

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D4.2 Core Enablers Specification and

Implementation
Deliverable No. D4.2 Due Date 30-APR-2022

Type Report Dissemination Level Public

Version 1.0 WP WP4

Description Core specification and implementation status of Smart IoT Devices, Edge Nodes

and enablers of the horizontal planes of ASSIST-IoT. Intermediate specification

and first version of implementation of components of horizontal planes.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 2 of 83

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 3 of 83

Authors
Name Partner e-mail

Alejandro Fornés P01 UPV alforlea@upv.es

Francisco Mahedero P01 UPV framabio@upv.es

Rafael Vañó P01 UPV ravagar2@upv.es

Ignacio Lacalle P01 UPV iglaub@upv.es

Eduardo Garro P02 PRO egarro@prodevelop.es

Ernesto Calas P02 PRO ecalas@prodevelop.es

Miguel Llacer P02 PRO mllacer@prodevelop.es

Paweł Szmeja P03 IBSPAN pawel.szmeja@ibspan.waw.pl

Piotr Sowiński P03 IBSPAN piotr.sowinski@ibspan.waw.pl

Evripidis Tzionas P04 CERTH tzionasev@iti.gr

Georgios Stavropoulos P04 CERTH stavrop@iti.gr

Nikolaos Vrionis P06 INFOLYSIS nvrionis@infolysis.gr

Theoni Dounia P06 INFOLYSIS tdounia@infolysis.gr

Aggeliki Papaioannou P06 INFOLYSIS apapaioannou@infolysis.gr

Alex van den Heuvel P09 NEWAYS alex.van.den.heuvel@newayselectronics.com

Ron Schram P09 NEWAYS Ron.Schram@newayselectronics.com

Fotios Konstantinidis P10 ICCS fotios.konstantinidis@iccs.gr

Tina Katika P10 ICCS tina.katika@iccs.gr

Thomas Papaioannou P10 ICCS thomas.papaioannou@iccs.gr

Aristeidis Dadoukis P10 ICCS aristeidis.dadoukis@iccs.gr

Konstantinos Routsis P10 ICCS konstantinos.routsis@iccs.gr

Zbigniew Kopertowski P15 OPL Zbigniew.Kopertowski@orange.com

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 4 of 83

History
Date Version Change

21-Dec-2021 0.1 ToC presented

7-Apr-2022 0.2 First round of contributions completed

14-Apr-2022 0.3 Integration and minor modifications

19-Apr-2022 0.4 Second round of contributions completed. Ready for internal review

28-Apr-2022 0.9 Integration of changes from IR

29-Apr-2022 1.0 Final version submitted to EC

Key Data
Keywords Enablers, Edge nodes, Smart IoT devices, Implementation

Lead Editor Eduardo Garro (P02 - PRO), Alejandro Fornés (P01 - UPV)

Internal Reviewer(s) Ignacio Lacalle (P01 - UPV), Francisco Blanquer (P05 - TL)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 5 of 83

Executive Summary
This deliverable is written in the framework of WP4 – Core enablers design and development of ASSIST-IoT

project under Grant Agreement No. 957258. The document gathers the work and outcomes of the four tasks of

the work package in the period M9-M18, which are devoted to the design and implementation of enablers and

hardware elements required to implement the different planes of the ASSIST-IoT architecture.

The realisation of the ASSIST-IoT architecture requires the design and development of specific elements, both

software and hardware, that support the exposed functionalities and in the way they have been conceived: these

are the Smart IoT Devices, the Edge Nodes and the enablers of the architecture. Being the second version of a

series of three deliverables, this document updates and extends the specifications presented in the first

deliverable (D4.1), accompanied by the software artifacts (i.e., enablers) developed so far.

Regarding the hardware specifications of the equipment designed and (to be) produced within the project, the

schematic design, the PCB layout of ASSIST-IoT’s Gateway/Edge Node (GWEN) and the updates with respect

to the inputs of the first iteration are presented. The final design of the Smart IoT devices, namely the

localisation tag and the fall arrest device, are also depicted. First products are expected to be ready for use in

the pilots from M23.

Enablers will be the main output of the tasks related to the upper planes of ASSIST-IoT (T4.2, T4.3 and T4.4).

An enabler represents a collection of components, running on hardware nodes, that communicate with each

other for delivering a particular functionality to the system. Enablers can only be interacted with via their

exposed interfaces. A total of 19 enablers were introduced in the first iteration of the deliverable. In this iteration,

apart from design updates, a first functional version of most (15) of the enablers is delivered, specifically:

 All the WP4 essential enablers (i.e., those that are vital to be present in any deployment for the ASSIST-

IoT system to work): (i) the Smart Orchestrator enabler, (ii) the VPN enabler, (iii) the Edge Data Broker

enabler, (iv) the Long-Term Storage Enabler (i.e., LTSE), (v) the Tactile Dashboard and (vi) the

OpenAPI management enabler will have a first version.

 Most of the non-essential enablers: (i) the SDN Controller, (ii) the Traffic Classification enabler, (iii)

the Semantic Repository enabler, (iv) the Semantic Translator enabler, (v) the Semantic Annotator

enabler, the (vi) business KPI reporting enabler, the (vii) Performance and Usage Diagnosis (PUD)

enabler, (viii) the Video Augmentation enabler and (ix) the MR enabler.

Apart from the software outcomes, additional information is presented (diagram of use cases, endpoints,

implementation status) jointly with an update of the features and internal structure, when needed. Being the

second of a series of three iterations, the software products and the information provided in this deliverable are

still subject to change, due to potential addition of new (or yet not implemented) features.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 6 of 83

