

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D5.3 Transversal Enablers Development

Intermediate Version
Deliverable No. D5.3 Due Date 30-APR-2022

Type Other Dissemination Level Public

Version 1.0 WP WP5

Description Core specification and implementation status of vertical enablers developed in

ASSIST-IoT.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 3 of 60

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 4 of 60

Authors
Name Partner e-mail

Alejandro Fornés P01 UPV alforlea@upv.es

Raúl Reinosa P01 UPV rreisim@upv.es

Rafael Vaño P01 UPV ravagar2@upv.es

Eduardo Garro P02 PRO egarro@prodevelop.es

Miguel Llacer Sanfernando P02 PRO mllacer@prodevelop.es

Ernesto Calas Blasco P02 PRO ecalas@prodevelop.es

Jose Antonio Clemente Perez P02 PRO jclemente@prodevelop.es

Katarzyna Wasielewska-Michniewska P03 IBSPAN katarzyna.wasielewska@ibspan.waw.pl

Piotr Lewandowski P03 IBSPAN piotr.lewandowski@ibspan.waw.pl

Maria Ganzha P03 IBSPAN Maria.ganzha@ibspan.waw.pl

Marcin Paprzycki P03 IBSPAN marcin.paprzycki@ibspan.waw.pl

Karolina Bogacka P03 IBSPAN k.bogacka@ibspan.waw.pl

Georgios Stavropoulos P04 CERTH stavrop@iti.gr

Anastasia Blitsi P04 CERTH akblitsi@iti.gr

Evripidis Tzonas P04 CERTH tzionasev@iti.gr

Iordanis Papoutsoglou P04 CERTH ipapoutsoglou@iti.gr

Anastasia Theodouli P04 CERTH anastath@iti.gr

Ron Schram P09 NEWAYS Ron.Schram@newayselectronics.com

Alex van den Heuvel P09 NEWAYS alex.van.den.heuvel@newayselectronics.com

Oscar López Pérez P13 S21 SEC olopez@s21sec.com

Jordi Blasi P13 S21 SEC jblasi@s21sec.com

Josue Moret Ruiz P13 S21 SEC jmoret@s21sec.com

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 5 of 60

History
Date Version Change

24-Dec-2021 0.1 Table of content

14-Mar-2022 0.2 First round of contributions completed

11-Apr-2022 0.3 Second round of contributions completed. Ready for internal review

28-Apr-2022 0.4 Integration of changes from internal review

30-Apr-2022 1.0 Final version submitted to EC

Key Data
Keywords Enablers, verticals, self-*, interoperability, manageability, scalability, federated

learning, DLT

Lead Editor Evripidis Tzionas (P04 – CERTH)

Internal Reviewer(s) Alex van den Heuvel (P09 - NEWAYS), Nick Vrionis (P06 - INFOLYSIS),

Alejandro Fornés (P01 – UPV)

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 6 of 60

Executive Summary
This deliverable is written in the framework of WP5 – Transversal enablers design and development of ASSIST-

IoT project under Grant Agreement No. 957258. The document gathers the work and outcomes of the five tasks

of the work package, which are devoted to the design and implementation of enablers required to implement

the different verticals of the ASSIST-IoT architecture. Tasks 5.1-5.4 started in M4 whereas Task 5.5 started in

M9, so respective results presented have different levels of advancement.

The realisation of the ASSIST-IoT architecture requires the design and development of specific elements, both

software and hardware, that support the vertical capabilities of ASSIST-IoT: these are Self-*, Scalability,

Interoperability, Manageability, and Security, Privacy and Trust. Being the second version of a series of three

deliverables, D5.3 updates and extends the specifications presented in the previous deliverable, accompanied

by the software artifacts (i.e., enablers) developed so far. In particular, this deliverable provides the necessary

updated technical information about the design, implementation (structure and functionalities, technologies,

diagrams of use cases, communication endpoints) and ongoing development status of WP5 enablers, jointly

with the (software) outcomes developed so far. The concepts presented here are a continuation of work

summarised in D5.2 - Transversal Enablers Development Preliminary Version (submitted in M12).

Enablers are the main output of the tasks in WP5. An enabler represents a collection of components, running on

hardware nodes, that communicate with each other for delivering a particular functionality to the system.

Enablers can only be interacted with via their exposed interfaces. A total of 21 enablers have been identified

and formalised, with different degrees of development:

• From Self-*: Self-healing device enabler, Resource provisioning enabler, Monitoring and notifying

enabler, Location tracking enabler, Location processing enabler, Automated configuration enabler.

• From Federated Machine Learning: FL Orchestrator, FL Training Collector, FL Repository, FL Local

Operations.

• From Cybersecurity: Cybersecurity monitoring enabler, Cybersecurity monitoring agent enabler,

Identity manager enabler, Authorization enabler.

• From DLT: Logging and auditing enabler, Data integrity verification enabler, Distributed broker

enabler, DLT-based FL enabler.

• From Manageability: Enabler for registration and status of enablers, Enabler for management of services

and enablers’ workflow, Devices management enablers.

Being the second of a series of three iterations, the software products and the information provided in this

deliverable is still susceptible to change, because of the addition of new (or yet not implemented) features.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 7 of 60

Table of contents

Table of contents ... 7

List of figures .. 8

List of tables .. 9

List of acronyms .. 10

1. About this document .. 12

1.1. Deliverable context .. 12

1.2. The rationale behind the structure .. 13

1.3. Outcomes of the deliverable... 13

1.4. Lessons Learnt ... 13

1.5. Deviation and corrective actions .. 14

2. Introduction ... 15

3. Vertical enablers update and implementation status ... 16

3.1. Self-* enablers .. 16

3.1.1. Self-healing Device enabler ... 16

3.1.2. Resource Provisioning enabler .. 18

3.1.3. Monitoring and Notifying enabler ... 23

3.1.4. Location Tracking enabler ... 25

3.1.5. Location Processing enabler .. 26

3.1.6. Automated Configuration enabler ... 29

3.2. Federated machine learning enablers ... 30

3.2.1. FL Orchestrator .. 30

3.2.2. FL Training Collector .. 34

3.2.3. FL Repository .. 36

3.2.4. FL Local Operations .. 38

3.3. Cybersecurity enablers ... 39

3.3.1. Cybersecurity Monitoring enabler ... 39

3.3.2. Cybersecurity Monitoring Agent enabler .. 42

3.3.3. Identity manager enabler ... 44

3.3.4. Authorization enabler .. 46

3.4. DLT-based enablers ... 48

3.4.1. Logging and Auditing enabler ... 48

3.4.2. Data Integrity Verification enabler .. 49

3.4.3. Distributed Broker enabler ... 50

3.4.4. DLT-based FL enabler ... 51

3.5. Manageability ... 52

3.5.1. Enabler for Registration and Status of enablers ... 52

3.5.2. Enabler for Management of Services and Enablers’ Workflow .. 56

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 8 of 60

3.5.3. Devices Management enabler .. 57

4. Future Work .. 60

List of figures

Figure 1. WP5 enablers distribution among verticals .. 15
Figure 2. Self-healing Device enabler structure .. 16
Figure 3. Self-healing Device enabler UC1 (CPU/RAM usage monitoring and threshold update) 17
Figure 4. Self-healing Device enabler UC2 (RAM usage monitoring and threshold update) 17
Figure 5. Resource Provisioning enabler structure .. 18
Figure 6. Resource Provisioning enabler UC1 (get active enablers and components) 20
Figure 7. Resource Provisioning enabler UC2 (perform training) .. 20
Figure 8. Resource Provisioning enabler UC3 (get interval range for training) .. 21
Figure 9. Resource Provisioning enabler UC4 (update data interval for training) .. 21
Figure 10. Resource Provisioning enabler UC5 (perform inference) .. 22
Figure 11. Resource Provisioning enabler UC6 (select enablers to manage) .. 22
Figure 12. Monitoring and Notifying enabler UC2 (device entering restricted zone) 24
Figure 13. Monitoring and Notifying enabler UC3 (querying vehicle conditions) ... 24
Figure 14. Location Tracking enabler structure .. 25
Figure 15. Location Processing enabler UC1 (define an area) .. 27
Figure 16. Location Processing enabler UC2 (update an area) ... 28
Figure 17. Location Processing enabler UC3 (check location). .. 28
Figure 18. FL Orchestrator enabler structure. ... 30
Figure 19. FL Orchestrator UC1 (user configures FL training) .. 32
Figure 20. Mock-up FL System Web App (under development) .. 32
Figure 21. FL Orchestrator UC2 (initial setup of FL architecture) ... 32
Figure 22. FL Orchestrator UC3 (lifecycle management of FL Training Collector – Option A: happy path) .. 33
Figure 23. FL Orchestrator UC3 (lifecycle management of FL Training Collector – Option B: FL local

operations below minimum) .. 33
Figure 24. FL Training Collector UC2 (local results aggregation) ... 35
Figure 25.Cybersecurity Monitoring enabler high level structure ... 39
Figure 26. Cybersecurity Monitoring enabler UC (cyberthreats protection) ... 41
Figure 27. Cybersecurity Monitoring Agent enabler structure .. 42
Figure 28. Cybersecurity Monitoring Agent enabler UC (send collected data and actuate) 43
Figure 29. Identity Manager enabler structure .. 44
Figure 30. Identity manager enabler UCs (add user, authenticate user) .. 45
Figure 31. Authorization enabler structure .. 46
Figure 32. Authorization enabler UC (authorization flow) ... 47
Figure 33. Enabler for registration and status of enablers structure .. 52
Figure 34. Enabler for Registration and Status of enablers UC1 (show deployed enablers) 53
Figure 35. Enabler for Registration and Status of enablers UC2 (deploy an enabler) 53
Figure 36. Enabler for Registration and Status of enablers UC3 (terminate an enabler) 54
Figure 37. Enabler for Registration and Status of enablers UC4 (delete an enabler) .. 54
Figure 38. Enabler for Registration and Status of enablers UC5 (show enabler logs) 55
Figure 39. Enabler for the Management of Services and Enablers’ Workflow structure 56
Figure 40. Devices Management enabler structure ... 57
Figure 41. Devices Management enabler UC1 (show registered clusters) .. 58
Figure 42. Devices Management enabler UC2 (register cluster) .. 58
Figure 43. Devices Management enabler UC3 (delete cluster) ... 59

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 9 of 60

List of tables

Table 1. Implementation technologies for the Self-healing Device enabler .. 16
Table 2. Communication interfaces (API) of the Self-healing Device enabler ... 16
Table 3. Implementation status of the Self-healing Device enabler .. 18
Table 4. Implementation technologies for the Resource Provisioning enabler ... 19
Table 5. Communication interfaces (API) of the Resource Provisioning enabler ... 19
Table 6. Implementation status of the Resource Provisioning enabler ... 22
Table 7. Implementation technologies for the Monitoring and Notifying enabler .. 23
Table 8. Communication interfaces (API) of the Monitoring and Notifying enabler 23
Table 9. Implementation status of the Monitoring and Notifying enabler .. 25
Table 10. Implementation status of the Location Tracking enabler .. 26
Table 11. Implementation technologies for the Location Processing enabler ... 27
Table 12. Communication interfaces (API) of the Location Processing enabler .. 27
Table 13. Implementation status of the Location Processing enabler ... 29
Table 14. Implementation status of the Automated Configuration enabler ... 30
Table 15. Implementation technologies for the FL Orchestrator enabler .. 31
Table 16. Communication interfaces (API) of the FL Orchestrator enabler ... 31
Table 17. Implementation status of the FL Orchestrator ... 34
Table 18. Implementation technologies for the FL Training Collector ... 34
Table 19. Communication interfaces (API) of the FL Training Collector .. 35
Table 20. Implementation status of the FL Training Collector ... 36
Table 21. Implementation technologies for the FL Repository ... 36
Table 22. Communication interfaces (API) of the FL Repository .. 36
Table 23. Implementation status of the FL Repository ... 37
Table 24. Implementation technologies for the FL Local Operations ... 38
Table 25. Communication interfaces (API) of the FL Local Operations .. 38
Table 26. Implementation status of the FL Local Operations ... 39
Table 27. Implementation technologies for the Cybersecurity Monitoring enabler .. 40
Table 28. Communication interfaces (API) of the Cybersecurity Monitoring enabler 40
Table 29. Implementation status of the Cybersecurity Monitoring enabler .. 42
Table 30. Implementation technologies for the Cybersecurity Monitoring Agent enabler 42
Table 31. Communication interface (TCP/UDP) of the Cybersecurity Monitoring Agent enabler 43
Table 32. Implementation status of the Cybersecurity Monitoring Agent enabler ... 43
Table 33. Implementation technologies for the Identity Manager enabler .. 44
Table 34. Communication interfaces (API) of the Identity Manager enabler ... 45
Table 35. Implementation status of the Identity Manager enabler .. 46
Table 36. Implementation technologies for the Authorization enabler ... 47
Table 37. Communication interfaces (API) of the Authorization enabler ... 47
Table 38. Implementation status of the Authorization enabler .. 48
Table 39. Implementation technologies for the Logging and Auditing enabler .. 48
Table 40. Communication interfaces (API) of the Logging and Auditing enabler ... 48
Table 41. Implementation status of the Logging and Auditing enabler .. 49
Table 42. Implementation technologies for the Data Integrity Verification enabler ... 49
Table 43. Communication interfaces (API) of the Data Integrity Verification enabler 49
Table 44. Implementation status of the Data Integrity Verification enabler ... 50
Table 45. Implementation technologies for the Distributed Broker enabler ... 50
Table 46. Communication interfaces (API) of the Distributed Broker enabler ... 50
Table 47. Implementation status of the Distributed Broker enabler .. 50
Table 48. Implementation technologies for the DLT-based FL enabler.. 51
Table 49. Communication interfaces (API) of the DLT-based FL enabler ... 51
Table 50. Implementation status of the DLT-based FL enabler .. 51
Table 51. Implementation technologies for the Registration and Status of enablers .. 52
Table 52. Communication interfaces (API) of the Registration and Status of enablers 52

