sent

by the test application. The structure of a sample request along with an indication of the

tested time range is shown in Figure 2.

Client
Testing application

Server
 Microservice

Sending a request

Receiving the response

Receiving the request

Sending the response

TekstRequest processing time

T
im

e
 m

e
a

su
re

d
 d

u
ri

n
g

 t
e

st
in

g

[ms] [ms]

Figure 2. Diagram of a sample request detailing the range of time measured during the test

Most of the measurements were performed using the JMeter application. However,

additional validation measurements were performed, on an additional test stand, using

the Ixia Novus One Plus system with the IxLoad application.

2.1. Research scenarios

Each test scenario studies the behaviour of a different type of services depending on

different operating parameters. The main factor tested during the study was the response

time of the service (see above). It is the time measured from the moment of sending a

request, from the testing application, to the end of receiving a response from the

microservice (see Figure 2). To enrich the testing, the behaviour of the application has

been emulated under different conditions, via setting different options (varying among

tests). These parameters include: type of tested service method; number of sent requests

per time unit; use of data encryption (TLS protocol). For the tests, two microservices,

implemented as web services, based on the .NET platform were prepared. The first one

is a standard REST application, using data exchange (in JSON format). The second

application is a service implementing the gRPC framework, using data transport in a

binary form. In each application, a set of methods was created. Once started,

implemented methods return data in response to incoming requests. When building the

application, care was taken to ensure the diversity of supported data. As a result of

method calls, primitive data types, arrays, objects, or file data could be received. All

requests have REST and gRPC counterparts. This means that methods, tested in a given

scenario, have identical input data structure and return the same responses. The following

communication tasks were used in the tests:

 Text cloning – takes as parameter any character string and a number that

indicates how many times the provided string should be cloned in the response.

Returns a cloned character string, depending on the given parameters. The size

of the listed data is proportional to the input value.

 Get integer – parameterless method that returns the number 2147483647, which

is the maximum number in the range of the Int32 type in the .NET libraries. The

number of data exchanged during the request is small.

 Getting an array of consecutive integers – contains one parameter, which is the

number of elements of the returned array. It has a significant impact on the size

of the information sent in the request.

 Fetch text file – a parameterless method that returns a binary string representing

a text file of size equal to 455 KB. The file data is returned as a bit array.

 Download PDF file – a parameter-free method that returns a binary string

representing a PDF file, of size equal to 3.4 MB. This request exchanges

relatively large amount of information. Data is transferred as a bit array.

For the sake of uniformity, each test performs a fixed number of requests to the

application over the course of five minutes, allowing for easy comparison of results from

several scenarios. The performance testing of the services will be analysed for operations

using information encryption – the TLS protocol. Each test scenario will contain two

time runs, the first without the use of encryption (HTTP requests) and the second with

its use (HTTPS requests). It is also worth mentioning that the tested applications do not

use a database – the mechanism responsible for the returned responses was implemented

inside the libraries. In standard (web-based) applications, access to the database usually

accounts for a large part of the service response time. However, for communication

performance analysis purpose this seems unnecessary, as both scenarios (REST and

gRPC) have been designed without this element, removing any potential bias element

related to database read/write operations. Additionally, the response time of identical

queries to the database considerably varies between requests. However, this study

focuses on analyzing the behavior of the data transport layer only. Therefore, lack of

database, and other external factors, was an explicit decision aimed at minimizing the

risk of a their non—negligible impact on the timing results.