Table of contents

Table of contents ... 6

List of figures .. 7

List of tables .. 8

List of acronyms .. 10

1. About this document .. 12

1.1. Deliverable context .. 12

1.2. The rationale behind the structure .. 12

1.3. Outcomes of the deliverable... 13

1.4. Lessons learnt ... 13

1.5. Deviation and corrective actions .. 14

2. Introduction ... 15

3. Devices specifications ... 16

3.1. Specifications update ... 16

3.1.1. ASSIST-IoT localisation tag .. 16

3.1.2. ASSIST-IoT fall arrest device ... 16

3.1.3. GWEN ... 17

3.2. Development status .. 19

4. Horizontal enablers update and implementation status ... 20

4.1. Smart Network and Control enablers ... 20

4.1.1. Smart Orchestrator ... 20

4.1.2. SDN Controller .. 26

4.1.3. Auto-configurable Network enabler .. 29

4.1.4. Traffic Classification enabler ... 31

4.1.5. Multi-link enabler .. 33

4.1.6. SD-WAN enabler ... 36

4.1.7. WAN Acceleration enabler .. 40

4.1.8. VPN enabler ... 42

4.2. Data Management enablers .. 46

4.2.1. Semantic Repository enabler ... 46

4.2.2. Semantic Translation enabler ... 51

4.2.3. Semantic Annotation enabler ... 55

4.2.4. Edge Data Broker .. 59

4.2.5. Long-term Storage Enabler .. 62

4.3. Application and Services enablers ... 67

4.3.1. Tactile Dashboard .. 67

4.3.2. Business KPI Reporting enabler .. 71

4.3.3. Performance and Usage Diagnosis enabler .. 73

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 7 of 83

4.3.4. OpenAPI Management enabler .. 75

4.3.5. Video Augmentation enabler ... 78

4.3.6. MR enabler .. 80

5. Future Work .. 83

List of figures

Figure 1. ASSIST-IoT enablers and hardware elements formalised ... 15
Figure 2. Block schematic diagram of the localisation tag. ... 16
Figure 3. Block schematic diagram of the fall arrest device. .. 17
Figure 4. Gateway/Edge node block schematic diagram. .. 17
Figure 5. Top view of the carrier board. .. 18
Figure 6. Bottom view of the carrier board. .. 18
Figure 7. High-level diagram of the Smart Orchestrator enabler .. 20
Figure 8. Smart Orchestrator enabler UC1 (add cluster) ... 22
Figure 9. Smart Orchestrator enabler UC2 (add Helm repository) ... 22
Figure 10. Smart Orchestrator enabler UC3 (deploy enabler, automatic case) ... 23
Figure 11. Smart Orchestrator enabler UC3 (deploy enabler, manual case) ... 23
Figure 12. Smart Orchestrator enabler UC4 (terminate enabler) .. 24
Figure 13. Smart Orchestrator enabler UC5 (delete enabler) .. 24
Figure 14. Smart Orchestrator enabler UC6 (get enablers) ... 25
Figure 15. Smart Orchestrator enabler UC7 (delete cluster) ... 25
Figure 16. Smart Orchestrator enabler UC8 (remove Helm repository) ... 26
Figure 17. High-level diagram of the SDN Controller. ... 27
Figure 18. SDN Controller UC1 (device configuration) ... 28
Figure 19. SDN Controller UC2 (intent deployment) ... 28
Figure 20. SDN Controller UC3 (topology discovery) ... 29
Figure 21. High-level diagram of the Auto-configurable Network enabler. ... 30
Figure 22. Auto-configurable Network enabler UC (policy-based network adaptation) 30
Figure 23. High-level diagram of the Traffic Classification enabler ... 31
Figure 24. Traffic Classification enabler UC1 (model training) ... 32
Figure 25. Traffic Classification enabler UC2 (packet classification) .. 33
Figure 26. High-level diagram of the Multi-link enabler .. 34
Figure 27. Multi-link enabler UC (addition/elimination of interfaces) ... 35
Figure 28. High-level diagram of the SD-WAN enabler ... 36
Figure 29. SD-WAN enabler UC1 (overlay management) ... 38
Figure 30. SD-WAN enabler UC2 (tunnel establishment) .. 38
Figure 31. SD-WAN enabler UC3 (connection of hubs with edge cluster) .. 39
Figure 32. High-level diagram of the WAN Acceleration enabler .. 40
Figure 33. WAN Acceleration enabler UC (configuring/querying the CNF) ... 41
Figure 34. High-level diagram of the VPN enabler ... 42
Figure 35. VPN enabler UC1 (get network interface information) ... 43
Figure 36. VPN enabler UC2 (generate client keys and create client) .. 44
Figure 37. VPN enabler UC3 (delete client) ... 45
Figure 38. VPN enabler UC4 (enable/disable client) .. 45
Figure 39. VPN enabler UC5 (connect client) .. 46
Figure 40. High-level diagram of the Semantic Repository enabler ... 47
Figure 41. Semantic Repository enabler UC1 (modify metadata) .. 48
Figure 42. Semantic Repository enabler UC2 (get metadata) ... 48
Figure 43. Semantic Repository enabler UC3 (upload file with model) ... 49
Figure 44. Semantic Repository enabler UC4 (get file with model) ... 50
Figure 45. Semantic Repository enabler UC5 (use documentation sandbox) ... 50

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 8 of 83

Figure 46. Semantic Repository enabler UC6 (manage the enabler with the GUI) .. 50
Figure 47. High-level diagram of the Semantic Translation enabler ... 51
Figure 48. Semantic Translation enabler UC1 (store alignment) .. 53
Figure 49. Semantic Translation enabler UC2 (get alignment metadata) ... 53
Figure 50. Semantic Translation enabler UC3 (create stream-based translation channel) 54
Figure 51. High-level diagram of the Semantic Annotation enabler ... 55
Figure 52. Semantic Annotation enabler UC1 (prepare RML files) ... 56
Figure 53. Semantic Annotation enabler UC2 (batch annotation) .. 57
Figure 54. Semantic Annotation enabler UC3 (configure channel for stream annotation) 57
Figure 55. Semantic Annotation enabler UC4 (stream annotation) .. 58
Figure 56. High-level diagram of the Edge Data Broker ... 59
Figure 57. Edge Data Broker UC1 (data distribution) ... 60
Figure 58. Edge Data Broker UC2 (rule engine) ... 61
Figure 59. Edge Data Broker UC3 (data filtering) .. 62
Figure 60. High-level diagram of the Long-term Storage enabler .. 63
Figure 61. LTSE UC1 (store NoSQL data) ... 64
Figure 62. LTSE UC2 (get NoSQL data) .. 65
Figure 63. LTSE UC3 (store SQL data) .. 66
Figure 64. LTSE UC4 (get SQL data) .. 66
Figure 65. High-level diagram of the Tactile Dashboard .. 67
Figure 66. Tactile Dashboard UC1 (login webpage) ... 69
Figure 67. Tactile Dashboard UC2 (show data managed by PUI9 database) .. 69
Figure 68. Tactile Dashboard UC3 (show data not managed by PUI9 database) ... 70
Figure 69. High-level diagram of the Business KPI Reporting enabler .. 71
Figure 70. Business KPI Reporting enabler UC (generate graphs from time-series data) 72
Figure 71. High-level diagram of the Performance and Usage Diagnosis enabler .. 73
Figure 72. PUD UC (monitoring cluster and enablers) ... 74
Figure 73. High-level diagram of the OpenAPI Management enabler .. 75
Figure 74. OpenAPI Management enabler UC1 (get API documentation) ... 76
Figure 75. OpenAPI Management enabler UC2 (publish API document) .. 77
Figure 76. OpenAPI Management enabler UC3 (interact with enablers) .. 77
Figure 77. High-level diagram of the Video Augmentation enabler ... 78
Figure 78. Video Augmentation enabler UC1 (model training) .. 79
Figure 79. Video Augmentation enabler UC2 (video inference) .. 80
Figure 80. High-level diagram of the MR enabler .. 81
Figure 81. MR enabler UC (3D visualisation, asset identification, alerting and notification) 82

List of tables

Table 1. Development status of GWEN and Smart IoT devices ... 19
Table 2. Implementation technologies for the Smart Orchestrator enabler ... 21
Table 3. Communication interfaces (API) of the Smart Orchestrator enabler .. 21
Table 4. Implementation status of the Smart Orchestrator enabler ... 26
Table 5. Communication interfaces (API) of the SDN Controller enabler ... 27
Table 6. Implementation status of the SDN Controller enabler .. 29
Table 7. Implementation technologies for the Auto-configurable Network enabler ... 30
Table 8. Communication interfaces (API) of the Auto-configurable Network enabler 30
Table 9. Implementation status of the Auto-configurable Network enabler ... 31
Table 10. Implementation technologies for the Traffic Classification enabler ... 32
Table 11. Communication interfaces (API) of the Traffic Classification enabler ... 32
Table 12. Implementation status of the Traffic Classification enabler .. 33
Table 13. Implementation technologies for the Multi-link enabler ... 34
Table 14. Communication interfaces (API) of the Multi-link enabler .. 34

file:///C:/Users/usuario/Desktop/ASSIST-IOT/WP4/Deliverables/D4.2/ASSIST-IoT_D4.2_Core%20Enablers%20Specification%20and%20Implementation_v1.0.docx%23_Toc102061209