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 10 of 60

Table 53. Implementation status of the Registration and Status of enablers ... 55
Table 54. Implementation technologies for the Management of the Services and Enablers’ Workflow structure

 ... 56
Table 55. Communication interfaces (API) of the Services and Enablers’ Workflow structure 56
Table 56. Implementation status of the Services and Enablers’ Workflow structure .. 57
Table 57. Implementation technologies for the Devices Management enabler ... 57
Table 58. Communication interfaces (API) of the Devices Management enabler .. 58
Table 59. Implementation status of the Devices Management enabler ... 59

List of acronyms

Acronym Explanation

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

BSON Binary JSON

CHE Container Handling Equipment

CPU Central Processing Unit

CSV Comma Separated Value

DLT Distributed Ledger Technology

DoS Denial of Service

FAIR Findable, Accessible, Interoperable, Reusable

FML Federated Machine Learning

FL Federated Learning

FLS Federated Learning System

FLTC Federated Learning Training Collector

GPS Global Positioning System

HW Hardware

I/O Input/Output

JSON JavaScript Object Notation

JVM Java Virtual Machine

K8s Kubernetes

LTS Long-Term Storage

LTSE Long-Term Storage Enabler

MANO Management and Orchestration

NGIoT Next Generation Internet of Things

NN Neural Networks

noSQL Not Only Structured Query Language

MITM Man-In-The-Middle

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 11 of 60

ML Machine Learning

MQTT MQ Telemetry Transport

OEM Original Equipment Manufacturer

PAP Policy Administration Point

PCM Powertrain Control Module

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

REST Representational State Transfer

RSSI Received Signal Strength Indicator

RTG Rubber-Tyred Gantry (crane)

SDN Software Defined Network

SoTA State-of-the-Art

SQL Structured Query Language

SMC Secure Multi-Party Computation

SR Semantic Repository

TBD To Be Done/Defined

TRL Technology Readiness Level

TTL/SSL Time To Live/Secure Sockets Layer

UC Use Case

WP Work Package

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 12 of 60

1. About this document

The objective of this deliverable is two-fold: (i) to update the specifications and attach additional

information regarding the vertical enablers designed, and (ii) to provide an updated functional version of

the enablers developed so far. These enablers along with horizontal enablers proposed in WP4, are the

technological backbone of the project, since they will enable the deployment of an ASSIST-IoT architecture.

It should be highlighted that this deliverable corresponds to the second out of three documents, and therefore its

content is a continuation of D5.2 Traversal Enablers Development Preliminary Version. Moreover, it follows

deliverable D5.1 Software Structure and Preliminary Design that was first out of two documents. Therefore, the

content of D5.3 will be expanded and adapted as the project evolves. This is motivated by different reasons,

including the fact that both the requirements and the architecture produced by the work of WP3 are still evolving

(and therefore new enablers or modifications in the current ones may be needed), and as a result the interactions

between enablers from WP4 and WP5 may require adapting them (in the form of new interfaces, methods,

components, etc.).

1.1. Deliverable context

Keywords Lead Editor

Objectives O3: Definition and implementation of decentralised security and privacy exploiting DLT:

Specification of DLT-based enablers in Security, Privacy and Trust vertical.

O4: Definition and implementation of smart distributed AI Enablers: Specification of

Federated Machine Learning related enablers.

Other: Availability of preliminary software artifacts, specifically essential enablers:

• DLT logging and auditing enabler

• Cybersecurity enablers: Identity manager enabler, Authorization enabler

• Manageability enablers

Work plan D5.3 takes input from:

• T3.1 (state-of-the-art): Novel components and technologies research for further

design choices

• T3.2 & T3.3 (use cases and requirements): To be evaluated and fulfilled with the

proposed enablers

• T3.5 (architecture): Design principles and high-level functionalities to cover

• D5.1 (initial transversal enablers specification): Design of vertical enablers

• D5.2 (transversal enablers development preliminary version): Previous version of

this deliverable

D5.3 influences:

• WP7 (pilots and validation): To later on materialize in pilot deployments

• WP8 (evaluation and assessment): To evaluate and assess results from testing within

pilots

D5.3 must be in line with:

• WP4 (core enablers): To define functional boundaries and interactions

• WP6 (testing, integration and support): To develop, test and deploy according to

DevSecOps methodology

Milestones This deliverable contributes to the realisation of MS3 – Enablers defined, that was achieved

M12. Although far in time (M24), it is also central part of MS6 – Software structure finished.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 13 of 60

Deliverables This deliverable receives inputs from D3.1 (State-of-the-art and Market Analysis Report),

D3.2 (Use Cases Manual & Requirements and Business Analysis Initial) and D3.5

(ASSIST-IoT Architecture Definition - Initial), D5.1 (Initial Transversal Enablers

Specification), D5.2 Transversal Enablers Development Preliminary Version. Once

enablers are being delivered, they will feed the deliverables of WP6 related to testing,

integration, distribution, and documentation, they will be the cornerstone of pilots’

implementations of WP7, and they will be a key part in the technical evaluation to be

performed under the scope of WP8.

1.2. The rationale behind the structure

The document consists of four sections and an appendix. The first section is an introduction that outlines the

context of the document. The following section includes specifications of enablers divided into tasks they belong

to. Each enabler description includes: Structure and functionalities, communication interfaces, use cases and

implementation status at M18 of the project. Note that the above information advance and/or compliment

enablers’ definitions from the D5.2. Finally the last section is devoted to the future work remaining to be

completed until the third and final version of the deliverable.

1.3. Outcomes of the deliverable

The main outcome of this deliverable is the documentation of the intermediate development of WP5 enablers.

The work progress of each enabler differs and is summarized in the implementation status subsections. As a

continuation of D5.2, this deliverable consolidates an updated and more concrete outline of each enabler.

The most focus is put on essential enablers (identified in D6.5) that include the following enablers from WP5:

basic security enablers (Identity manager enabler, Authorization enabler), DLT-based Logging and auditing

enabler and manageability enablers. These enablers are not more important or interesting but they are required

to be in place in the first order to facilitate use and configuration of other non-essential enablers. Versions of

enablers might be ready for Kubernetes or just for Docker (to be deployed via Docker Compose). Although

documented more extensively in the Readthedocs documentation related to T6.5, a summary of each enabler

implementation status is given here as well.

The deliverable consists not only of the present document, but also of the software artifacts developed and

implemented so far. The following enablers have a first functional version: Self-healing device enabler,

Resource provisioning enabler,, Monitoring and notifying enabler, Automated configuration enabler, FL

Orchestrator, FL Training Collector, FL Local Operations, Authorization enabler, Identity manager enabler,

Cybersecurity monitoring enabler, Cybersecurity monitoring agent enabler, Logging and auditing enabler,

Management of the enablers existence in a deployment, Management of devices in an ASSIST-IoT deployment.

Included specifications may be modified and/or extended in the last version of this deliverable due to the fact

that the work in WP3, WP4 and WP7 is in progress. During the next months, the missing features of the enablers

will be implemented, and the needed adaptations to work in a Kubernetes environment and interact between

each other will be executed. These outcomes will feed the Work Packages related to integration, deployment

and assessment, i.e., WP6, WP7 & WP8.

1.4. Lessons Learnt

During the past months, the partners of the Consortium have focused their effort in developing the design

specifications of the enablers that will facilitate the realization of the ASSIST-IoT architecture. From all this

work the following insights have been extracted:

• Designing enablers for IoT deployed in K8s clusters is a sensitive task and requires taking into account

how K8s works. Integrating such a multitude of interacting enablers can cause multiple issues,

extending from connections problems to latency loads.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 14 of 60

• Identifying enablers as self-* can be also complex. Autonomous computing, as an uprising technology,

has many arbitrary concepts which sometimes overlap each other. Hence, self-* enablers’ labelling will

be built around their individual functionalities and use cases, differencing from each other.

• Principles of Federated Learning and DLT, as standalone processes, are clear. Integrating them in an

IoT environment is risky and requires great effort to ensure the data protection in parallel with constant

and effective model updates.

• The early realization of the need for manageability enablers is critical, and it will compensate the effort

to develop them in the later stages of the project.

1.5. Deviation and corrective actions

The Consortium formalised in D5.1 and materialised in D5.2 and now D5.3 the envisioned enablers. However,

some deviations have slightly altered the initial plan: (geo)Localization enabler from Self-* vertical has been

split into two enablers – Location tracking enabler and Location processing enabler. The functionalities assigned

to the original enabler have been split so that two new enablers can be used independently. This is justified by

the fact that logically gathering localization data is a separate and independent task from their later processing,

so the initial scope of the geo(Localization) enabler was too broad. Additionally, there can be different sources

of location related data, e.g., UWB-specific, GPS that can be handled by Location processing enabler.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 15 of 60

2. Introduction

As it was stated in D3.5, the ASSIST-IoT architecture is structured following a multidimensional approach

composed of horizontal Planes and Verticals. The planes represent a classification of logical functions that fall

under the scope of a particular domain, whereas verticals target NGIoT properties that exist on different planes,

either independently or requiring cooperation of elements from different planes. Verticals in INTER-IoT

include: interoperability, self-*, security, privacy and trust, manageability, and scalability.

The main building block in ASSIST-IoT architecture is an enabler - an abstraction term that represents a

collection of components, running on nodes, that work together for delivering a particular functionality to the

system. D5.1 focused on providing initial specification of transversal (vertical) enablers that belong to specific

verticals. D5.2 focused on providing the status of development and advancing technical specifications of the

enablers as of M12. D5.3 is a continuation of D5.2, and provides the status of development and

advancing/adjusting technical specifications as of M18. What is specific to WP5 is that enablers, besides being

distributed between verticals, are also designed and implemented within tasks (indicating problem/application

areas) that do not correspond directly to the verticals. The following sections contain descriptions of enablers

following a task division.

Figure 1. WP5 enablers distribution among verticals

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 16 of 60

3. Vertical enablers update and implementation status

3.1. Self-* enablers

3.1.1. Self-healing Device enabler

3.1.1.1. Structure and functionalities

This enabler aims at providing the IoT devices with the capabilities of actively attempting to recover themselves

from abnormal states, based on a pre-established routines schedule. Hence, it should not require high

computation capabilities in order to be deployed on any customizable device.

Figure 2. Self-healing Device enabler structure

As described in D5.2, the self-healing device enabler is divided in three components:

• Self-detector: The goal of this component is to collect information from the IoT device.

• Self-monitor: The Self-monitor component is responsible for assessing the device’s state of health. It

collects and analyses data from multiple sources of information received from the Self-detector, such

as memory usage, memory access, network connection metrics (RSSI levels), or CPU usage, providing

a health score. The health score metrics are fed to a predefined set of rules (or to an anomaly-detection

model) that determines whether the device is in a healthy state or not. The output of this component is

used to determine if the remediation has been successful.

• Self-remediator: When the device presents with symptoms of malfunctioning or intrusion, this

component’s job is to determine from a set of remediation processes, which should be used for a proper

treatment. If after the remediation, the device is not back to its normal state, the component is self-

triggered to select another remediation process from the list.

Implementation technologies

Table 1. Implementation technologies for the Self-healing Device enabler

Technology Justification Component(s)

Node-RED

Is a low-code programming tool for wiring together hardware devices,

APIs and online services. Provides all it is needed to implement self-

healing devices (hardware and software access)

 Self-detector, Self-monitor,

Self-remediator

Unix

commands
Used to access device hardware & software

Self-detector, Self-monitor,

Self-remediator

Javascript
Main language for developing custom functions over all components

of the enabler. Selected for its familiarity

Self-detector, Self-monitor,

Self-remediator

3.1.1.2. Communication interfaces

Table 2. Communication interfaces (API) of the Self-healing Device enabler

Method Endpoint Description

POST /cpuusage?threshold=XX Change the maximum threshold of CPU usage to XX

POST /ramusage?threshold=XX Change the maximum threshold of RAM usage to XX

POST /network?IP=XX
Change the IP address over which the service should ping to check network

availability

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 17 of 60

NOTE: Regarding external APIs for the enabler, the above included endpoints have been already developed,

although new ones are subject to be added in the following releases of the enabler.