3. Experimental results

In this section, we present results of the tests conducted for individual services under the

assumption of a low load of requests. Specifically, it was assumed that, for this

configuration, in each scenario, the service will send requests at the rate of one request

per second (i.e. three hundred requests in five minutes, see above). Both the “without

encryption” and “with encryption” variants have been tried.

a. b.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Figure 3. Service response times for test Scenario I: a. without encryption; b. with encryption

The first test, Scenario I, focuses on comparing the response times generated by the

services method, cloning text with low data overhead. The text "Hello World!" was

passed as a parameter in the form of a string of characters. The service returned an

identical string as a response. The response times are shown in Figures 3a and 3b. There

are discrete spikes in the values, which could have been caused by various factors, such

as the way tasks are queued in the operating system, or the availability of computing

power. For the first graph, the median response times was 4 ms for REST applications

and 8 ms for gRPC. Additionally, all requests sent to the REST applications were handled

faster, compared to the requests sent to the gRPC applications. The situation is slightly

different for the test with data encryption (3b). In this case, the medians are very similar,

i.e. 22 ms and 21 ms for the REST and the gRPC services, respectively. The values

obtained were higher and had slightly more fluctuations, especially in the initial phase

of the test. In contrast to the previous test variant, the gRPC service obtained results

similar to the REST.

a. b.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Figure 4. Service response times for test Scenario II: a. without encryption; b. with encryption

In the next test, Scenario II, the same method was used, but it was parameterized in such

a way that the received response has a larger size. One paragraph of the popular typeface

presentation text "Lorem ipsum..." was sent as a parameter. Its length is 615 characters.

To further increase the amount of information returned, a second parameter (number)

was used to make the service clone the received text 1000 times and submit it as a

response. Graphs showing the response rates of the services are presented in Figure 4. In

both cases, the advantage of the REST service is evident, both for the case without data

encryption (4a) and with its application (4b). In the first configuration, the median

response time of the REST service was 57 ms, while it was 68 ms for the gRPC service.

The configuration using HTTPS presents median results with values of 76 ms and 82 ms

– for the REST and the gRPC applications, respectively. The speed advantage for REST

was slightly offset in the second variant of the test, but it was still evident.

a. b.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Figure 5 Service response times for test Scenario III: a. without encryption; b. with encryption

For the next test (Scenario III), the methods that return integer value 2147483647 was

used. This parameterless method generates answers with very low data overhead. The

results are shown in Figures 5a and 5b. Here, it can be seen that the response times of

both applications are very small. This is mainly due to the size of the data that had to be

returned to the requester. Regarding the response times, in the first configuration, the

median was 3 ms for the REST service and 7 ms for the gRPC service. For the data

encryption, it was 22 ms for the REST and 21 ms for the gRPC. Thus, with requests of

this type, REST performed better in the scheme without data encryption, while using

HTTPS allowed gRPC to gain an almost imperceptible advantage in response speed.

a. b.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Figure 6. Service response times for test Scenario IV: a. without encryption; b. with encryption

The next test, Scenario IV, involves sending requests to a method that returns a sequence

of numbers from 0 to 10,000 in the form of an array. Compared to the previous case, the

amount of data returned is significantly larger. The results are presented in Figures 6a

and 6b. In the test scenario in the transmission without data encryption, once again, the

response times of the REST service were faster with a median of 8 ms. Meanwhile, the

gRPC application completed requests with a median value of 12 ms. When using the

service versions in conjunction with HTTPS, the median time was 27 ms and 25 ms for

the REST and the gRPC, respectively, indicating a minimal advantage for the framework

using binary information transfer.

a. b.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Figure 7. Service response times for test Scenario V: a. without encryption; b. with encryption

Microservices, in most cases, use representation of information in the form of objects.

The next test (Scenario V) analyzes the process of retrieving data with such a structure.

It uses a method that returns sample data of small size. The results are shown in Figures

7a and 7b. The medians of the results received for the first graph were 3 ms for the REST

service and 8 ms for the gRPC service. When data encryption was used, the median

response times of the REST application were 22 ms, while for the gRPC application the

median was 1 ms less. Note that in the second configuration, the gRPC framework

showed more fluctuation in request response times, especially in the initial phase of the

test. Similar to the previous test scenarios, the difference in service response speed is

bridged in the case of HTTPS.