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 9 of 83

Table 15. Implementation status of the Multi-link enabler ... 36
Table 16. Implementation technologies for the SD-WAN enabler ... 37
Table 17. Communication interfaces (API) of the SD-WAN enabler ... 37
Table 18. Implementation status of the SD-WAN enabler .. 39
Table 19. Implementation technologies for the WAN acceleration enabler .. 40
Table 20. Communication interfaces (API) of the WAN Acceleration enabler .. 41
Table 21. Implementation status of the WAN Acceleration enabler ... 42
Table 22. Implementation technologies for the VPN enabler ... 42
Table 23. Communication interfaces (API) of the VPN enabler ... 43
Table 24. Communication interface (UDP) of the VPN enabler – VPN server .. 43
Table 25. Implementation status of the VPN enabler .. 46
Table 26. Implementation technologies for the Semantic Repository enabler .. 47
Table 27. Communication interfaces (API) of the Semantic Repository enabler ... 47
Table 28. Implementation status of the Semantic Repository enabler .. 51
Table 29. Implementation technologies for the Semantic Translation enabler ... 52
Table 30. Communication interfaces (API) of the Semantic Translation enabler – API Server 52
Table 31. Communication interfaces of the Semantic Translation enabler – Streaming broker 52
Table 32. Implementation status of the Semantic Translation enabler .. 54
Table 33. Implementation technologies for the Semantic Annotation enabler .. 55
Table 34. Communication interfaces (API) of the Semantic Annotation enabler – API server 55
Table 35. Communication interfaces of the Semantic Annotation enabler – Streaming broker 56
Table 36. Implementation status of the Semantic Annotation enabler .. 59
Table 37. Implementation technologies for the Edge Data Broker ... 60
Table 38. Communication interfaces (API) of the Edge Data Broker ... 60
Table 39. Communication interfaces (MQTT) of the Edge Data Broker – Data Routing 60
Table 40. Implementation status of the Edge Data Broker .. 62
Table 41. Implementation technologies for the Long-term Storage enabler ... 63
Table 42. Communication interfaces (API) of the Long-term Storage enabler ... 64
Table 43. Implementation status of the Long-term Storage enabler ... 67
Table 44. Implementation technologies for the Tactile Dashboard ... 68
Table 45. Communication interfaces (API) of the Tactile Dashboard .. 68
Table 46. Implementation status of the Tactile Dashboard ... 70
Table 47. Implementation technologies for the Business KPI Reporting enabler ... 71
Table 48. Communication interfaces (API) of the Business KPI Reporting enabler .. 72
Table 49. Implementation status of the KPI Reporting enabler .. 72
Table 50. Implementation technologies for the Performance and Usage Diagnosis enabler 73
Table 51. Communication interfaces (API) of the Performance and Usage Diagnosis enabler 73
Table 52. Implementation status of the Performance and Usage Diagnosis enabler ... 75
Table 53. Implementation technologies for the OpenAPI Management enabler .. 76
Table 54. Communication interfaces (API) of the OpenAPI Management enabler .. 76
Table 55. Implementation status of the Open API Management enabler .. 78
Table 56. Implementation technologies for the Video Augmentation enabler .. 79
Table 57. Communication interfaces (API) of the Video Augmentation enabler ... 79
Table 58. Implementation status of the Video Augmentation enabler .. 80
Table 59. Implementation technologies for the MR enabler ... 81
Table 60. Communication interfaces of the MR enabler ... 81
Table 61. Implementation status of the MR enabler ... 82

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 10 of 83

List of acronyms

Acronym Explanation

AI Artificial Intelligence

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

B2B Board-to-Board

CDR Custom Definition Resource

CLI Command Line Interface

CNI Container Network Interface

CNF Cloud-native Network Function / Containerised Network function

CSV Comma Separated Value

DB Database

DHCP Dynamic Host Configuration Protocol

DNN Deep Neural Network

DNS Domain Name System

DT Decision Tree

EDB Edge Data Broker

FL Federated Learning

GWEN (ASSIST-IoT’s) Gateway/Edge Node

gRPC gRPC Remote Procedure Calls

GUI Graphical User Interface

HA High Availability

HMD Head-Mounted Device

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IdM Identity Manager

IMU Inertial Measurement Unit

IoT Internet of Things

IP Internet Protocol

IPSec Internet Protocol Security

IPSM Inter Platform Semantic Mediator

JSON JavaScript Object Notation

KNN K-Nearest Neighbours

KPI Key Performance Indicator

LED Light Emitting Diode

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 11 of 83

LTSE Long-Term Storage Enabler

MANO Management and Orchestration

ML Machine Learning

MQTT MQ Telemetry Transport

MR Mixed Reality

NAT Network Address Translation

NB Northbound

NFV Network Function Virtualisation

NFVO Network Function Virtualisation Orchestrator

NoSQL Not Only Structured Query Language

ONOS Open Network Operating System

OSM Open Source MANO

OVN Open Virtual Network

OVS Open vSwitch

PCB Printed Circuit Board

PUD Performance and Usage Diagnosis

PUI9 Prodevelop User Interface

PromQL Prometheus Query Language

PV Persistent Volume

PVC Persistent Volume Claim

RDF Resource Description Framework

REST REpresentational State Transfer

RF Random Forest

RML RDF Mapping Language

RTT Round-Trip Time

SB Southbound

SDN Software-Defined Networking

SD-WAN Software-Defined Wide Area Network

SPA Single Page Applications

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

VIM Virtualised Infrastructure Manager

VPN Virtual Private Network

WAN Wide Area Network

XML Extensible Markup Language

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 12 of 83

1. About this document

The objective of this deliverable is two-fold: (i) to update the specifications and attach additional

information regarding the horizontal enablers designed, and (ii) to provide a first functional version of the

enablers developed so far. These enablers are the cornerstone of the project, since they will enable the

deployment of an ASSIST-IoT architecture in a particular environment, allowing its further evaluation within

the pilots involved in the project. Being the only document that gathers the outcomes of WP4, D4.2 will also

include the updated specifications and schematics of the ASSIST-IoT’s Gateway/Edge Node (GWEN) and the

Smart IoT devices that are to be developed specifically for the project, despite not being enablers per se.

It should be highlighted that this deliverable corresponds to the second document of a series of three iterations,

and therefore its content will be expanded and adapted as the project evolves. The rationale behind the iterative

nature of its development is based on the fact that both the requirements and the architecture, produced by the

developments in WP3, are still evolving (and therefore new enablers or modifications in the current ones may

be needed), and as a result the interactions between enablers from WP4 and WP5 may require adapting them

(in the form of new interfaces, methods, components, etc.).

1.1. Deliverable context

Keywords Lead Editor

Objectives O2: D4.1 presents the updated specifications of the enablers of the Network’s plane (some

of them), as well as a first functional version of some of them.

O3: Specifications of enablers focused on data (semantics, broker, storage) are provided, as

well as a first functional version of them.