3.1.1.3. Use cases

There are two main use cases related to the self-healing device enabler.

• The first one is related to the monitoring of the CPU and RAM usage (which threshold can be configured

by the user via self-healing device enabler API).

Figure 3. Self-healing Device enabler UC1 (CPU/RAM usage monitoring and threshold update)

STEP 1: The user starts a device, installs the self-device enabler, and configures the CPU/RAM usage

thresholds by interacting with the self-monitor via API commands.

STEP 2: Since then, the self-detector and self-monitor have started detecting and monitoring the resources used

in a happy path scenario.

STEP 3: If some of the monitored Process of the Operating System of the device surpasses the threshold, the

self-monitor informs the self-remediator to carry out the proper remediation action (killing process ID

consuming higher CPU/RAM resources).

• The second use case is related to the evaluation of the network interface operation (which accessed IP

address can be configured by the user via self-healing device enabler API).

Figure 4. Self-healing Device enabler UC2 (RAM usage monitoring and threshold update)

STEP 1: The user starts a device, installs the self-device enabler, and configures the IP address over which the

enabler should ping in order to evaluate the network reachability, by interacting with the self-detector via API

commands.

STEP 2: Since then, the self-detector and self-monitor have started detecting and monitoring the network

accessibility in a happy path scenario.

STEP 3: If several ping messages do not receive IP packets appropriately, the self-monitor informs the self-

remediator to carry out the proper remediation action (restarting network device manager).

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 18 of 60

3.1.1.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/self/self_healing_device_enabler.html

Table 3. Implementation status of the Self-healing Device enabler

Category Status

Components implementation All the self-healing device enabler components are implemented.

Feature implementation status

For the time being, CPU usage, RAM usage, and network accessibility are the HW

resources monitored by the enabler. Regarding remediation actions, only the kill

PID (for the CPU, RAM usage monitoring), and restarting of the device’s network

manager are supported. In next releases, additional metrics (e.g., storage status,

battery status), more advanced monitoring options (i.e., smarter ML-based

solutions), and other remediation rules (e.g., isolate the device, shut down network

ports, or reboot) will be included.

Encapsulation readiness

After several failure tests (the functionalities of the enabler were not reaching the

host OS environment if it was encapsulated), the self-healing device enabler has

been successfully containerized and tested by adding admin privileges to the

Docker version. However, its implementation in a Helm chart, as well as the testing

in a K8s cluster is still pending.

Deployed with the Orchestrator

in a laboratory environment

Not yet, the self-healing device enabler has been tested only over HW emulators

(i.e., not tested over actual HW edge devices), without involving additional

enablers (including orchestrator).

3.1.2. Resource Provisioning enabler

3.1.2.1. Structure and functionalities

Working on edge deployments, where resources are not as large as in the cloud, it is unfeasible to set a static

resource projection to each node. This is due to the difference in the use of these resources depending on the

workload at the time the task is performed, being dependent on several factors. This enabler aims to adapt the

auto-scaling of nodes and clusters more dynamically, achieving optimal use in relation to resource utilization

and general operation. The updated diagram of the component is given in Figure 5. It is composed by 4 main

components and 2 supporting databases:

Figure 5. Resource Provisioning enabler structure

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/self_healing_device_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/self_healing_device_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 19 of 60

Some of its characteristics are:

• Ensuring high QoS and availability of key, selected enablers, considering the current state of the system.

• Monitoring and obtaining historical trends of these enablers, to preventively act upon its scaling

requirements (thresholds of resources/usage to instantiate replicas).

• Application of ML techniques and intelligent services to train an optimal data model to predict future

behaviour based on historical trends.

• Ability to control several deployments in a cluster independently and selection of minimum, maximum

resources and average utilization of each deployment.

Implementation technologies

Table 4. Implementation technologies for the Resource Provisioning enabler

Technology Justification Component(s)

Python
Main language for developing custom functions over all components of

the enabler. Selected for its familiarity and facility of implementation.

All components

except databases

Flask

All the components except the databases will be developed considering

Flask as the main technology due to its ease of construction and

communication between the other components and the outside in the case

of the API.

All components

except databases

PyTorch

Main library for building inferences. Optimal for machine learning and

deep learning technologies. Compatible with the development of

applications in python.
Training module

Neural Prophet

Neural Network based Time-Series model, inspired by Facebook

Prophet and AR-Net, built on PyTorch. Used for resource usage inference.

We are familiar with management and implementation and it is efficient.
Training module

MySQL

Ease of creating strict relationships between enablers, labels and data. By

using large volumes of data, management and functionality is more

efficient.

Historic Data

Predicted data

Docker images All components are built as custom Docker images. All components

Kubernetes

resources

The main tool on which the general operation of this enabler is based. It

contains services to interconnect pods (containers), deployments to

establish the initial configuration of each pod and implements the

horizontal pod autoscaler that allows an improved operation based on the

need for resources requested at each moment.

All components

3.1.2.2. Communication interfaces

Table 5. Communication interfaces (API) of the Resource Provisioning enabler

Method Endpoint Description

GET /enablers
Returns a JSON object showing all enablers with their respective

active components in the host cluster.

POST /train

Train the active models of all components stored in the historical

database. Adds the predicted data to the future database and acts

on the times set by train-values. This call is also automatic.

GET /train-values
Returns a JSON object containing the values that determine the

historical days of the data and the prediction days of the data.

POST /train-values
A JSON object is added to modify historical and predictive data

values.

GET /inference/<enabler>/<component>

Updates the horizontal pod autoscaler horizontals of the desired

components. The data stored in the future database is used. This

call is also automatic.

POST /inference/<enabler>/<component>
A JSON object is added to update enablers and component to

guarantee high levels of QoS.

https://github.com/facebook/prophet
https://github.com/facebook/prophet
https://github.com/ourownstory/AR-Net

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 20 of 60

3.1.2.3. Use cases

There are six main use cases that apply in this enabler. The first use case is related to get information about

the enablers and their components active on the host cluster. The diagram and involved steps are the

following:

Figure 6. Resource Provisioning enabler UC1 (get active enablers and components)

STEP 1: The user interacts through the enabler API, via GET request, to get the enablers and their components

active and correctly configured in the Kubernetes cluster.

STEP 2: The enabler receives the command through its component API and makes a request to the Kubernetes

cluster to list the enablers and components.

STEP 3: The corresponding data is returned in JSON format.

The second use case is related to an administrator user instructing the enabler to perform a new data training

(deep learning). This use case is useful if the default values are changed. It should be noticed that the system

will automatically start this process on a periodic basis. The diagram and related steps are the following:

Figure 7. Resource Provisioning enabler UC2 (perform training)

STEP 1: The user interacts through the enabler's API, via a POST request, to instruct the enabler to train the

models with the new data.

STEP 2: The enabler receives the command through its component API and redirects the request to the Train

Module component.

STEP 3: The train module component collects the necessary data from the history database.

STEP 4: The history database returns the raw data.

STEP 5: The train module component adapts the data and performs the training.

STEP 6: Once the training is done, it adapts the data and saves the results in the future database.

STEP 7: The train module component returns the execution status to the enabler API.

STEP 8: The enabler API component returns the result of the operation.

The third use case is related to an administrator user who gets the range of historical and future data

prediction behaviour (in days). The response from the enabler is in JSON format. The diagram is following:

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 21 of 60

Figure 8. Resource Provisioning enabler UC3 (get interval range for training)

STEP 1: The user interacts through the enabler API, sends a GET request to know the intervals with which the

train module component acts.

STEP 2: The enabler receives the request and redirects to the training module.

STEP 3: The training module returns the values in JSON format to the enabler API.

STEP 4: The enabler API returns the output in JSON format.

It is possible to change some default parameters of the behaviour of the enabler. The fourth use case is related

to changing the behaviour of the data prediction, indicating the range of historical data for training. The

diagram is following:

Figure 9. Resource Provisioning enabler UC4 (update data interval for training)

STEP 1: The user interacts through the enabler API, indicating the new intervals of predict data.

STEP 2: The enabler receives the values and sends them to the training module.

STEP 3: The training module updates the values.

STEP 4: The training module returns the result of the update.

STEP 5: Once the process has finished, the enabler API responds to the user with the result of the operation.

The fifth use case is related to an administrator user instructing the enabler to perform inference to the

desired enablers/components. This use case updates the values according to the previous training of each

component of the desired enablers. This action is also performed automatically. The diagram and involved steps

are the following:

STEP 1: The user interacts through the enabler API, via a GET request, to instruct the enabler to infer the

desired enabler components.

STEP 2: The enabler receives the command through its component's API and redirects the request to the

inference module component.

STEP 3: The inference module component collects the data needed for training from the future database.

STEP 4: The future database returns the raw data.

STEP 5: The inference module component adapts the data and performs the inference process on all desired

components of each enabler.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 22 of 60

STEP 6: The inference module component returns the execution state to the enabler API.

STEP 7: The enabler API component returns the result of the operation.

Figure 10. Resource Provisioning enabler UC5 (perform inference)

The last use case (sixth) is related to select the enablers to manage. This selection can be made for all

components of an enabler or for individual components. The diagram is the following:

Figure 11. Resource Provisioning enabler UC6 (select enablers to manage)

STEP 1: The user interacts through the enabler API, indicating the prioritised enablers and components.

STEP 2: The enabler receives the assigned cluster selection order and sends a POST request to the inference

module along with the data in JSON format for the values to be updated.

STEP 3: The inference module updates the components of these enablers.

STEP 4: The inference module returns the result of the operation.

STEP 5: Once the process has finished, the enabler API responds to the user with the result of the operation.

NOTE: This use case will be available in future releases. Currently, all enablers and active components are

target of the enabler, not allowing a more granular selection.

3.1.2.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/self/resource_provisioning_enabler.html

Table 6. Implementation status of the Resource Provisioning enabler

Category Status

Components implementation A first version of all the component is in place

Feature implementation status

Most of the expected features are implemented. Some are still pending:

• Finalising the API.

• Upgrading the actuation of the Inference Module over the cluster.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/resource_provisioning_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/resource_provisioning_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 23 of 60

Category Status

Encapsulation readiness
All components are encapsulated in docker images and work under Docker-

Compose.

Deployed with the Orchestrator

in a laboratory environment
Not yet

3.1.3. Monitoring and Notifying enabler

3.1.3.1. Structure and functionalities

This is an enabler responsible for monitoring the uninterrupted functionality of devices and notifying in case of

malfunction incidents. Specifically, it has to ensure the departure of data, the arrival, the validity and its own

self-monitoring functionality. Structure and functionalities have not changed with respect to deliverable

D5.2 content.

Implementation technologies

Table 7. Implementation technologies for the Monitoring and Notifying enabler

Technology Justification Component(s)

Kafka

Kafka provides a standardized method to enable a diverse set of

technologies to communicate and interact. It is used to build real-time

streaming data pipelines and real-time streaming applications which will

be very useful in the IoT environment of the project.

Database, Message

Queue, Registry

Java

Java is a low complexity programming language and since Kafka is

written in Java, it is one of the best choices for the enabler.

Database, Message

Queue, Registry,

Communication Interface

MongoDB

MongoDB is the choice for the database component. There is no need

for relational database, it is fast, scalable and it supports the

JSON/BSON data formats.

Database, Registry

MQTT

MQTT is a lightweight publish/subscribe messaging protocol and it is

widely used in IoT solutions. Since Edge Data Broker Enabler will use

this protocol, it is under consideration to be used for easier integration.

Database, Message

Queue, Registry

Python

Python is the best language for developing custom scripts and functions

over the components of the enabler.

Database, Message

Queue, Registry,

Communication Interface

NOTE: It is still under discussion which functionalities can be added to the enabler, in order to be labelled as

self-*.

3.1.3.2. Communication interfaces

Table 8. Communication interfaces (API) of the Monitoring and Notifying enabler

Method Endpoint Description

POST /notifications Create Notification

GET /notifications/rolling data Get input data before the notification occurrence

GET /notifications Get notification

GET /devices Get a list of connected devices

3.1.3.3. Use cases

The first use case is the same with respect to D5.2 content (IoT device which stops receiving data from its

integrated sensor). Two more use cases have been added and they are introduced in this version. The second

use case involves an IoT wristband device which enters a restricted area of a specific site.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 24 of 60

Figure 12. Monitoring and Notifying enabler UC2 (device entering restricted zone)

STEP 1: The wristband monitors and transmits the user’s location.

STEP 2: Location data is logged into the database.

STEP 3: The monitoring & notifying module receives the location data.