The next test, Scenario VI, was conducted to examine the behavior of both server-side

services (REST- and gRPC-based) when sending small-sized files to the client. A method

that returns a text file in response was used. The test results are shown in Figures 8a and

8b. In this test scenario, it was the first time that the gRPC service showed an advantage

in both configurations. Requests without data encryption generated results with a median

of 57 ms for the REST application and 53 ms for the gRPC. The advantage was even

more pronounced when using HTTPS, where the medians took values of 75 ms for the

REST and 66 ms for the gRPC framework. This result may be related to the fact that the

gRPC service does not need to convert the bitstream of the file, sending it to the client in

the same form. The REST application interface bases its operation on the transport of

information in the text form (JSON), forcing an additional conversion.

a.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

b.

Figure 8. Service response times for test Scenario VI: a. without encryption; b. with encryption

The next test, Scenario VII, was similar to the previous test (Scenario VII) and examined

the performance of the services when sending a (slightly larger) file. For this purpose, a

method was used that returns a sample PDF file. Application response times are

presented in Figures 9a and 9b.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

a. b.

Figure 9. Service response times for test Scenario VII: a. without encryption; b. with encryption

Use of the gRPC service in transferring a file of significant size also shows better

performance compared to the REST. In the test presented in Figure 9a, the median value

obtained was 416 ms for the application with the REST interface, while it was only 361

ms for the application based on the gRPC framework. The data encryption, presented in

Figure 9b, shows median values of 473 ms and 370 ms for the REST and the gRPC,

services, respectively. In both cases, the difference in the received response times is

significant. This provides clear indication of the advantage of data transfers using the

gRPC framework when dealing with larger binary-formatted files.

The architecture of the Ixia Novus One Plus traffic generator and the IxLoad application

minimizes the latency contributed by the operating system, within which the client

sending the requests resides. This software/hardware measurement system (which uses

FPGAs), does not currently support tests for the gRPC technology. Validation tests are

therefore limited to the REST technology. However, this approach will allow us to verify

that fully software-based measurements (using JMeter) are affected by significant

measurement errors (latency contributed by the measurement application itself). In other

words, the tests conducted in this scenario were set up to determine whether the software-

based latency measurement architecture, used in Scenarios I through VII had any

significant impact on the results. In this Scenario VIII, which is a mapping of Scenario

VI, response times during text file retrieval were studied. The times were generated only

for the REST service. The results of the test are shown in Figures 10a and 10b.

a. b.

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Se
rv

ic
e

re
sp

o
ns

e
ti

m
e

[m
s]

Figure 9. Service response times for test Scenario VIII: a. without encryption; b. with encryption

The median REST application response time, measured using IxLoad, was 69.2 ms for

the configuration without data encryption, while it was 74.82 ms when using encryption.

These results are reasonably close to the results obtained in the Scenario VI. This

demonstrates the reliability of reported results. It should be stressed that similar results

were obtained for the other six scenarios. It is also noteworthy that the graphs obtained

using IxLoad, do not have discrete value spikes, which appeared in the tests performed

using the JMeter toolset.

3.1. Additional analysis of results

Further analysis of the obtained results allows development of criteria for the selection

of a given communication technology in the context of the implemented communication

tasks in distributed message-driven ecosystems. The resulting list of criteria, and results

of their application, is presented in Table 1. Based on the analysis of the individual

scenarios, the table indicates the areas, in which a given technology (REST or gRPC) is

characterized by better communication efficiency. In the case of similar results in a given

area, both technologies were indicated as suitable for use by microservices.