O5: Human-centric interfaces for the use cases are presented.

Work plan

Milestones This deliverable does not mark any specific milestone; still, it contributes to an update of

MS3 – Enablers defined, achieved in M12. Although far in time, it is also central part of MS6

– Software structure finished.

Deliverables This deliverable receives inputs from D3.3 (requirements and use cases – second iteration)

and D3.6 (architecture definition – second iteration). Outcomes will feed WP6 deliverables

related to testing, integration, distribution and documentation, they will be the cornerstone of

pilots’ implementations of WP7, and they will be a key part in the technical evaluation to be

performed under the scope of WP8.

1.2. The rationale behind the structure

This deliverable consists of four main sections, following a different approach with respect to D4.1, where most

of the content was moved to annexes. It starts with an introduction (Section 2), followed by a section dedicated

to the design of the GWEN and the Smart IoT devices (Section 3). Afterwards, Section 4 presents an update of

the features provided (or to be provided) by the enablers of each horizontal plane, as well as new information

related to endpoints, use-case diagrams and implementation status. Finally, the remaining work towards the last

year of activity in the Work Package is summarised in Section 5 and will be documented in D4.3.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 13 of 83

1.3. Outcomes of the deliverable

The deliverable consists not only of the present document, but also of the software artifacts developed and

implemented so far. Apart from providing updated information with respect to the previous deliverable iteration

(D4.1), this document formalises primarily the technological choices and the interaction between the internal

components of the enablers.

Software artifacts are being developed at varying paces, having focused on the enablers catalogued as essential

(this does not entail being more important or interesting, but rather that they need to be in place before other for

facilitating their use, configuration and other common features – see deliverable D3.6 for more information

about “essential” enablers). Also, functional versions of these enablers might be ready for Kubernetes or just

for Docker (to be deployed via Docker Compose). Although documented more extensively in the Readthedocs

documentation related to T6.4, a summary of each enabler implementation status is given.

In summary, the following enablers have a first functional version: The Smart Orchestrator enabler, the SDN

Controller, the Traffic Classification enabler, the VPN enabler, the Semantic Repository enabler, the Semantic

Translator enabler, the Semantic Annotator enabler the Edge Data Broker enabler, the Long-Term Storage

Enabler (i.e., LTSE), the Tactile Dashboard, the business KPI reporting enabler, the Performance and Usage

Diagnosis (PUD) enabler, the OpenAPI Management enabler, the Video Augmentation enabler and the MR

enabler and will have a first version. However, there is pending effort to make them functional to be managed

by K8s masters, with dedicated manifests, as many of them are still just valid for Docker (with Docker

Compose).

During the next months, the missing features of the enablers will be implemented, and the needed adaptations

to work in a Kubernetes environment and to interact among them will be assessed and executed. These outcomes

will feed the Work Packages related to integration, deployment and assessment (i.e., WP6, WP7 & WP8).

1.4. Lessons learnt

During the past months, partners of the Consortium have focused their effort in developing and implementing

the components that will compose the enablers of the project. In addition, the design of the hardware elements

of the Edge and Device plane has been completed, being under production. The following insights have been

extracted:

 Modularity in the GWEN is of great interest, as it redounds in low base price and in case extra features

are required, it can be easily adapted.

 Designing enablers for IoT deployed in K8s clusters requires taking into account how K8s works.

Latency requirements might be severely affected if workloads are not deployed in nodes close to actions

or to the source of data.

 Although containers are portable, they are usually tight to a specific CPU architecture (e.g., ARMv7,

ARM64, x86, x64, etc.). Enablers that will be deployed in edge, low-resource nodes should have

components that consider ARM architectures, like that of RaspberryPis (either ready for that or

attaching guidelines to build them).

 SDN strategies based on typical controllers (e.g., OpenDaylight, ONOS, etc.) cannot be easily

integrated with K8s. In Kubernetes world, network-related rules are implemented through Container

Network Interface (CNI) technologies and plugins that, despite following very similar principles (also

SDN), do not follow the same architecture, technologies and protocols. Hence, SDN will be tested under

the hood, controlling the underlying network but not integrating it with K8s, as this kind of projects

have been discarded.

 The implementation of some components was relying in technologies that require too many resources,

which might be problematic in constrained environments. For this reason, some technological choices

have changed during the execution of the developments in M9-M18.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 14 of 83

1.5. Deviation and corrective actions

The Consortium is exerting efforts to formalise (in D4.1) and materialise (in D4.2 and later on finished in D4.3)

the envisioned enablers. However, there are some deviations or delays that have slightly altered the initial plan:

 SDN concepts applied in K8s will be realised considering Cilium as main technology. This was not the

original plan, becoming a feature that will be added to the Smart Orchestrator as it is the enabler in

charge of deploying resources over K8s infrastructure (in this case, CNI-related resources).

 Building the components into containers considering processor architectures, and realising the K8s

manifests (and later on, the Helm charts for packaging them into enablers) is not a straightforward task.

As some partners do not have the same degree of experience on these technologies, the implementation

time varies, and therefore a “Kubernetes task force” has been created in the project, with internal

workshops taking place to aid in the implementation and encapsulation of enablers.

 Implementing networking components in the form of containers managed by Kubernetes is far from

simple. There are several alternatives to manage underlying interfaces and to force that traffic travels

through specific components, and their configuration is complicated. Assessing the available options

has taken more time than expected, however, the implementation choices regarding specifically SD-

WAN and network function chaining are now clear. Expecting this deviation, the Consortium decided

to shift the beginning of the development of the related enablers/features until the next phase (i.e.,

beyond M18).

 During the execution of the tasks, it became clear that some enables might not be able to follow the

encapsulation principles of the ASSIST-IoT architecture. An example of this is the MR enabler, which

is composed of very specific software that cannot be installed as a set of containers in a Head-Mounted

Device (HMD). This entailed the introduction of “encapsulation exceptions” in the architecture.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 15 of 83

2. Introduction

In the ASSIST-IoT architecture, the horizontal planes represent a classification of logical functions that fall

under the scope of a particular domain (similar to classic layered stack classification), namely: edge/device,

network, data, and applications/services. Each plane includes a set of functional blocks, providing specific

functionalities in the architecture. These blocks have been identified, designed, and implemented considering

different real-life use case requirements and concerns (particularly, those addressed in the action) as well as

technological limitations, aiming at being agnostic-enough to be deployable in multiple business scenarios.

Functionalities are delivered by means of enablers, which is an abstraction term that represents a collection

of components that work together to provide a specific functionality to the system. Some common conventions

are common to all the enablers (e.g., metrics and logs gathering, common endpoints), (almost) all of them

following an encapsulation paradigm (i.e., enablers can only communicate via exposed interfaces, denying

interactions between internal components of different enablers).

In the initial iteration of the deliverable, a template was provided with information with respect to each enabler.

In this second document, some particular specifications such as features, endpoints and internal structure are

updated, and novel data regarding use cases and implementation status are provided. Apart from this

documentation, a first functional version of most of the enablers (15 out of 19), and specifically all those

identified as essential, are described. It is worth mentioning that an updated and extended set of specifications

for the Smart IoT Devices and the GWEN are also included, as key part of the outcomes from T4.1 – Device

and Edge plane. As a reminder, the artifacts that are responsibility of WP4 are depicted in Figure 1.