STEP 4: Since the monitoring module identifies that someone is entering a restricted area, it has to notify both

the user itself and a responsible (operator) for the incident.

STEP 5: The notification is transmitted to the API, in order to be sent to the message queue and the user.

STEP 6: The notification is transmitted to the user, by activating a LED on his wristband, indicating he entered

a restricted area.

STEP 7: The notification is transmitted to the message queue.

STEP 8: The operator receives the notification and the information (data) before its occurrence and has to act

accordingly.

The third use case (built around pilot 3A) is related to user querying a vehicle’s conditions, assuming that

there is constant monitoring of the vehicle’s metrics.

Figure 13. Monitoring and Notifying enabler UC3 (querying vehicle conditions)

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 25 of 60

STEP 1: An end user requests a report on the vehicle’s conditions.

STEP 2: The request is passed to the database.

STEP 3: The database data is transferred to the notifying module in order to create the report with historical

data and metrics such as the average emissions.

STEP 4: The report is concluded and it is ready to be sent back to the API.

STEP 5: The report is sent to the API.

STEP 6: The report is transmitted to the message queue.

STEP 7: The end user reads the report he requested.

3.1.3.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/self/monitoring_and_notifying_enabler.html

Table 9. Implementation status of the Monitoring and Notifying enabler

Category Status

Components implementation A first version of all the components are in place

Feature implementation status

The basic features of these components are working in the minimum viable

product principle. It remains to:

• Connect to the EDBE.

• Proceed with encapsulation.

Encapsulation readiness Components are yet to be encapsulated

Deployed with the Orchestrator in

a laboratory environment
Not yet

3.1.4. Location Tracking enabler

The main task of the location tracking enabler is to receive the position of tags. Each tag transmits its position

with a fixed repetition rate. This position represents the coordinates of the tag relative to a reference anchor.

The localization tracking enabler translates these positions into a format which can be handled by a data broker.

3.1.4.1. Structure and functionalities

The localisation tracking enabler consists of a “tag & anchor configuration” component and a “localisation

engine” component, see also Figure 14.

Figure 14. Location Tracking enabler structure

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/monitoring_and_notifying_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/monitoring_and_notifying_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 26 of 60

On the one hand, the “tag & anchor configuration” component is used to set parameters like tag ID, position

update rate, etc. The exact amount of configuration parameters is under construction at the moment. On the

other hand, the “localization engine” receives the location of the tags and translates these locations to a JSON

format that can be handled by the data broker. The transmitted location contains, besides the location, a tag ID

for which the location is valid and a time stamp. With these parameters the location processing enabler can track

when a tag has been at which location.

3.1.4.2. Communication interfaces

The location tracking enabler has the following interfaces. They are under development, and the outcome will

be documented in the next version of this deliverable.

• Interface for anchor configuration

• Interface for tag configuration

• Interface for tag location

3.1.4.3. Use cases

The main use case is receiving distances from tags. A tag delivers distances with a fixed frequency, which is

set during configuration. How the use case will be implemented is under construction at the moment and will

be documented in the next version of this deliverable.

3.1.4.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/self/location_tracking_enabler.html

Table 10. Implementation status of the Location Tracking enabler

Category Status

Components implementation A first version of all the components are in place

Feature implementation status

The basic features of these components are working in the minimum viable

product principle. It remains to:

• Implement the localization tag interface and engine.

• Determine tag & anchor configuration parameters.

Encapsulation readiness Components are yet to be encapsulated

Deployed with the Orchestrator in

a laboratory environment
Not yet

3.1.5. Location Processing enabler

3.1.5.1. Structure and functionalities

This enabler has been scoped out from the original (Geo)localization enabler, whose functionality in M15 was

split into two enablers, one concentrating mostly on the hardware part and this one focusing on localisation data

processing. Eventually, the Location Processing enabler will provide flexible geofencing capabilities allowing

to:

• Define “regions” and “points” of interest, and identify them in a unique way,

• Update the geometry/position data of defined regions and points, and

• Query relationships between a given position and selected region/point(s).

Ultimately, the enabler will handle data updates and queries using both the standard REST-based request-

response and a high-speed streaming approach. The “data endpoints” of the enabler will be suitably protected,

to prohibit unauthorised data access and manipulation.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/location_tracking_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/location_tracking_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 27 of 60

Implementation technologies

Table 11. Implementation technologies for the Location Processing enabler

Technology Justification Component(s)

Scala

Main language for developing custom functions for all components of the

enabler. Selected for its high quality, good support and adequacy for the

task.

All components

except database

Akka

All the components of the enabler will be developed using Akka (and Akka

Streams) libraries, due to the excellent support they provide for features and

communication standards/protocols required for the enabler.

All components

except database

PostGIS

PostGIS is a mature spatial extension for PostgreSQL. It natively supports

all the GIS-oriented functions needed by the Location processing enabler.

Additionally, PostGIS is well supported by existing Java-based libraries

(hence it is also Scala-friendly).

Location data

storage and

processing

Apache Kafka
Selected for its state of the art support for asynchronous buffering and

stream handling mechanisms.
Streaming

updates/queries

Docker images All components are built as custom docker images. All components

Docker compose

Docker compose will be used as a tool to define and run applications along

with their proper configuration. Future versions of the enabler will utilize

Kubernetes to improve interoperability with other ASSIST-IoT enablers.

All components

NOTE: Since the decision to create the Location processing enabler was taken in M15, its overall functionality

is still under active discussion. As a consequence, it may need to be extended/modified with respect to the

description presented above.

3.1.5.2. Communication interfaces

Table 12. Communication interfaces (API) of the Location Processing enabler

Method Endpoint Description

GET /area/within

Checks whether the point with specified coordinates (parameters x, y, z) is located within a

pre-set area (identified by parameter id), with a specific precision (given by parameter

precision).

POST /area/ball
Creates or updates (when passed uuid value) a circular shape area of given dimension and

positioning. If the parameter z is not specified a two-dimensional area is created.

NOTE: In the first edition of the enabler, only basic “sphere-oriented” functionality will be available. Features

like more complex ways of defining/utilizing areas and stream-oriented processing will be added in future

releases. Also implementation of the security mechanisms will be postponed until later release.

3.1.5.3. Use cases

The first use case involves an API client creating an area definition. The diagram and involved steps are the

following ones:

Figure 15. Location Processing enabler UC1 (define an area)

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 28 of 60

STEP 1: The client invokes the /area/ball API endpoint, passing an area specification that does not contain

the id attribute.

STEP 2: A fresh uuid value is generated and the area data is sent to the PostGIS database.

STEP 3: The area data is saved into the PostGIS database.

STEP 4: The result of the save operation is returned from PostGIS to the API server.

STEP 5: The saved area data is returned to the communication interface.

STEP 6: The client receives notification message containing the complete area data, including the generated

uuid value.

The second use case involves an API client updating an area definition. The diagram flow and related steps

are the following:

Figure 16. Location Processing enabler UC2 (update an area)

STEP 1: The client invokes the /area/ball API endpoint, passing an area specification that contains the id

attribute.

STEP 2: The API server extracts the uuid.

STEP 3: The area with the given uuid gets updated with new parameter values.

STEP 4: PostGIS returns the result of the update to API server.

STEP 5: The result of the update gets sent to the communication interface.

STEP 6: The client receives notification message containing the complete updated area data.

The third use case involves an API client checking if a given location lies within a specified area.

Figure 17. Location Processing enabler UC3 (check location).

STEP 1: The client invokes the /area/within API endpoint, passing an area identifier and location data.

STEP 2: The API server receives the uuid and location data from the communication interface.

STEP 3: The API server queries PostGIS server.

STEPS 4-6: The PostGIS returns the answer to the API server, which sends it to the communication interface

so it is returned to the client.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 29 of 60

3.1.5.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/self/location_process_enabler.html

Table 13. Implementation status of the Location Processing enabler

Category Status

Components implementation
The initial design phase is being finalized and first steps of the

implementation have been performed.

Feature implementation status
An initial version of the HTTP interface for the enabler has been

created.

Encapsulation readiness A simple containerized configuration for the enabler has been created.

Deployed with the Orchestrator in a

laboratory environment
Not yet

NOTE: Since the idea of the Location processing enabler emerged in M15, it is currently in the (short and very

active) design phase. As a starting point, input from the work on the original Geolocalization enabler has been

taken. Shortly, the design will be finalised and the implementation will start.

NOTE: To provide the location processing enabler’s data persistence and location-processing functionalities,

the PostGIS extension for the PostgreSQL database will be used. The stream-oriented (asynchronous) services

of the enabler will be based on Kafka streams, utilising the Apache Kafka event streaming platform.

3.1.6. Automated Configuration enabler

The configuration of resources in the Internet of Things environment is a complex task. The main challenges

relate to the heterogeneity of resources, the distributed nature of the system, and non-trivial error scenarios.

Automated Configuration enabler (AC) responds to these challenges and gives the IoT deployment a degree of

independence from the human operator.

3.1.6.1. Structure and functionalities

Structure and functionalities have not changed with respect to deliverable D5.2 content. Internally, the AC

represents system configuration as a (possibly disconnected) acyclic directed graph (DAG) with two kinds of

vertices: resource and functionality, and edges representing the relation “requires to function”. Edges can exist

between pairs: (functionality, resource) and (functionality, functionality). Additionally, different “labels” can

be associated with each vertex, allowing to categorise and group vertices, without changing the overall structure

of the graph. Numerical values, associated with the functionalities, called weights, are used by the ACs to

autonomously decide which functionalities should be maintained in the event of an error in any of the system

components.

For the AC to function, it must be able to communicate with resources. Communication takes place via

connectors. It is the responsibility of the connector to perform direct manipulations on the resource and to inform

the AC about the status of the resource. Connectors allow to abstract away the problem of communication

between resources and the AC.

The AC reacts to events regarding the resources by adjusting their configurations according to the predefined

rules. Supported events include: the resource has been registered, the resource is no longer available, and

messages with resource-type specific content and parameters. The available actions are: changing the

configuration (all or appropriate nodes in the graph, along with possibly changing the labels), conditional action

execution (depending on the received message and the current configuration status), maintaining functionality

with the utmost importance, and no action.

3.1.6.2. Communication Interfaces

Communication interfaces have not changed with respect to deliverable D5.2 content.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/location_process_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/location_process_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 30 of 60

3.1.6.3. Use cases

The general use case of updating configuration has not change with respect to deliverable D5.2 content.

It has been updated, however, to cover handling of non-trivial failover scenarios. For details, see implementation

status below.

3.1.6.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/self/automated_configuration_enabler.html

Table 14. Implementation status of the Automated Configuration enabler

Category Status

Components implementation The initial design phase is being finalized and the implementation has started.

Feature implementation status The essential features of the enabler are under active development.

Encapsulation readiness Components are yet to be encapsulated.

Deployed with the Orchestrator in

a laboratory environment
Not yet

NOTE: Currently, the details of the internal design of the AC is being finalised, considering possible options

in which the configuration structure and its application process will be represented and realised as well as how

intelligence/automation aspects will be employed/handled. The code currently available from the repository

represents some design experiments that have been performed so far.

3.2. Federated machine learning enablers

3.2.1. FL Orchestrator

3.2.1.1. Structure and functionalities

FL Orchestrator is one of the enablers developed in the context of the FL Architecture of the ASSIST-IoT

project. It is responsible for specifying FL workflow(s)/pipeline(s) details. Among these details or features are:

• FL job scheduling

• Manage the FL life cycle

• Selecting and delivering initial version(s) of the shared algorithm

• Delivering the version(s) of modules used in various stages of the process, such as training stopping

criteria

• Handling the different "error conditions" that may occur during the FL process.

Figure 18 depicts the high-level overview of the FL orchestrator components.

Figure 18. FL Orchestrator enabler structure.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/automated_configuration_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/self/automated_configuration_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 31 of 60

As it can be seen, it is formed by two components:

• FLS API server: Offers a REST API to allow the communication and interaction with FL Structure

components. Hence, it allows to retrieve information or perform FL management actions, to FL Local

Operations, FL Training Collector and FL Repository.

• FLS Workflow manager: This component is in charge of defining workflow for a specific incarnation

of FL lifecycle. Workflow description specifies, among others, the source of initial configuration (e.g.,

minimum number of FL Local Operations needed for federated training, number of training rounds for

carrying out the federated learning process, the initial shared ML model to be used, evaluation criteria

method and required accuracy value, method used for parameter aggregation, required encryption

mechanisms), and lifecycle management (e.g., evaluating the number of FL Local Operations

connected, or the number of training rounds finished provided by the FL Training Collector).

Implementation Technologies

Table 15. Implementation technologies for the FL Orchestrator enabler

Technology Justification Component(s)

Tensorflow/Flower

End-to-end open source platform for federated learning. It is the core

of the FL orchestrator. Includes the definition of the API, interaction

with other enablers and their main features.