Table 1. Evaluation of REST and gRPC technologies in terms of their exploitation areas

Area examined
No encryption With encryption

REST gRPC REST gRPC

Transmission of text data (Scenario I, Scenario II) × × ×

Transmission of numerical data (Scenario III) × ×

Transmission of numerical data – large data size (Scenario IV) × × ×

Transmission of structured data in the form of tables and

objects (Scenario V)
× × ×

File transfer - small-sized (Scenario VI) × × ×

File transfer - large-sized (Scenario VII) × ×

The selection criteria shown in Table 1 can be used to choose the optimal operating

conditions for both technologies with respect to given communication tasks and their

implementation in .NET. The REST based interface can be used for most standard

servers that transfer simple data of relatively small size, which is retrieved according to

the current needs of the client. The legitimacy of the REST applications is also valid for

the textual data, e.g.: a service, returning to the browser client a ready-made HTML page

structure, or data in an XML format. The use of the gRPC interface is justified in specific

applications, e.g. in systems that periodically, or continuously, transfer large (and very

large) files. Another application, where the use of the gRPC is worth considering, is in

systems where a high volume of data is “non-stop” exchanged between microservices.

Performed experiment has also have shown that when using data encryption, in standard

applications, the gRPC framework gains a slight advantage over the REST, in terms of

communication performance.

It should be stressed that, in the case of the need for continuous information exchange,

when the number of messages transmitted between applications is very large, even small

differences in the latency of individual exchanges can have very large impact on the

performance of the distributed system as a whole. Such situation may occur relatively

often in applications with microservices architecture and in large distributed IoT

ecosystems. For this reason, the proper selection of inter-node communication

technology methods can be very important.

4. Concluding remarks

The contribution analyses the performance of communication tasks realized using the

two most popular technologies of message exchange in applications built on the basis of

microservices, i.e. REST API and gRPC. At the initial stage of research, core

communication tasks, encountered in applications built for research and commercial

purposes were selected. For each such operation, performance tests, comparing the

execution times of communication tasks were performed. On this basis, a set of initial

recommendations has been developed, which can be used when building applications

with a highly distributed architecture with heterogeneous inter-node query structure. This

approach seems to be appropriate both in the case of IoT, and for Industry 4.0

applications. Departure from the homogeneous (realized exclusively by a single

standard) structure of message handling, in a given application, may significantly reduce

the overall delay in the responsiveness of the system as a whole, especially whenever the

number of messages exchanged between applications is expected to be large.

In further work, additional technologies will be evaluated such as: GraphQL, OData,

WSDL, and the set of partial communication tasks will be extended. In addition, others

works may replicate this experiment with different stacks (not .NET services, other

testing tools, varying message loads). This should allow extending the set of

recommendations and, eventually, they may result in the development of an expert

system that supports the design decision-making process during the development of

application architecture.

Acknowledgements: This project is financed by the Minister of Education and Science

of the Republic of Poland within the “Regional Initiative of Excellence” program for

years 2019–2022. Project number 027/RID/2018/19, amount granted 11 999 900 PLN.

To carry out the research and to verify obtained results, the "Stand for research on

phenomena in the environment of the Internet of Everything" was used, located in the

Department of Complex Systems of the Rzeszow University of Technology [26].

Work of Maria GANZHA, Marcin PAPRZYCKI, Ignacio LACALLE, and Carlos

E. PALAU, was completed within the scope of the ASSIST-IoT project that has received

funding from the European Union's Horizon 2020 research and innovation program

under grant agreement 957258.

References

[1] Indrasiri K, Siriwardena P. Microservices for the Enterprise: Designing, Developing, and Deploying.

Berkeley, CA: Apress; 2018.

[2] Pontarolli RP, Bigheti JA, Fernandes MM, et al. Microservice Orchestration for Process Control in

Industry 4.0. 2020 IEEE International Workshop on Metrology for Industry 40 & IoT. Roma, Italy: IEEE;
2020. p. 245–249.

[3] Bădică A, Bădică C, Bolanowski M, et al. Cascaded Anomaly Detection with Coarse Sampling in

Distributed Systems. In: Sachdeva S, Watanobe Y, Bhalla S, editors. Big-Data-Analytics in Astronomy,
Science, and Engineering. Cham: Springer International Publishing; 2022. p. 181–200.