Figure 1. ASSIST-IoT enablers and hardware elements formalised

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 16 of 83

3. Devices specifications

Two Smart IoT devices are being developed under the scope of the project: the localisation tag and the fall arrest

device. They have been designed primarily to solve specific requirements of the pilots of the project, hence not

being intrinsic blocks of the ASSIST-IoT architecture. Evidently, they will belong to the Device and Edge plane

of the architecture when they are part of a specific deployment, but in the same way that any device (intelligent

or not) would be. In any case, these devices can be of utility in different verticals, and therefore they can address

several use cases (alongside the associated software). The same occurs with the ASSIST-IoT Edge Node

(branded as “GWEN” in the most recent architecture document – D3.6). In this case, GWENs might be part of

virtually any architecture deployment, however, it cannot be considered as an inherent part of the architecture

as its functionalities could be provided by another device (or group of devices) of similar nature.

This section presents an update of the status of these devices, developed under the scope of the Edge and Device

task, and which specifications were depicted in D4.1. Minor features have been added to the Smart IoT devices,

while the GWEN has suffered the larger changes, as a modular approach has guided its recent design and

development activities.

3.1. Specifications update

3.1.1. ASSIST-IoT localisation tag

The localization tag has two additional features compared to what has been described in D4.1. These correspond

to the implementation of a push button and an IMU (Inertia Measurement Unit) sensor. When a user detects a

dangerous situation, they can push the button to alert the system that it is happening (this modification is

motivated based on inputs from the second pilot of the project). The IMU is added for future use, as an additional

feature. It can be used to detect if there is movement or not, so when there is no movement the position update

rate can be decreased in the future to reduce the energy consumption and thus increase battery life time. The

updated block schematic diagram of the localization tag is given in Figure 2.

Figure 2. Block schematic diagram of the localisation tag.

3.1.2. ASSIST-IoT fall arrest device

Based on a refinement of its related requirements, the fall arrest device will be used in a different way than

initially expected, so the hardware has been modified accordingly as one can see in Figure 3. Initially, a fall

arrest sensor interface for a separate fall arrest detection device was planned to be used in order to detect if a

person is falling. Since an IMU is implemented, a fall can be detected by it. This means that when a worker falls

on the floor, this can be detected too and the fall arrest device can send an alert to the system. Although very

similar in underlying hardware, major differences between both devices are found in firmware and enclosure.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 17 of 83

Figure 3. Block schematic diagram of the fall arrest device.

3.1.3. GWEN

The updated block schematic diagram of the GWEN is given in Figure 4. The changes that have been made

correspond to the embedding of two M.2 interfaces and two SD card connectors instead of one. Having two

M.2 interfaces enables the use of WiFi6 and 5G in parallel. Two SD cards are used to separate firmware from

data storage. This means that the boot software and data are separated to prevent unintended boot software

corruption when manipulating data, minimising risks. At the same time, additional storage for data is available.

Figure 4. Gateway/Edge node block schematic diagram.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 18 of 83

Several interfaces and parts of Figure 4 will always be present, being thus implemented at a carrier board.

However, other interfaces will be implemented as expansion modules. The top view of the carrier board is given

in Figure 5.

Figure 5. Top view of the carrier board.

To implement the remaining functionality needed, proprietary add-on expansion modules will be used and

mounted at the bottom of the carrier board. Size, Board-to-Board (B2B) connector, connector pinning and

mounting hole positions are fixed and positioned in a way that two sizes of modules can be inserted. In Figure

6 an example configuration of mounted add-on expansion modules is given.

Figure 6. Bottom view of the carrier board.

The input voltage range for the GWEN was initially set to 12V ± 5%. To support the project pilot where the

GWEN is used in a car and connected to its board supply, this voltage range has been changed to 12V ± 20%.

USB3 Expansion
Size 1

USB3 Expansion
Size 2

USB3 Expansion
Size 1

USB3 Expansion
Size 2

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 19 of 83

3.2. Development status
Table 1. Development status of GWEN and Smart IoT devices

Category Status

Localization tag and fall arrest

device hardware

The main part of the electronics is available 90%

The push button, the LED and the buzzer need to be added planned, 0%

An enclosure needs to be created planned, 0%

Localization tag and fall arrest

device firmware

The main part of the firmware is available, this needs to be changed to meet the

ASSIST-IoT functionality. Inventorying of changes 90%

GWEN hardware

implementation

Electronics design finished

Schematic design finished

PCB layout design under development, 20%

A customer of the shelf enclosure has been selected. This enclosure will be

changed depending on connector placement. PCB layout design and enclosure

changes depend on each other 10%

GWEN firmware implementation Not started yet, resources have been planned

RS232/RS485 interface module

Electronics design finished

Schematic design finished

PCB layout design finished

Manufacturing started ordering components, 5%

CAN interface module

Electronics design finished

Schematic design finished

PCB layout design finished

Manufacturing started ordering components, 5%

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 20 of 83

4. Horizontal enablers update and implementation status

This section has two purposes. On the one hand, it aims at updating all the information related to the features,

the internal structure and the endpoints of the enablers designed in the early stages of the project. Although

high-level functionalities may not have changed significantly, additional or supporting features might have been

added during the development process. Also, the initial design of internal components is susceptible to change

during development: components can be combined for performance reasons (i.e., deploying two containers

performing two different functionalities might be good for conceptual understanding/logic and further

maintenance, but not as good in terms of performance), separated, and/or unexpected requirements may have

required the addition of a component or even a re-design of the entire solution (which in turn, can affect the

expected endpoints).

On the other hand, this section also provides new information regarding the enablers, related to use cases – in

this case, understood as the interaction between the components under a specific event/call, and implementation

status.

4.1. Smart Network and Control enablers

4.1.1. Smart Orchestrator

4.1.1.1. Structure and functionalities

Currently, in the edge cloud continuum arises the need to distribute the workloads between the available edge

nodes or at cloud premises, which has more computing capacity. The selection of the optimal location depends

on multiple factors, like latency or computation needs. The Smart Orchestrator is in charge of deploying these

workloads, developed by combining three main technologies: Kubernetes. Mck8s and MANO. These

technologies provide the following features:

 Selection of the cluster where the workloads will be deployed, either manually (by an administrator) or

automatically by a dedicated component (scheduler).

 Instantiation of workloads arranged in a package repository and installed using Helm.

 Orchestration of computing, network, and storage infrastructure, (container-centred) of the workloads

and services.

 Automatic application of network-related rules, to enable communication between enablers via exposed

interfaces and to block communication between internal components of different enablers.

The updated diagram is shown in the following figure. It is composed of 4 components and a supporting

database:

Figure 7. High-level diagram of the Smart Orchestrator enabler

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 21 of 83

Implementation technologies

Table 2. Implementation technologies for the Smart Orchestrator enabler

Technology Justification Component(s)

Python
Programming language selected due to its facility on creating its own functions and

the excellent performance with Kubernetes API.
Scheduler

Node.js

It is a cross-platform execution environment. It is written in JavaScript and allows the

realization of highly scalable web servers. The enabler API uses node.js as the leading

technology and makes it easy to connect to the database.

API

Mongo DB NoSQL database provides a quick and easy integration of data in the enabler API. API database

OSM
It allows the instantiation of services through Helm and the orchestration of these.