FLS workflow

manager, FLS API

server

Flask API
Flask API in charge of carrying out all the previously described

procedures
FLS API server

MongoDB
Used by the orchestrator to retrieve the list of existing models to the

FL repository.
FL Orchestrator DB

3.2.1.2. Communication interfaces

Table 16. Communication interfaces (API) of the FL Orchestrator enabler

Method Endpoint Description

GET /models Receives the models collected in the FL Repository

GET /modelID/<id> Receives the model <id> collected in the FL Repository

GET /configurationsbyModel/<id> Recover configurations of model <id> collected in the FL Repository

POST /addModel Add a new federated learning model to the FL Repository

POST /addConfigByModel/<id> Add new configuration to a model <id> to be stored in the FL repository

DELETE /deleteModel/<id> Delete a federated learning model from the FL Repository

GET /runModel/<id>
Request the setup for training of the FL model <id> to the FL Local

Operations and FL Training Collector

GET /startFLTraining/<id> Start training iteration

GET /modelsRunning
Receive the models currently being training from the FL Training

Collector

GET /status Receive the status of all the FL Local Operations involved in the training

GET /trainingRound
Receive the currently finalized training round from the FL Training

Collector

GET /stopModel/<id>
Request stopping the FL model <id> to the FL Local Operations and FL

Training Collector

NOTE: Several external APIs with other FL enablers of the system are available. The table list above shows

the already implemented API methods and endpoints, but new ones will be added in the following releases of

the enabler.

3.2.1.3. Use cases

There are 4 use cases that apply to this enabler. The first use case is related to the initial setup/configuration

of the FL training process via the customized web application foreseen for the ASSIST-IoT FL system. Its

diagram and involved steps are the following:

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 32 of 60

Figure 19. FL Orchestrator UC1 (user configures FL training)

STEP 1: User opens the webpage containing the FL system, and clicks on the request FL models supported

button, which communicates directly with the FL repository that exposes the supported ones.

STEP 2: The user modifies according to their preferences/interests the configuration of the provided models

supported by the system for starting a new training (e.g., num_rounds, min_fit_clients, eval_metrics,

eval_metrics_value).

STEP 3: The user finally clicks on the Run button, which sends in JSON format, the new FL training

configuration to the FL Orchestrator.

Figure 20. Mock-up FL System Web App (under development)

The second use case is related to the initial connection of the FL Orchestrator with the FL Training Collector

and FL Local Operations, which receive the FL training configuration setup defined with the previous use

case. The diagram is the following:

Figure 21. FL Orchestrator UC2 (initial setup of FL architecture)

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 33 of 60

STEP 1: The FL Orchestrator connects with the FL Training Collector and the different FL Local Operations

involved in the FL training (which are defined by the user).

STEP 2: The FL Orchestrator forwards the FL training configuration to the FL Training Collector and the

different FL Local Operations connected.

The third use case is related to the lifecycle management of the FL Training Collector. Two potential

scenarios can be devised: a happy path in which all the FL training process is performed successfully, or an

error caused due to the decoupling of some FL Local Operations, leading to a handling error situation. Both

diagrams are shown in the next figures:

Figure 22. FL Orchestrator UC3 (lifecycle management of FL Training Collector – Option A: happy path)

Figure 23. FL Orchestrator UC3 (lifecycle management of FL Training Collector – Option B: FL local operations

below minimum)

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 34 of 60

STEP 0: Once the FL Training Collector and all FL Local Operations have received the FL training

configuration, they start the training

STEP 1: The FL Orchestrator requests periodically the status to the FL Local Operations and FL Training

Collector informs to the FL Orchestrator when a new FL training round has been ended, which is forwarded to

the Web application in order to allow the user be aware of current status of the FL training.

STEP 3A: The FL training process is successfully executed and finished, and a new FL model is available at

the FL Repository. The FL Orchestrator informs to the user about the ending of the FL training process as well

as about the location of the new trained FL model address in the FL Repository.

STEP 3B: An error caused due to the decoupling of some FL Local Operations occurred, leading to having

connected less FL Local Operations than the minimum required by the user. The FL Orchestrator requests to

the rest of connected FL Local Operations and FL Training Collector to stop the FL training process, and informs

the user about the unexpected ending and about the location of the not finished trained FL model address in the

FL Repository.

3.2.1.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/federated/fl_orchestrator.html

Table 17. Implementation status of the FL Orchestrator

Category Status

Components implementation
All the FL Orchestrator components are implemented in their Minimum Viable

Product version.

Feature implementation

status

Currently, the FL system is working on a happy paths scenario, i.e., no errors/attacks

are contemplated. In next releases, an in-depth error handling criterion, as well as

more advanced evaluation metrics will be included.

Encapsulation readiness

The FL Orchestrator is provided as a Docker image, and by means of a Docker-

Compose yaml file, it is possible to generate a first complete end-to-end FL system.

No k8s environment is supported yet

Deployed with the

Orchestrator in a laboratory

environment

No. In principle, the FL system enablers will not be used in real environments, only

at simulation scenario in laboratories, so that the integration with the orchestrator is

not mandated.

3.2.2. FL Training Collector

3.2.2.1. Structure and functionalities

The FL training process involves several independent parties that commonly collaborate in order to provide an

enhanced ML model. In this process, the different local updates suggestions shall be aggregated accordingly.

This duty within ASSIST-IoT will be tackled by the FL Training Collector (FLTC), which will also be in charge

of delivering back the updated model. Structure and functionalities have not changed with respect to

deliverable D5.2 content.

Implementation technologies

Table 18. Implementation technologies for the FL Training Collector

Technology Justification Component(s)

Python
Python is an interpreted high-level general-purpose programming language with a

set of libraries. Very popular for data analysis and ML applications.

FLTC I/O, FLTC

Combiner

FedML
Research library and benchmark for Federated ML containing federated algorithms

and optimizers.
FLTC Combiner

FastAPI
A popular web microframework written in Python, it is known for being both robust

and high performing. It is based on OpenAPI (previously Swagger) standards.
FLTC I/O

Flower
A FL framework designed to work with a large number of clients. It is both

compatible with a variety of ML frameworks and supports a wide range of devices.
FLTC Combiner

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_orchestrator.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_orchestrator.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 35 of 60

3.2.2.2. Communication interfaces

Table 19. Communication interfaces (API) of the FL Training Collector

Method Endpoint Description

POST /job/config/{id} Receive configuration of FL Training Collector components for job with identifier id.

GET /job/status/{id} Retrieve status of the training process with identifier id.

NOTE: With respect to D5.2 endpoint /model/update/{id}/{version} was removed. The communication

between FL Training Collector and FL Local Operations enablers used gRPC protocol and is handled according

to Flower framework procedure.

3.2.2.3. Use cases

The first use case is about what happens after instantiation of FL Trainings Collector, i.e., configuration of

appropriate modules (here diagram is not used because components are to be instantiated). The involved steps

are:

STEP 1: Receive configuration information from FL Orchestrator.

STEP 2: Establish topology to use, e.g., master-slave, with mediator.

STEP 3: Retrieve from FL Repository appropriate FL Collector (averaging algorithms).

STEP 4: Initialize averaging algorithm e.g. single step, sequential.

The second use case is combining local updates to the model to obtain an updated final model.

Figure 24. FL Training Collector UC2 (local results aggregation)

STEP 1: FL Local Operations enabler sends local results (parameters updates proposals) of model training to

FL Local Training Collector enabler. The proposed update is handled by FLTC Combiner component.

STEP 2: FLTC Combiner combines local results to deliver new a shared model version. Averaging can be

completed in one step or can be applied sequentially in a specific order.

STEP 3: FLTC Combiner sends an aggregated weights and model to FL Local Operations (as part of the training

process).

STEP 4: FLTC Combiner verifies if model training procedure has been finished or it should still wait for local

updates.

STEPS 5-6: If the training process is finished FLTC Combiner sends final model to FLTC I/O which forwards

in to FL Repository enabler to be stored and distributes it to FL Local enablers.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 36 of 60

3.2.2.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/federated/fl_training_collector.html

Table 20. Implementation status of the FL Training Collector

Category Status

Components implementation

FLTC I/O - all endpoints API endpoints are ready. FLTC Combiner - in progress

(communication with FL Local Operations and FL Repository and running the

training process is ready; more strategies and status reporting to FL Orchestrator

will be added).

Feature implementation status

• Communication with other FL enablers is ready.

• Aggregation of local updates of the ML model prepared by independent

parties as part of a model enhancement process is ready, however more

strategies will be added.

• Saving model to the FL Repository with metadata (final metadata will be

specified) is ready.

Encapsulation readiness Enabler is containerised in Docker.

Deployed with the Orchestrator

in a laboratory environment
No (same explanation that FL Orchestrator).

3.2.3. FL Repository

3.2.3.1. Structure and functionalities

The FL Repository will be a set of different databases, including initial ML algorithms, already trained ML

models suitable for specific data sets and formats, averaging approaches, and auxiliary repositories for other

additional functionalities that may be needed, and are not specifically identified yet. Structure and

functionalities have not changed with respect to deliverable D5.2 content.

Implementation technologies

Table 21. Implementation technologies for the FL Repository

Technology Justification Component(s)

RDF

W3C Resource Description Framework Description (RDF) is a standard for

representing information on the Web designed as a data model for metadata. It

is one of the foundations for semantic technologies. It will provide flexible and

adaptable model for ML algorithms metadata or any auxiliary data.

ML Algorithms

library, Auxiliary

FedML
Research library and benchmark for Federated ML containing federated

algorithms and optimizers.
FL Collectors,

Auxiliary

Python
Python is an interpreted high-level general-purpose programming language with

a set of libraries. Very popular for data analysis and ML applications.
Local

communication

FastAPI
A popular web microframework written in Python, FastAPI is known for being

both robust and high performing. It is based on OpenAPI (previously Swagger)

standards.

Local

communication

MongoDB
MongoDB is a source-available cross-platform document-oriented database

program. Classified as a NoSQL database program.

ML Models

Libraries,

Auxiliary

3.2.3.2. Communication interfaces

Table 22. Communication interfaces (API) of the FL Repository

Method Endpoint Description

POST /model Adds a new ML model to the library

PUT /model/{id}/{version}
Update model that is already in the repository under identifier id and

version

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_training_collector.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_training_collector.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 37 of 60

GET /model Retrieve list of all models stored in the repository

GET /model/{id}/{version} Retrieve model with a specific identifier and version

DELETE /model/{id}/{version} Delete a model with a specific identifier and version

POST /algorithm Add new ML algorithm to the repository

PUT /algorithm/{name}/{version}
Update algorithm that is already in the repository with a given name

and version

GET /algorithm Retrieve list of all ML algorithms stored in the repository

GET /algorithm/{name}/{version} Retrieve a ML algorithm identified with a given name and version

DELETE /algorithm/{name}/{version} Delete a ML algorithm with a specific name and version

POST /collector Add new ML training collector algorithm to the repository

PUT /collector/{name}/{version}
Update ML training collector algorithm that is already in the

repository with a given name and version

GET /collector
Retrieve list of all ML training collector algorithms stored in the

repository

GET /collector/{name}/{version}
Retrieve a ML training collector algorithm identified with a given

name and version

DELETE /collector/{name}/{version}
Delete a ML training collector algorithm with a specific name and

version

NOTE1: At this moment, endpoints for accessing to auxiliary data are not defined. They will be added when

specific needs are encountered during the project. The table above describes the API methods.

NOTE2: With respect to information in D5.2, PUT endpoints for updating a model/algorithm/collector have

been split into two: one for the object and a second one for metadata.

3.2.3.3. Use cases

Use cases have not changed with respect to the deliverable D5.2 content.

3.2.3.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/federated/fl_repository.html

Table 23. Implementation status of the FL Repository

Category Status

Components implementation
Local communication - all endpoints are ready.

ML Algorithms Libraries, ML Model Libraries, FL Collectors - ready as

noSQL storage.

Feature implementation status
• External API to insert and retrieve data from the storage is ready.

• To be defined is a final set of metadata that should be stored in

the repository besides objects of different types.

Encapsulation readiness Enabler is containerized in Docker.

Deployed with the Orchestrator in a

laboratory environment
No (same explanation that FL Orchestrator).

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_repository.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_repository.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 38 of 60

3.2.4. FL Local Operations

3.2.4.1. Structure and functionalities

FL Local Operations enabler is an embedded enabler within each FL involved party/device of the FL systems.

Structure and functionalities have not changed with respect to deliverable D5.2 content.

Implementation technologies

Table 24. Implementation technologies for the FL Local Operations

Technology Justification Component(s)

scikit-learn
A popular machine learning library often used for data pre-processing

and transformation, for example encoding labels. It is open source and

widely used in the industry.
Data Transformer

pyTorch

An open source machine learning framework based on

the Torch library, used for applications such as computer

vision and natural language processing, primarily developed

by Facebook's AI Research lab (FAIR).

Local Model

Trainer

TensorFlow

A free and open-source software library for machine

learning and artificial intelligence. It can be used across a range of

tasks but has a particular focus on training and inference of deep

neural networks.