[4] Paszkiewicz A, Bolanowski M, Ćwikła C, et al. Network Load Balancing for Edge-Cloud Continuum

Ecosystems. In: Mekhilef S, Shaw RN, Siano P, editors. Innovations in Electrical and Electronic
Engineering [Internet]. Singapore: Springer Singapore; 2022. p. 638–651.

[5] Hubl M, Skowron P, Aleithe M. Towards a Supportive City with Smart Urban Objects in the Internet of

Things: The Case of Adaptive Park Bench and Adaptive Light. ACSIS, Vol. 16, 2018. p. 51–58.
http://dx.doi.org/10.15439/2018F118.

[6] https://trends.google.com/.

[7] Vadlamani SL, Emdon B, Arts J, et al. Can GraphQL Replace REST? A Study of Their Efficiency and
Viability. 2021 IEEE/ACM 8th International Workshop on Software Engineering Research and Industrial

Practice (SER&IP). Madrid, Spain: IEEE; 2021. p. 10–17.

[8] REST API (Introduction), https://www.geeksforgeeks.org/rest-api-introduction/.
[9] A brief look at the evolution of interface protocols leading to modern APIs, SOA4U Tech Magazine,

https://www.soa4u.co.uk/2019/02/a-brief-look-at-evolution-of-interface.html.

[10] https://grpc.io/.
[11] Indrasiri K, Kuruppu D. gRPC: up and running: building cloud native applications with Go and Java for

Docker and Kubernetes. " O'Reilly Media, Inc."; 2020 Jan 23.

[12] Cloud Native Computing Foundation, https://www.cncf.io/projects/grpc/
[13] .NET documentation, https://docs.microsoft.com/en-us/dotnet/

[14] Chamas CL, Cordeiro D, Eler MM. Comparing REST, SOAP, Socket and gRPC in computation

offloading of mobile applications: An energy cost analysis. 2017 IEEE 9th Latin-American Conference
on Communications (LATINCOM). Guatemala City: IEEE; 2017. p. 1–6.

[15] Araújo M, Maia M, Rego P, Souza J. Performance analysis of computational offloading on embedded

platforms using the gRPC framework. 8th International Workshop on ADVANCEs in ICT Infrastructures
and Services (ADVANCE 2020), Candy E. Sansores, Universidad del Caribe, Mexico, Nazim

Agoulmine, IBISC Lab, University of Evry - Paris-Saclay University, Jan 2020, Cancún, Mexico. pp.1–
8.

[16] Cao D. Mobile Benchmarks. 2016, https://grpc.io/blog/mobile-benchmarks/

[17] Kumar PK, Agarwal R, Shivaprasad R, et al. Performance Characterization of Communication Protocols
in Microservice Applications. 2021 International Conference on Smart Applications, Communications

and Networking (SmartNets). Glasgow, United Kingdom: IEEE; 2021. p. 1–5.

[18] Hamilton T. Performance Testing Tutorial: What is, Types, Metrics & Example. 2020.
https://www.guru99.com/performance-testing.html

[19] Kao CH, Lin CC, Chen JN. Performance testing framework for rest-based web applications. In2013 13th

International Conference on Quality Software 2013 Jul 29 (pp. 349-354). IEEE.
[20] Molyneaux I. The art of application performance testing: from strategy to tools. " O'Reilly Media, Inc.";

2014 Dec 15.

[21] Wang J, Wu J. Research on Performance Automation Testing Technology Based on JMeter. 2019
International Conference on Robots & Intelligent System (ICRIS). Haikou, China: IEEE; 2019. p. 55–

58.

[22] Apache JMeter, https://jmeter.apache.org/
[23] Matam S, Jain J. Pro Apache JMeter. Berkeley, CA: Apress; 2017.

[24] https://www.keysight.com/zz/en/products/network-test/protocol-load-test/ixload.html.

[25] https://www.keysight.com/zz/en/products/network-test/network-test-hardware/network-emulator-
ii.html.

[26] https://zsz.prz.edu.pl/stanowisko-badawcze-ioe/o-stanowisku-badawczym.