OSM also supports the orchestration requirements of NFV networks.
NFVO

Mck8s
Allows choosing between different policies for the automatic allocation of resources

between clusters. It facilitates the implementation of new policies
Scheduler

Cilium
Kubernetes plugin to manage service mesh and network-related aspects (Layers 3, 4

and 7)
Scheduler

Prometheus
Provides network traffic information to the Scheduler when the traffic-most policy is

selected.
Metrics-server

NOTE1: The instantiation of the enablers on a cluster follows a process that has not been monitored yet. In this

way, if the instantiation process fails, it is not possible to control the error, so the enabler will not be eliminated

automatically and at this moment; it must be removed manually. Moreover, OSM cannot delete some resources

created directly by Kubernetes, such as Persistent Volumes (PVs) and Claims (PVCs), and hence the Smart

Orchestrator does not have this functionality implemented yet.

NOTE2: Kubernetes and OSM are in constant development, which could lead to an incompatibility between

versions or changes in their performance since the old versions are no longer maintained. Hence, it is

recommendable to always deploy this enabler considering tested versions.

4.1.1.2. Communication interfaces

Table 3. Communication interfaces (API) of the Smart Orchestrator enabler

Method Endpoint Description

GET /api/k8sclusters/ Get all the clusters added to OSM.

POST /api/k8sclusters/ Post a cluster in the Smart Orchestrator enabler.

DELETE /api/k8sclusters/{id} Delete a cluster by Id.

GET /api/chartrepo Get all the Helm repositories added to OSM.

POST /api/chartrepo Post a Helm repository to OSM.

DELETE /api/chartrepo/{id} Delete a repository in OSM by id.

GET /api/enabler/instanced Get all the enablers deployed by the moment.

POST /api/enabler/ Post an enabler to the Smart Orchestrator.

POST /api/enabler/{id}/terminate Terminate a deployed enabler by id.

DELETE /api/enabler/{id} Delete an enabler by id.

POST /api/login/tokens Returns an access token.

4.1.1.3. Use cases

There are 8 use cases identified applying to this enabler. The first case is related to an administrator who wants

to add a cluster to the Smart Orchestrator. Its diagram for the use case and the included steps are the following:

STEPS 1-2: The user interacts through the API of the enabler indicating the configuration file of the cluster of

Kubernetes that will be added. The API receives the configuration and sends the request to create a VIM in the

NFVO.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 22 of 83

STEPS 3-4: The NFVO creates the VIM for the selected cluster, and returns an answer to the API.

STEP 5: The API receives the configuration and sends the request to create a cluster in the NFVO.

STEPS 6-7: The NFVO adds the cluster, and returns an answer to the API.

STEP 8: Once the answer is received, a request is sent to the Metrics-server to add the cluster to its configuration

files, allowing the Scheduler to obtain the added clusters metrics.

STEPS 9-10: The metric-server adds the configuration to its target file, and returns the answer to the API.

STEP 11: Once the answer is received, a request is sent to write the configuration of the added cluster in the

database, which will be used to create the Kubernetes configuration file for the Scheduler.

STEPS 12-13: The configuration file of the added cluster is stored in the database, which returns an answer to

the API.

STEP 14: Once the process is finished, the API returns a confirmation message. The whole process still has

some errors to handle properly.

Figure 8. Smart Orchestrator enabler UC1 (add cluster)

The second use case is previous to the instantiation of an enabler, where the user administrator adds a Helm

repository where all the charts are saved. Diagram and related steps are the following

Figure 9. Smart Orchestrator enabler UC2 (add Helm repository)

STEP 1: The user interacts through the API indicating the Helm Chart repository to add.

STEPS 2-3: The API receives the information and send a request to create the repository to the NFVO.

STEP 4: The NFVO creates the repository, and confirms its creation to the API.

STEP 5: Once the process has finished, the API returns a confirmation message.

The third use case is related to a user who wants to deploy an enabler using the Smart Orchestrator. This

operation can be done through the scheduler (automatically deploying the enabler in any of the added clusters)

or manually instantiate them by choosing which is the cluster to deploy the enabler. The diagram to instantiate

an enabler automatically and the related steps are the following:

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 23 of 83

Figure 10. Smart Orchestrator enabler UC3 (deploy enabler, automatic case)

STEP 1: The user interacts through the API to instantiate an enabler with the automatic option to let the Smart

Orchestrator deploy it in one of the added clusters.

STEPS 2-3: The API receives the configuration and sends the request to the database to receive the added

clusters and create a common kubeconfig for the scheduler.

STEP 4: The database returns the results to the API.

STEP 5: Once the answer is received, the kubeconfig is sent to the scheduler.

STEPS 6-7: Depending on the placement policy, the Scheduler selects which is the best cluster to deploy the

enabler, returning the answer.

STEP 8: With the scheduler answer, a request is created to the NFVO component to deploy the enabler in the

selected cluster.

STEPS 9-10: The corresponding chart is installed in the selected cluster, and the NFVO returns the answer of

the operation.

STEPS 11-13: Once the deployed enabler has been instantiated, a registry of the operation is saved in the

database, which confirms the operation.

STEP 14: Once the process has finished, the API returns a confirmation message.

In case the cluster is selected manually, the diagram is considerably simplified (essentially, steps 2 to 7 are not

needed, as the user selects the target cluster), being the following:

Figure 11. Smart Orchestrator enabler UC3 (deploy enabler, manual case)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 24 of 83

The fourth use case is related to the user who wants to terminate an instance of an enabler, which is a step

needed before removing it completely. The diagram is the following:

Figure 12. Smart Orchestrator enabler UC4 (terminate enabler)

STEP 1: The user interacts through the API indicating the enabler id to be terminated.

STEP 2: A request is created by the API to the NFVO to terminate the enabler.

STEPS 4-5: The enabler is terminated in the cluster where is deployed, and the confirmation from the NFVO

is sent back to the API.

STEP 5: Once the process has finished, the API returns a confirmation message.

The fifth use case, comes after terminating an enabler, deleting it completely (including registries and assigned

resources). Its diagram and involved steps are the following:

Figure 13. Smart Orchestrator enabler UC5 (delete enabler)

STEP 1: The user interacts through the API indicating the enabler id to be removed

STEP 2: The API receives the configuration and sends the request to the NFVO to delete the enabler in the

corresponding cluster.

STEPS 3-4: The enabler is deleted by the NFVO component, which confirms the operation.

STEPS 5-7: The API creates a request to delete the cluster in the database, which confirms the operation.

STEP 8: Once the process has finished, the API returns a confirmation message.

For the sixth use case, the user wants to get all the enablers instantiated, the added clusters or the added

repositories (the flow is identical for the three operations). The diagram and involved steps are the following:

STEP 1: The user interacts through the API enabler indicating the resource to get.

STEP 2: A request is created by the API to the NFVO component to get it.

STEPS 3-4: The NFVO finds the resources and sends the answer back to the API.

STEP 5: Once the process has finished, the API returns the resources to the requester.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 25 of 83

Figure 14. Smart Orchestrator enabler UC6 (get enablers)

The next (seventh) use case is related to the administrator user who intends to remove a cluster. The interaction

diagram and the involved steps are the following:

STEP 1: The user interacts through the API indicating the cluster id to be removed.