Local Model

Trainer, Local

Model Inferencer

Flower
A federated learning framework designed to work with a large number

of clients. It is both compatible with a variety of ML frameworks and

supports a wide range of devices.

Local Model

Trainer

OpenVINO
A free toolkit facilitating the optimization of a deep learning model. It

is cross-platform and free to use.
Local Model

Inferencer

OpenCV
A real-time computer vision library providing already optimized

models. It is cross-platform and open-source.
Local Model

Inferencer

Python
Python is an interpreted high-level general-purpose programming

language with a set of libraries. Very popular for data analysis and ML

applications.

Data Transformer,

Local

Communication
Pailier Encryption,

Affine Homomorphic

Encryption

Two homomorphic encryption algorithms that will be used to preserve

the privacy of the data without affecting the performance of the model.
Privacy

FastAPI
A popular web microframework written in Python, FastAPI is known

for being both robust and high performing. It is based on OpenAPI

(previously Swagger) standards.

Local

Communication

3.2.4.2. Communication interfaces

Table 25. Communication interfaces (API) of the FL Local Operations

Method Endpoint Description

POST /job/config/{id} Receive configuration for training job

PUT /model/{id}/{version} Receive new shared model

GET /status Get current status of the enabler

NOTE: For communication between FL Local Operations and FL Training Collector during the training process

gRPC protocol is used (as in Flower framework).

3.2.4.3. Use cases

Use cases have not changed with respect to the deliverable D5.2 content.

3.2.4.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/federated/fl_local_operations.html

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_framework
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_local_operations.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/federated/fl_local_operations.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 39 of 60

Table 26. Implementation status of the FL Local Operations

Category Status

Components implementation

Local communication - API endpoints for configuration, model and status are

ready. Endpoints for data transformation and prediction need to be implemented.

Local model trainer - is in progress. The functionality of conducting training and

communicating with FL Training Collector is ready. Integration with FL

Repository needs to be added.

Local model inferencer - to be done.

Privacy - to be done.

Data transformation - to be done.

Feature implementation status

• Communication with FL Training Collector and FL Orchestrator is ready.

• Local model training is ready.

• Retrieving model from FL Repository needs to be added.

• Verification of local data formats compatibility with data formats required by

FL and handling data transformations needs to be added.

• Communication of model updates via encryption mechanisms needs to be

added.

Encapsulation readiness Enabler is containerised in Docker.

Deployed with the Orchestrator

in a laboratory environment
No (same explanation that FL Orchestrator).

3.3. Cybersecurity enablers

3.3.1. Cybersecurity Monitoring enabler

3.3.1.1. Structure and functionalities

Cybersecurity monitoring enabler will consolidate the necessary information for cyber threat detection over the

deployed architecture and pilots. Cybersecurity monitoring enabler provides cyber security awareness and

visibility on cybersecurity objectives and will provide infrastructure cybersecurity monitoring.

The cybersecurity monitoring server will be responsible of collecting, processing, and analysing the incoming

information from the infrastructure under study. It will consolidate an output that will provide cybersecurity

monitoring information related to different events. Figure 25 describes cybersecurity monitoring components

and describes how cybersecurity monitoring output will be alerts resulted from the processing of security events

using rules.

Figure 25.Cybersecurity Monitoring enabler high level structure

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 40 of 60

The functionalities of the Cybersecurity Monitoring enabler are presented below:

• It will receive logs and information from the agents deployed.

• It will decode the log, identify the log type and extract some useful fields.

• It will have a ruleset to be applied to the received logs.

• It will apply the active rules to the received log, and if there is a match, it will generate an alert.

• It will normalize the alert event and correlate until it determines if it is only a simple alert or a real

incident.

• It will enrich the incident with useful information, to facilitate the assignment of the risk level of the

incident and the response actions to be done.

• It can do predefined actions for incident mitigation depending on the incident, such as communicate

with the agent so that it performs an action, send an email or send the incident to a ticketing system.

Cybersecurity enabler will update information on a GUI so that the admin user can see the status of the agents

and the alert/incident information.

Implementation technologies

Table 27. Implementation technologies for the Cybersecurity Monitoring enabler

Technology Justification Component(s)

Wazuh server Analysis Decoder, rule engine, correlator

Elasticsearch,

Filebeat, Logstash

and Kibana

Data gathering, storage and visualization
Associated to visualization, and

data storage

The Hive Security orchestration and response Incident Response

Cortex and MISP Threat intelligence and threat sharing platforms for

digital forensics and incident response
External enrichment

3.3.1.2. Communication interfaces

Table 28. Communication interfaces (API) of the Cybersecurity Monitoring enabler

Method Endpoint Description

GET /manager/status Return the status of the monitoring server

GET /manager/info Return basic information such as version, compilation date, installation path

GET /manager/configuration Return enabler configuration used.

PUT /manager/configuration Replace configuration with the data contained in the API request

GET /manager/stats Return statistical information for the current or specified date

PUT /manager/restart Restart the manager

GET /agents Obtain a list with information of the available agents

DELETE /agents Delete all agents or a list of them based on optional criteria

POST /agents Add a new agent with basic info

POST /agents/insert
Add an agent specifying its name, ID and IP. If an agent with the same ID

already exists, replace it using 'force' parameter

PUT /agents/{agent_id}/restart Restart the specified agent

PUT /agents/restart Restart all agents or a list of them

PUT /active-response Run an Active Response command on all agents or a list of them

NOTE: Cybersecurity monitoring server will implement a restful API to manage monitoring server basic

configuration and cybersecurity agents connected.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 41 of 60

3.3.1.3. Use cases

The main use case behind the cybersecurity monitoring server is described in the following flow, showing the

steps that will happen to be protected against cyberthreats, from the processing of a log to its evaluation and,

if needed, a generated response:

Figure 26. Cybersecurity Monitoring enabler UC (cyberthreats protection)

STEP 1: Agent detected event associated to system log monitoring running in the agent side.

STEP 2: Decoder at server component side extract the relevant data and forward to the rule engine component.

STEP 3: Rule engine process and apply rules accordingly and forward to the Assessment.

STEP 4: Response components will automate and orchestrate cybersecurity response, gathering and enriching

the information on the cybersecurity incident using external enrichment services if needed.

STEP 5: External interaction component will be triggered from the Response component to arise any action

using the agent or any other external interaction.

Use cases and additional user stories associated to cybersecurity monitoring server are:

• Agent detect events associated to identification, authentication, and authorization.

• Agent detects installation of new and non-permitted software, on the system under monitoring and

report to the server.

• Agent detects abuse of authorization on the system under monitoring and report to the server.

• Agent detects unauthorised changed of configuration files and report to the server.

3.3.1.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/cybersecurity/cybersecurity_monitoring_enabler.html

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/cybersecurity_monitoring_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/cybersecurity_monitoring_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 42 of 60

Table 29. Implementation status of the Cybersecurity Monitoring enabler

Category Status

Components

implementation
All the components of the enabler have a first functional version

Feature implementation

status

The basic features are in place. However, some developments are pending:

• Orchestrate the enabler and integrate with other enablers.

Encapsulation readiness

Components have been containerised as Docker images and deployed using Docker

Compose. The Helm chart is under development. Manifests in Kubernetes are done,

but they are in testing-phase for the integration of all related technologies.

Deployed with the

Orchestrator in a laboratory

environment

Not yet. The enabler is in Docker-Compose orchestration tested on a virtual

environment and with two common use cases with Windows and Linux operating

systems, monitoring all the agents, the status and security of the hosts.

3.3.2. Cybersecurity Monitoring Agent enabler

3.3.2.1. Structure and functionalities

The Cybersecurity Monitoring Agent enabler will report to the security monitoring server. It enables the

execution of processes on the system target under study to provide relevant information if a cybersecurity breach

is produced. This enabler will perform functions of an endpoint detection and response system, monitoring and

collecting activity from end points that could indicate a cybersecurity threat.

Figure 27. Cybersecurity Monitoring Agent enabler structure

The functionalities of the Cybersecurity Monitoring Agent enabler are presented below:

• It will collect and process the system events and system log messages.

• It will monitor file integrity of critical files and audit data of the system.

• It will monitor the security of the docker engine API and the container at runtime.

• It will be able to perform some actions such as blocking network connection or stopping running

processes if the Cybersecurity monitoring enabler requests it.

Table 30. Implementation technologies for the Cybersecurity Monitoring Agent enabler

Technology Justification Component(s)

Wazuh agent Collection of logs Agent

Rsyslog Collection of logs Agent

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 43 of 60

3.3.2.2. Communication interfaces

Table 31. Communication interface (TCP/UDP) of the Cybersecurity Monitoring Agent enabler

Without TLS (to Wazuh-server) Dedicated port (1514 by default)
To communicate with the Cybersecurity

Monitoring enabler (to be register on it and

to send the collected data)

With TLS (to Wazuh-server) Dedicated port (1515 by default)

rsyslog-based implementations Dedicated port (standard 514)

3.3.2.3. Use cases

The main use case behind the Cybersecurity Monitoring Agent enabler is described in the following flow, from

the collection of data to their send to the Cybersecurity Monitoring enabler and, if needed, the execution of an

action:

Figure 28. Cybersecurity Monitoring Agent enabler UC (send collected data and actuate)

STEP 1: Agent detected event associated to system log monitoring running in the agent side and collected by

the agent daemon.

STEP 2: Cybersecurity monitoring server receives agent information and process the relevant data using the

components described in the and forward to components described in the cybersecurity monitoring enabler.

Use cases and additional user stories associated to Cybersecurity Monitoring agent are

• Detection of events associated to identification, authentication, and authorization.

• Agent detects installation of new and non-permitted software, on the system under monitoring and

report to the server.

• Agent detects abuse of authorization on the system under monitoring and report to the server.

• Agent detects unauthorised changed of configuration files and report to the server.

3.3.2.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/cybersecurity/cybersecurity_monitoring_agent_enabler.html

Table 32. Implementation status of the Cybersecurity Monitoring Agent enabler

Category Status

Components implementation All the components of the enabler have a first functional version

Feature implementation status
The basic features are in place. However, some developments are pending:

• Orchestrate the enabler and integrate with other enablers.

Encapsulation readiness

Components have been containerised as Docker images and deployed using

Docker Compose. The Helm chart is under development. Manifests in

Kubernetes are done, but they are in testing-phase for the integration of all related

technologies.

Deployed with the Orchestrator

in a laboratory environment
Not yet

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/cybersecurity_monitoring_agent_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/cybersecurity_monitoring_agent_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 44 of 60

3.3.3. Identity manager enabler

3.3.3.1. Structure and functionalities

Identity Manager (IdM) enabler will be responsible for managing identities on the access control process.

Authentication is a process by which the credentials provided by an entity (computer, application, or person)

are compared with those stored in the system to ensure that said entity is effectively who or what it claims to

be. Its main goal is to ensure that only authenticated entities are granted access to the specific resource (systems,

applications, or IT environments) for which they are authorized. This includes control over entities (i.e., user

provisioning, or entities provisioning) and the process of onboarding new entities (i.e. users, systems, etc.).

IdM enabler will perform the authentication phase of access control process, processing and validating the

identity for later control of the access to the resources by the authorization enabler. It will rely on OAuth2

protocol, which allows the delegation of the authentication process to a remote server, granting a communication

that keeps entity (user or system) authentication data secure. Afterwards, the IdM will communicate with the

Authorization enabler also by means of OAuth2, implementing XACML policies. Figure 29 depicts the general

structure of the enabler:

Figure 29. Identity Manager enabler structure

The functionalities of the IdM are presented below:

• IdM will provide a central user database and management console.

• IdM will be able to work federated with remote user databases, unifying remote user stores.

• IdM will provide Single-Sign-On capabilities through OAuth2 protocol.

• IdM will integrate with the Authorization enabler in order to offer a common authorization and

authentication process.

Table 33. Implementation technologies for the Identity Manager enabler

Technology Justification Component(s)

Keycloak Identiy and Access Management core component IdM authentication

Oauth2 Standard web federated identity IdM authentication

LDAP connector External user store IdM authentication

Web interface Manage user database IdM Admin

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 45 of 60

3.3.3.2. Communication interfaces

Table 34. Communication interfaces (API) of the Identity Manager enabler

Method Endpoint Description

GET /v1/users Create a user

POST /v1/users List users

GET /v1/users/user_id Read info about a user

PATCH /v1/users/user_id Update a user

DELETE /v1/users/user_id Delete a user

NOTE1: Enabler endpoints (REST API assumed, but may be others). The enabler should have a primary

interface for communicating with other enablers or applications (its components communicate through internal

communication mechanisms).

NOTE2: The following table describe initial descriptions for basic operations on Identity Manager enabler, just

as a reference. Complete API specification is still to be extended.