STEP 2: The API receives the configuration and sends the request to delete the cluster in the NFVO.

STEPS 3-4: The NFVO deletes the cluster and confirms that the operation is successful.

STEP 5: Once the answer is received, a request is sent to the NFVO again to delete the VIM related to the

deleted cluster.

STEPS 6-7: The NFVO deletes the VIM and confirms the operation.

STEP 8: Once the answer is received, a request is sent to the metrics-server to delete the configuration of the

removed cluster in the targets file.

STEPS 9-10: The metrics-server deletes the cluster and confirms the operation.

STEPS 11-13: Finally, the API creates a request to delete the cluster in the database, which deletes it and

confirms the operation.

STEP 14: Once the process has finished, the API returns a confirmation message.

Figure 15. Smart Orchestrator enabler UC7 (delete cluster)

The eight (and last) use case is related to the administrator user who decides to delete a repository. The

diagram and related steps are the following:

STEP 1: The user interacts through the API indicating the repository id to be removed.

STEP 2: The API receives the information and sends the request to the NFVO to delete the repository.

STEPS 3-4: The NFVO deletes the cluster and sends a confirmation to the API.

STEP 5: Once the process has finished, the API returns a confirmation message.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 26 of 83

Figure 16. Smart Orchestrator enabler UC8 (remove Helm repository)

4.1.1.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html

Table 4. Implementation status of the Smart Orchestrator enabler

Category Status

Components implementation A first version of all the components is implemented, but not finalised yet.

Feature implementation status

The enabler is capable to execute its main objective, with is the deployment

workloads in K8s clusters, either manually or automatically based on policies. It

can also register Helm repositories and K8s clusters to be managed. Additional

features are pending, such as:

 Automatic generation and application of network-related and service mesh

rules (via Cilium).

 Additional placement features, at least one considering AI.

 Error handling, including enablers and K8s resources elimination.

Encapsulation readiness
All components are encapsulated in Docker images and work in a Kubernetes

cluster. K8s manifests nor Helm charts have been prepared yet.

Deployed with the Orchestrator

in a laboratory environment
N/A (as it is the orchestrator itself)

4.1.2. SDN Controller

4.1.2.1. Structure and functionalities

The SDN Controller is the key element of an SDN network, implementing control plane functionalities related

to network management, traffic management and monitoring. In a typical controller architecture (see high-level

architecture in Figure 17), one can distinguish core functional modules like Configuration, Control, Topology,

and Northbound (NB) and Southbound (SB) APIs. Core subsystems are related to device, link, host, topology,

etc. On the one hand, the usage of the SB API on the network level facilitates the integration of different vendors’

devices. On the other hand, the NB API is available for application developers. The main functions envisioned

in the project to be useful are the following: Device, Link, Host, Topology, Path, Flow, Flow Objectives, Group,

Meter, Intent, Application, Component Configuration.

Two open source controllers have been selected as suitable solution for the ASSIST-IoT architecture: Tungsten

(v.5.1) and ONOS (v2.7.0, µONOS version with Kubernetes containerization). Both of them, composed by a

set of components, provide the same capabilities in control plane, exposing APIs (NB and SB) to use them.

Once tested, their performance and usability and will be evaluated to providing recommendation for best

practices, aiming at incorporating them in the network fabric below the K8s clusters.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/smart_orchestrator.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 27 of 83

Figure 17. High-level diagram of the SDN Controller.

4.1.2.2. Communication interfaces

For developers, the NB interface of SDN controller (API) is required to communicate with the controller. The

list of the basic interactions with SDN controller required to manage the network configuration and flows is

depicted below.

Table 5. Communication interfaces (API) of the SDN Controller enabler

Method Endpoint Description

GET/POST/PUT/DELETE

/link/?{device=deviceId}

{port=portNumber}

{direction=

[ALL,INGRESS,EGRESS]}

Lists, creates, updates and deletes infrastructure

links (e.g., connection between switches and/or

between them and hosts).

GET/POST/PUT/DELETE /devices/{deviceid}/ports
Lists, creates, updates and deletes infrastructure

devices (e.g., SDN switches).

GET/POST/PUT/DELETE /hosts/{hostId} Lists all end-stations hosts.

GET /topology/clusters/{clusterId} Gets list of topology cluster overviews.

GET/POST/DELETE /paths/{elementId}/{elementId}
Gets set of pre-computed shortest paths between the

specified source and destination network elements.

GET/POST/DELETE /flows/{deviceId}/{flowId}
Creates, lists, deletes a single flow rule applied to

the specified infrastructure device.

GET/POST/DELETE /meters/{deviceId}
Creates, lists, deletes a single meter entry applied to

the specified infrastructure device.

GET/POST/DELETE /intents/{app-id}/{intentId}
Gets the details for the given Intent object. Creates

and deletes a new intent object.

GET/POST/PUT/DELETE /applications/{app-name}
Gets a list of all installed applications. Activates and

deactivates the named application.

GET/POST/DELETE /configuration/{component}

Gets the configuration values for a single

component. Adds and removes a set of

configuration values to a component.

4.1.2.3. Use cases

There are many use cases in which an SDN controller could be of use, as many as applications might leverage

its exposed features. Three exemplary diagrams are presented below, being the flow almost identical (the major

change is on the SDN controller internal function consumed).

The first use case shown is related to the configuration of a device (SDN switch), following the next sequence

and related steps:

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 28 of 83

Figure 18. SDN Controller UC1 (device configuration)

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the

configuration of the given device with specified parameters.

STEP 2: The NB API receives the configuration and sends the request to the configuration module for

processing and formatting.

STEP 3: Configuration module sends the configuration request to SB API in the required format.

STEP 4: SB API sends in a given format the configuration request to the selected device.

STEPS 5-7: A message of the result of the operation is returned to back to the NB API.

STEP 8: Once the process has finished, the API returns a confirmation message.

The second use case shown is related to the deployment of an intent, which essentially specifies how the

network should behave in terms of policies or directives rather than specific actions. The flow and steps are the

following:

Figure 19. SDN Controller UC2 (intent deployment)

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the

intent object action with specified parameters.

STEP 2: The NB API receives the request and sends it to control module for processing.

STEP 3: Control module sends request to deploy intent in the network using SB API.

STEP 4: SB API enforce the intent action in the SDN network.

STEPS 5-7: A message of the result of the operation is returned to back to the NB API.

STEP 8: Once the process has finished, the API returns a confirmation message.

The last use case depicted is related to topology discovery. In this case, the diagram and steps are the ones

described below:

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 29 of 83

Figure 20. SDN Controller UC3 (topology discovery)

STEP 1: The user/application/enabler interacts through the NB API of SDN controller enabler requesting the

topology discovery.

STEPS 2-3: The NB API receives the request and forwards it to the topology module for processing, which

then sends a request to deploy a specific action in the network using SB API.

STEP 4: The SB API asks for the needed information in the SDN network.

STEPS 5-6: Information about topology is collected by the SB API module, which sends the collected

information to the topology module.

STEPS 7-8: Once processed, the topology module sends the answer with the information to NB API module,

which returns it to the user/application/enabler.

4.1.2.4. Implementation status

Link to Readthedocs:

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sdn_controller.html

Table 6. Implementation status of the SDN Controller enabler

Category Status

Components implementation The components are in place, although validation is needed.