3.3.3.3. Use cases

The following flow describes the two main use cases; the first use case is related to an administrator user

which registers a new user to the system (step #1). The second use case involves a user authenticating in

the system, and the actions performed by the IdM to accept it or not.

Figure 30. Identity manager enabler UCs (add user, authenticate user)

STEP 1: An administrator populates user database.

STEP 2: A user requests a service from an APP.

STEP 2.2: If the user has no previous identification active, it is redirected to the Authentication server.

STEP 2.3: User identifies himself in the IdM and obtains a session token

STEP 2.4. If local user store has no identity for credentials, request may be federated to a remote user DB.

STEP 2.5: User presents the token to the application server.

STEP 2.5.1: Token is validated against the IdM.

STEP 2.6: If the token is valid, the client can access the server.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 46 of 60

3.3.3.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/cybersecurity/identity_manager_enabler.html

Table 35. Implementation status of the Identity Manager enabler

Category Status

Components implementation All the components of the enabler have a first functional version.

Feature implementation status

The basic features are in place, including basic API. However, some

developments are pending:

• Definition of final interface requirements.

• Definition of use case needs and architecture to complete integration

Encapsulation readiness
Components have been containerised as Docker images and deployed using

Docker Compose. The Helm chart is under development.

Deployed with the Orchestrator in a

laboratory environment
Not yet

3.3.4. Authorization enabler

3.3.4.1. Structure and functionalities

The Authorization enabler will be responsible for authorization phase in the access control process.

Authorization is a process of granting, or automatically verifying, permission to an entity (computer,

application, or person) to access requested information after the entity has been authenticated. The enabler is

based on XACML standard security policies, which results on obligations actions to be deployed after the

evaluation process. Authorization enabler is composed with different components as described below:

• Policy Administration Point (PAP). Point which manages access authorization policies.

• Policy Decision Point (PDP). Point which evaluates access requests against authorization policies

before issuing access decisions.

• Policy Enforcement Point (PEP). It responds to where enforcement is going to take place.

• Policy Information Point (PIP). It provides attribute values upon request from the PDP context.

Its general structure is presented in the figure below. It describes two different modes of deploying the same

enabler. It can function as federated server, an autonomous edge service, or interact between both.

Figure 31. Authorization enabler structure

In ASSIST-IoT, a federated Authorization enabler will distribute a security policy from cloud to the edge to be

locally evaluated by the PDP and enforced locally by the PEP. Federated PAP policy will be controlled by an

administrator team and replicated locally in a local Access Control Policy. The functionalities of the enabler are

the following:

• PAP will provide a Web administrator to create and deploy the security policy to the different devices.

• A service that wants to use the authorization service will have a PEP, enforcement point to make request

to the authorization server, this is asking whether the access should be granted or not.

• PDP provides a REST interface available to the PEP to receive the request and orchestrate the process.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/identity_manager_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/identity_manager_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 47 of 60

• PIP will be responsible of generating the context for the request and obtaining any data that external

provider can offer to be incorporated to the request.

• The Policy repository will store locally to the PDP the policy to be applied.

• PDP will evaluate the request against the policy and will respond with the response.

• Obligation server will launch external requests to perform the derived actions (obligations) obtained as

a result of the policy decision. This will have the form of REST requests.

Table 36. Implementation technologies for the Authorization enabler

Technology Justification Component(s)

XACML Policy definition and evaluation PAP, PDP, PEP, PIP

REST interfaces Inter module comunications PAP, PDP

MQTT Trace publication PDP

3.3.4.2. Communication interfaces

Table 37. Communication interfaces (API) of the Authorization enabler

Method Endpoint Description

POST
/evaluate?resource=<domain>@<resource>&action=

<action>&code=<id>

Evaluates a request performed and authorises

it or not depending on the stored policies.

3.3.4.3. Use cases

The main use case behind the Authorization server is described in the following diagram, which describes the

entire authorization flow:

Figure 32. Authorization enabler UC (authorization flow)

STEP 1-1.1: An Administrator defines the data elements to be used in the validation process (conditions, pre-

shared keys, context data…) and exports it to the policy storage.

STEP 2: A user requests the access to the service provided in the device. After identification, the PEP will

generate an access request STEP 2.1 and send it to the PDP STEP 2.1.1.

STEP 2.1.1.1: PDP will request the PIP to gather the context required for the decision STEP 2.1.1.1.1.

STEP 2.1.1.2: PDP will complete the request, get the policy from the storage STEP 2.1.1.3 and obtain a

decision STEP 2.1.2.

STEP 2.1.2.1: PDP will launch the external obligations STEP 2.1.2.1.1.

STEP 2.2: PEP will redirect the decision to the App.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 48 of 60

3.3.4.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/cybersecurity/authorization_enabler.html

Table 38. Implementation status of the Authorization enabler

Category Status

Components implementation All the components of the enabler have a first functional version

Feature implementation status

Authorization Server first version development completed. Pending

developments:

• Definition of related enabler integration details, to complete next

version.

Encapsulation readiness
Components have been containerised as Docker images and deployed using

Docker Compose. Kubernetes deployment is ongoing.

Deployed with the Orchestrator in a

laboratory environment
Not yet

3.4. DLT-based enablers

3.4.1. Logging and Auditing enabler

3.4.1.1. Structure and functionalities

Structure and functionalities have not changed with respect to deliverable D5.2 content.

Implementation technologies

Table 39. Implementation technologies for the Logging and Auditing enabler

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart Contracts)

The Hyperledger is a fitting choice for building a private

network to support the creation of a consortium

blockchain. The technology provides permissions to

handle the network along with a good scalability.

Hyperledger Fabric can have its value augmented by

deploying smart contracts to automate functions.

Logging and Auditing

business logic

Hyperledger Fabric peers,

orderers

Hyperledger Fabric

peers and orderers

Hyperledger Fabric

Certificate Authority (CA)

Certification

Authorities (CAs)

REST (Enabler's API)

A popular web microframework written in Python,

FastAPI is known for being both robust and high

performing. It is based on OpenAPI (previously Swagger)

standards.

DLT API

3.4.1.2. Communication interfaces

Table 40. Communication interfaces (API) of the Logging and Auditing enabler

Method Endpoint Description

POST /log Create logs

GET /gets Get list of logs

GET /getbyid/{id} Get log by specific id

3.4.1.3. Use cases

Use cases have not changed with respect to deliverable D5.2 content.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/authorization_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/cybersecurity/authorization_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 49 of 60

3.4.1.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/dlt/logging_and_auditing_enabler.html

Table 41. Implementation status of the Logging and Auditing enabler

Category Status

Components implementation A first version of all the components are in place

Feature implementation status

The basic features of these components are working in the minimum

viable product principle. It remains to:

• Integrate with other enablers.

• Proceed with encapsulation.

Encapsulation readiness Components are yet to be encapsulated

Deployed with the Orchestrator in a

laboratory environment
Not yet

3.4.2. Data Integrity Verification enabler

3.4.2.1. Structure and functionalities

Structure and functionalities have not changed with respect to deliverable D5.2 content.

Implementation technologies

Table 42. Implementation technologies for the Data Integrity Verification enabler

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart Contracts)

The Hyperledger is a fitting choice for building a

private network to support the creation of a

consortium blockchain. The technology provides

permissions to handle the network along with a good

scalability. Hyperledger Fabric can have its value

augmented by deploying smart contracts to automate

functions.

Logging and Auditing

business logic

Hyperledger Fabric peers,

orderers
Hyperledger Fabric peers

and orderers

Hypeledger Fabric Certificate

Authority (CA)

Certification Authorities

(CAs)

REST (Enabler's API)

A popular web microframework written in Python,

FastAPI is known for being both robust and high

performing. It is based on OpenAPI (previously

Swagger) standards.

DLT API

3.4.2.2. Communication interfaces

Table 43. Communication interfaces (API) of the Data Integrity Verification enabler

Method Endpoint Description

POST /updatedata Update data

GET /getdata Download data

3.4.2.3. Use cases

Use cases have not changed have not changed with respect to deliverable D5.2 content.

3.4.2.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/dlt/data_integrity_verification_enabler.html

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/logging_and_auditing_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/logging_and_auditing_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/data_integrity_verification_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/data_integrity_verification_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 50 of 60

Table 44. Implementation status of the Data Integrity Verification enabler

Category Status

Components implementation A first version of all the components are in place

Feature implementation status

The basic features of these components are working in the minimum

viable product principle. It remains to:

• Integrate with other enablers.

• Proceed with encapsulation.

Encapsulation readiness Components are yet to be encapsulated

Deployed with the Orchestrator in a

laboratory environment
Not yet

3.4.3. Distributed Broker enabler

3.4.3.1. Structure and functionalities

Structure and functionalities have not changed with respect to deliverable D5.2 content.

Implementation technologies

Table 45. Implementation technologies for the Distributed Broker enabler

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart

Contracts)

The Hyperledger is a fitting choice for building a private

network to support the creation of a consortium blockchain.

The technology provides permissions to handle the network

along with a good scalability. Hyperledger Fabric can have

its value augmented by deploying smart contracts to

automate functions.

Logging and Auditing

business logic

Hyperledger Fabric peers,

orderers

Hyperledger Fabric

peers and orderers

Hypeledger Fabric

Certificate Authority (CA)

Certification

Authorities (CAs)

REST (Enabler's API)

A popular web microframework written in Python, FastAPI

is known for being both robust and high performing. It is

based on OpenAPI (previously Swagger) standards.

DLT API

3.4.3.2. Communication interfaces

Table 46. Communication interfaces (API) of the Distributed Broker enabler

Method Endpoint Description

POST /insert Post data source metadata to the Data Consumer, given the source id

GET /get Get data source metadata from Data Provider (source)

3.4.3.3. Use cases

Use cases have not changed with respect to deliverable D5.2 content.

3.4.3.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/dlt/distributed_broker_enabler.html

Table 47. Implementation status of the Distributed Broker enabler

Category Status

Components implementation A first version of all the components are in place

Feature implementation status

The basic features of these components are working in the minimum

viable product principle. It remains to:

• Integrate with other enablers.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/distributed_broker_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/distributed_broker_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 51 of 60

Category Status

• Proceed with encapsulation.

Encapsulation readiness Components are yet to be encapsulated

Deployed with the Orchestrator in a

laboratory environment
Not yet

3.4.4. DLT-based FL enabler

3.4.4.1. Structure and functionalities

Structure and functionalities have not changed with respect to deliverable D5.2 content.

Implementation technologies

Table 48. Implementation technologies for the DLT-based FL enabler

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart Contracts)

The Hyperledger is a fitting choice for building a private

network to support the creation of a consortium

blockchain. The technology provides permissions to

handle the network along with a good scalability.

Hyperledger Fabric can have its value augmented by

deploying smart contracts to automate functions.

Logging and Auditing

business logic

Hyperledger Fabric peers,

orderers
Hyperledger Fabric

peers and orderers

Hypeledger Fabric Certificate

Authority (CA)

Certification Authorities

(CAs)

REST (Enabler's API)

A popular web microframework written in Python,

FastAPI is known for being both robust and high

performing. It is based on OpenAPI (previously

Swagger) standards.

DLT API

3.4.4.2. Communication interfaces

Table 49. Communication interfaces (API) of the DLT-based FL enabler

Method Endpoint Description

POST /post Post the aggregated model (or the global model)

GET /get
Get the updated models from FL Local operations (FL Privacy should take place prior to the

data transmission)

3.4.4.3. Use cases

Use cases have not changed with respect to deliverable D5.2 content.

3.4.4.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/dlt/dlt_based_fl_enabler.html

Table 50. Implementation status of the DLT-based FL enabler

Category Status

Components implementation A first version of all the components are in place

Feature implementation status

The basic features of these components are working in the minimum

viable product principle. It remains to:

• Integrate with other enablers.

• Proceed with encapsulation.

Encapsulation readiness Components are yet to be encapsulated

Deployed with the Orchestrator in a

laboratory environment
Not yet

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/dlt_based_fl_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/dlt/dlt_based_fl_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 52 of 60

3.5. Manageability

3.5.1. Enabler for Registration and Status of enablers

3.5.1.1. Structure and functionalities

Integrated in the tactile dashboard, this enabler will serve as a registry of enablers and, in case they are deployed,

a means of retrieving their status. In particular, it will: (i) allow the registration of an enabler (this is, from an

ASSIST-IoT repository). Essential enablers will be pre-registered; (ii) retrieve a list of currently running

enablers; (iii) depict the status and the specific logs of an enabler (the latter only if the enabler with log collection

capabilities is in place); and (iv) facilitate the deployment of standalone enablers (mostly for those that have to

be present at any deployment).

Figure 33. Enabler for registration and status of enablers structure

Implementation technologies

Table 51. Implementation technologies for the Registration and Status of enablers

Technology Justification Component(s)

PUI9

Framework developed and provided by Prodevelop to build dashboards and

user interfaces. The dashboard and the dashboard backend are developed using

this framework.

Dashboard and

dashboard backend

Vue.js A JavaScript framework used by the PUI9 client to create user interfaces. Dashboard

Java The object-oriented programming language used to create the PUI9 backend. Dashboard backend

Spring

framework

One of the most popular Java frameworks to develop microservices,

completely oriented to build microservices ready to be deployed at the cloud.

The PUI9 backend is built using the Spring framework.

Dashboard backend

PostgreSQL
Database needed to interact with the PUI9 backend and to persist the

dashboard features.
Database

Docker

images
All components are built as custom Docker images. All components

3.5.1.2. Communication interfaces

Table 52. Communication interfaces (API) of the Registration and Status of enablers

Method Endpoint Description

GET /dashboard/enablers Enablers view of the dashboard

3.5.1.3. Use cases

There are five use cases that apply this enabler. The first use case is to show the list of the deployed enablers

in a table. The diagram and related steps are the following:

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 53 of 60

Figure 34. Enabler for Registration and Status of enablers UC1 (show deployed enablers)

STEP 1: The user interacts with the tactile dashboard and selects the enablers view on the menu.

STEP 2: The dashboard sends an HTTP GET request to its backend to obtain the list of deployed enablers.

STEP 3: The backend sends an HTTP GET request to the Smart Orchestrator API to obtain a list with the

deployed enablers, which returns the demanded list.

STEP 4: The backend provides to the dashboard the list with the deployed enablers, then shown on it.

The second use case is to deploy a new enabler. The diagram and involved steps are the following:

Figure 35. Enabler for Registration and Status of enablers UC2 (deploy an enabler)

STEP 1: The user interacts with the tactile dashboard, clicks on the “Add new enabler” button and fills in the

“new enabler” form.

STEP 2: The dashboard sends an HTTP POST request to its backend to deploy the new enabler, which forwards

the request to the Smart Orchestrator API.

STEP 3: The Smart Orchestrator API returns the result of the operation.

STEP 4: If the enabler has been deployed successfully, the dashboard shows to the user the updated list of

enablers. To that end, the first use case is instantiated. It should include the recently-added enabler.

The third use case is to terminate a deployed enabler, the step before deleting an enabler. The diagram and

related steps are the following:

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 54 of 60

Figure 36. Enabler for Registration and Status of enablers UC3 (terminate an enabler)

STEP 1: The user interacts with the tactile dashboard and clicks on the “Terminate enabler” button.

STEP 2: The dashboard sends an HTTP PUT request to its backend to terminate the selected enabler, which

forwards the request to the Smart Orchestrator API (in this case, via POST).

STEP 3: The Smart Orchestrator API returns the result of the operation.

STEP 4: If the enabler has been terminated successfully, the dashboard shows to the user the updated list of

enablers. To that end, the first use case is instantiated. It should mark the recently-terminated enabler as inactive.

The fourth use case is to delete a terminated enabler. The diagram and involved steps are the following:

Figure 37. Enabler for Registration and Status of enablers UC4 (delete an enabler)

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 55 of 60

STEP 1: The user interacts with the tactile dashboard and clicks on the “Delete enabler” button of a terminated

enabler.

STEP 2: The dashboard sends an HTTP DELETE request to its backend to delete the selected enabler, which

forwards the request to the Smart Orchestrator API.

STEP 3: The backend returns the result of the operation.

STEP 4: If the enabler has been deleted successfully, the dashboard shows to the user the updated list of

enablers. To that end, the first use case is instantiated. It should not plot the recently-terminated enabler.

The last (fifth) use case is to show the logs of a deployed enabler. Its diagram and related steps are the

following:

Figure 38. Enabler for Registration and Status of enablers UC5 (show enabler logs)

STEP 1: The user interacts with the tactile dashboard and clicks on the “Show enabler logs” button.

STEP 2: The dashboard sends an HTTP GET request to its backend to delete the selected enabler.

STEP 3: The backend performs a search query making an HTTP GET request to the LTSE API.

STEP 4: The LTSE API returns the result of the query to the backed, which passes it to the dashboard so the

user can visualise the list of logs of the selected enabler.

3.5.1.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/manageability/registration_and_status_enabler.html

Table 53. Implementation status of the Registration and Status of enablers

Category Status

Components implementation All the components of the enabler have a first functional version

Feature implementation status

The basic features are in place, however, some developments are pending:

• To configure the default parameters of an enabler, a form must be shown

based on a dedicated template per enabler, instead of introducing a raw

JSON object. The challenge is to customize this form for each enabler,

including all the customizable parameters in a user-friendly way.

• The use case related to logs has not been implemented yet.

Encapsulation readiness
Components have been containerised as Docker images and deployed using

Docker Compose. The Helm chart is under development.

Deployed with the Orchestrator

in a laboratory environment
Not yet

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/manageability/registration_and_status_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/manageability/registration_and_status_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 56 of 60

3.5.2. Enabler for Management of Services and Enablers’

Workflow

3.5.2.1. Structure and functionalities

Integrated in the tactile dashboard, this enabler will present a graphical environment where ASSIST-IoT

administrators can instantiate the enablers required to work, and also to connect them to compose a chain, or

service workflow, making use of a Directed Acyclic Graph (DAG) interface. Having information about the

physical topology and available k8s nodes/clusters, it will allow the user to decide whether to select the proper

node or cluster for deploying an enabler, or let the system decide based on pre-defined architectural rules.

Figure 39. Enabler for the Management of Services and Enablers’ Workflow structure

NOTE: The development is at very preliminary stage. For the sake of avoiding technological choices that might

be modified, no DAG-related solution is indicated at this moment.

Implementation technologies

Table 54. Implementation technologies for the Management of the Services and Enablers’ Workflow structure

Technology Justification Component(s)

PUI9

Framework developed and provided by Prodevelop to build dashboards and

user interfaces. The dashboard and the dashboard backend are developed

using this framework.

Dashboard and

dashboard backend

Vue.js A JavaScript framework used by the PUI9 client to create user interfaces. Dashboard

Java
The object-oriented programming language used to create the PUI9

backend.
Dashboard backend

Spring

framework

One of the most popular Java frameworks to develop microservices,

completely oriented to build microservices ready to be deployed at the

cloud. The PUI9 backend is built using the Spring framework.
Dashboard backend

PostgreSQL
Database needed to interact with the PUI9 backend and to persist the

dashboard features.
Database

Docker images All components are built as custom Docker images. All components

3.5.2.2. Communication interfaces

Table 55. Communication interfaces (API) of the Services and Enablers’ Workflow structure

Method Endpoint Description

GET /dashboard/workflow Services and enablers’ workflow view of the dashboard

3.5.2.3. Use cases

The component is in an early development stage, as it greatly depends on its interaction with other enablers (and

hence, need to have their APIs and environment variables in place). At the moment, it is not possible to describe

concise use cases, therefore for the sake of avoiding adding content that might be likely modified, use cases are

not indicated yet.

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 57 of 60

3.5.2.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/manageability/management_of_services_and_enablers.html

Table 56. Implementation status of the Services and Enablers’ Workflow structure

Category Status

Components implementation

The design is in place, as is identical to the first manageability enabler. However,

the dedicated interface and the backend functions related to it are yet to be

implemented.

Feature implementation status Not implemented yet.

Encapsulation readiness
As components have not been yet particularised to perform the operations related

to this enabler, Docker images have not been produced.

Deployed with the Orchestrator

in a laboratory environment
Not yet

3.5.3. Devices Management enabler

3.5.3.1. Structure and functionalities

Integrated in the tactile dashboard, the main functionalities of this enabler will be to register: (i) a smart IoT

device in a deployment, and (ii) a cluster in an ASSIST-IoT deployment, including in the latter case all the

necessary messages to notify it to the smart orchestrator. It will also execute all the required actions related to

networking for enabling connectivity among isolated/independent clusters, including those that have been added

via VPN/SD-WAN technology. Besides, it will allow monitoring any registered node and device in the

deployment, including its status (i.e., availability and used resources) and current instantiated enablers’

components.

Figure 40. Devices Management enabler structure

Implementation technologies

Table 57. Implementation technologies for the Devices Management enabler

Technology Justification Component(s)

PUI9

Framework developed and provided by Prodevelop to build dashboards

and user interfaces. The dashboard and the dashboard backend are

developed using this framework.

Dashboard and

dashboard backend

Vue.js A JavaScript framework used by the PUI9 client to create user interfaces. Dashboard

Java
The object-oriented programming language used to create the PUI9

backend.
Dashboard backend

Spring framework

One of the most popular Java frameworks to develop microservices,

completely oriented to build microservices ready to be deployed at the

cloud. The PUI9 backend is built using the Spring framework.

Dashboard backend

PostgreSQL
Database needed to interact with the PUI9 backend and to persist the

dashboard features.
Database

Docker images All components are built as custom docker images. All components

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/manageability/management_of_services_and_enablers.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/manageability/management_of_services_and_enablers.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 58 of 60

3.5.3.2. Communication interfaces

Table 58. Communication interfaces (API) of the Devices Management enabler

Method Endpoint Description

GET /dashboard/devices Services view of the dashboard

3.5.3.3. Use cases

There are three use cases that apply this enabler. The first use case is to show a list of the registered K8s

clusters in a table. The diagram and related steps are the following:

Figure 41. Devices Management enabler UC1 (show registered clusters)

STEP 1: The user interacts with the tactile dashboard and selects the K8s clusters view on the menu.

STEP 2: The dashboard sends an HTTP GET request to its backend to obtain the list of registered clusters,

which forwards it to the Smart Orchestrator API to obtain a list with the registered clusters.

STEP 3: The Smart Orchestrator API returns the list with the registered clusters, and the backend sends this

information to the dashboard to print a list with the registered clusters.

The second use case is to register a new K8s cluster. The diagram and the involved steps are the following:

Figure 42. Devices Management enabler UC2 (register cluster)

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 59 of 60

STEP 1: The user interacts with the tactile dashboard, clicks on the “Add new cluster” button and fills in the

“new cluster” form.

STEP 2: The dashboard sends an HTTP POST request to its backend to register the new cluster, which forwards

it to the Smart Orchestrator.

STEP 3: The Smart Orchestrator API returns the result of the operation.

STEP 4: If the cluster has been registered successfully, the dashboard shows to the user the updated list of

registered clusters. To that end, the first use case is instantiated.

The last (third) use case is to delete a registered K8s cluster. The diagram and related steps are the following:

Figure 43. Devices Management enabler UC3 (delete cluster)

STEP 1: The user interacts with the tactile dashboard and clicks on the “Delete cluster” button.

STEP 2: The dashboard sends an HTTP DELETE request to its backend to delete the selected cluster, which

forwards it to the Smart Orchestrator.

STEP 3: The Smart Orchestrator API returns the result of the operation.

STEP 4: If the cluster has been deleted successfully, the dashboard shows to the user the updated list of

registered clusters. To that end, the first use case is instantiated.

NOTE: The use cases related to Smart IoT devices management are yet to be designed as they have not been

implemented yet.

3.5.3.4. Implementation status

Link to Readthedocs (structure defined with WP6 documentation task): https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/verticals/manageability/devices_management_enabler.html

Table 59. Implementation status of the Devices Management enabler

Category Status

Components implementation All the components of the enabler have a first functional version

Feature implementation status

The basic features to manage k8s clusters are in place. However, some

developments are pending:

• Manage clusters that make use of SD-WAN or VPN connections.

• Manage Smart IoT devices.

Encapsulation readiness
Components have been containerised as Docker images and deployed using

Docker Compose. The Helm chart is under development.

Deployed with the Orchestrator in a

laboratory environment
Not yet

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/manageability/devices_management_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/verticals/manageability/devices_management_enabler.html

Deliverable D5.3 – Transversal Enablers Development Intermediate Version

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 60 of 60

4. Future Work

This document provides an update and extension of the specifications provided in the first iteration of this

deliverable series. Apart from providing insight about technical information for the transversal enablers, it also

encompasses software outcomes as of M18. These software outcomes are at different levels of development:

some of them are containerised, others integrated with K8s (manifests ready) or prepared for packaging (in

Helm charts), whereas the implementation of a few of them are still in an immature stage. It should be

highlighted that the development of the enablers identified as essential has been prioritised for this release, and

hence a functional version is already available.

The enablers developed so far allows for continuing efforts related to this and other work packages:

• To finish the development of the components of the enablers (WP5).

• To containerise, and/or generate the K8s manifests required to deploy them in those cases that have not

virtualized the overall solution (WP5).

• To perform the testing and integration methodologies for each enabler (WP6).

• To perform the necessary modifications, in order to ensure the proper interactions between enablers

from WP4 & WP5.

• To package, publish and release the enablers as Helm charts (WP6).

• To start implementing them in pilots for further validation and assessment (WP7), either fully or

partially packaged.

In the next (and last) iteration of the deliverable, all the enablers will have a functional packaged version

available. They will be accompanied by another document, in which all the modifications and deviations will

be reported, as well as an update with the final enabler templates.