Feature implementation status
It is still pending to integrate with other enablers, especially with traffic

classification and auto-configurable enablers.

Encapsulation readiness
Controller is encapsulated in Docker images and work in a Kubernetes cluster.

Any Helm chart has been prepared yet.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.1.3. Auto-configurable Network enabler

4.1.3.1. Structure and functionalities

This enabler provides functionalities for optimising network configuration leveraging the SDN Controller of an

ASSIST-IoT ecosystem. It assumes generation of the policies and enforces them using the northbound APIs of

the SDN Controllers. Polices can be set manually or automatically (using different algorithms like AI solutions)

to improve the performance and quality of selected KPIs of the network (e.g., network load distribution, data

transfer losses and latency). The selection of the most suitable model depends on the use cases, and the objective

of this enabler is to provide three different strategies to be compatible with the selected Controller.

This enabler considers two components: (i) a policy engine, in charge of the creation of polices and their

execution in the SDN network for optimising the network traffic and the creation of routing paths. It obtains

network information through the SDN controller, and data traffic via (ii) a monitoring module, responsible for

collecting network traffic statistics. The internal structure is presented in Figure 21:

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sdn_controller.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 30 of 83

Figure 21. High-level diagram of the Auto-configurable Network enabler.

Implementation technologies

Table 7. Implementation technologies for the Auto-configurable Network enabler

Technology Justification Component(s)

sFlow
Agent and collector technology for gathering data from OVS

switches.
Monitoring module

REST API
Users and other enablers will interact with it following REST

API specifications.
Policy engine

4.1.3.2. Communication interfaces

Currently, this enabler is envisioned to work automatically, without interacting with users. Any configuration

parameter needed (e.g., SDN Controller address) will be passed to the enabler at instantiation time. In further

releases, a feature related to enable manual activation/deactivation of the policies will be assessed and, if needed,

implemented following the endpoint indicated below.

Table 8. Communication interfaces (API) of the Auto-configurable Network enabler

Method Endpoint Description

POST /enabled/{true/false} Enables/Disables the enabler

4.1.3.3. Use cases

The usage of the enabler is related to the strategy of the performance/quality parameters goal optimisation.

Three strategies (currently under development) are intended to be implemented, aiming at optimising traffic

load optimisation, data transfer losses and latency in the network (RTT).

A flow diagram and related steps of the main use case is presented below, consisting in the policy-based

adaptation of the network, also considering the gathering of needed information:

Figure 22. Auto-configurable Network enabler UC (policy-based network adaptation)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 31 of 83

STEP 1: The policy engine requires data from the network. The monitoring module has to collect them

previously, communicating with agents present in network nodes. This will be a continuous operation once the

enabler is on.

STEP 2: The policy engine requests the selected parameters for a given purpose (optimise the load traffic, data

losses or latency) from the monitoring module.

STEPS 3-4: After data reception, the policy module generates the rules and sends them to the SDN controller.

STEP 5: SDN controller deploys the rules in the SDN network.

STEPS 6-7: Confirmation messages are sent back to the policy engine.

The policy engine will work in a standalone fashion, triggering itself regularly or based on the threshold over

defined KPIs. In the future, the addition of an endpoint to manually enabling and disabling it will be evaluated.

4.1.3.4. Implementation status

Link to Readthedocs:

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html

Table 9. Implementation status of the Auto-configurable Network enabler

Category Status

Components implementation
The policy engine is under development (50%), and the monitoring module

technology is under testing.

Feature implementation status
This enabler does not offer the expected features yet. The monitoring module

still needs to be adapted to the needs of the project and the strategies.

Encapsulation readiness This enabler has not been encapsulated yet(?) (or will be an exception?).

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.1.4. Traffic Classification enabler

4.1.4.1. Structure and functionalities

In SDN-enabled networks, a controller is responsible for controlling the underlying switches that distribute

traffic according to different rules, including sources/sinks, ports and type of traffic. Regarding the latter, it is

possible that the controller is not able to acknowledge the type of traffic of a specific packet, needing a specific

SDN application to identify it on its behalf. This enabler will be in charge of this functionality, allowing:

 Training a machine learning model to classify traffic packets, based on the combination of different

algorithms.

 To infer the type of traffic of a specific packet based on different packet parameters.

As one can see in the figure below, the diagram has changed a little from the initial design. It is composed of an

API, the classifier itself, and the training module. The knowledge database has been removed since the internal

components will work with K8s volumes in order to store/retrieve the trained model and to get the data required

for training.

Figure 23. High-level diagram of the Traffic Classification enabler

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/auto_configurable_network_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 32 of 83

Implementation technologies

Table 10. Implementation technologies for the Traffic Classification enabler

Technology Justification Component(s)

Flask Widely used technology to developed REST APIs in an easy way API

scikit-learn, keras and

tensorflow

Scikit-learn will use for obtaining predictive models (training

with K-Nearest Neighbours - KNN, Random Forest – RF, and

Decision Tree - DT algorithms). Tensorflow and keras will be

used for combining their results using a Deep Neural Network

(DNN), getting a meta-classifier

Training module

keras It allows getting an inference from the trained DNN Classifier

4.1.4.2. Communication interfaces

Table 11. Communication interfaces (API) of the Traffic Classification enabler

Method Endpoint Description

POST /training
Starts a training session, with the model and data (currently)

stored in host’s folders, passed via volumes.

POST /inference
Returns the class of a specific packet, based on the inputs

received and the application of the DNN model.

4.1.4.3. Use cases

The two main use cases of this enabler are related to the training of the DNN model and the inference process.

The first use case will be instantiated by a user, once the repository with labelled data is updated with new

samples or substituted. The repository, which will be a .csv file with a row per labelled packet, each of them

with seven different features of a .pcap file), will be placed in a dedicated volume accessible by the two internal

components. The steps related to the first use case are:

STEP 1: The user starts a new training process via API command, once a new database is present in a folder

accessible by the training module (a method might be added in the future to allow upload a new database from

the API remotely).

STEP 2: The API communicates with the training module to start a new process, which will end up with the

substitution of the previous model.

STEP 3: When the training process is finished, a message is sent back to the API.

STEP 4: Once the process has finished, the API returns a confirmation message.

Figure 24. Traffic Classification enabler UC1 (model training)

The second use case is related to the classification of a packet. This action will be started (primarily) by the

SDN Controller, when it is not able to acknowledge the type of a packet. In this case, the next steps are followed:

STEP 1: A external entity (SDN Controller) starts an inference process via API command, making use of model

trained previously by the dedicated module. A set of packet features are attached in the command body.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 33 of 83

STEP 2: The API communicates with the classifier to start a new process, forwarding the data received.

STEP 3: When the process is finished, a message with the inferred class is sent back to the API (much faster

than the training time, sub-second).

STEP 4: Once the process has finished, the API returns the class of the packet to the requester.

Figure 25. Traffic Classification enabler UC2 (packet classification)

4.1.4.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html

Table 12. Implementation status of the Traffic Classification enabler

Category Status

Components implementation
In this moment, the classifier is the only component developed. The

implementation of the API and the training module has started.

Feature implementation status

Currently, this enabler can classify a specific packet if the inputs are provided.

However, there are some missing features:

 Training/updating the current model based on a tailored, labelled data-traffic

collection.

 API not ready for interaction with the SDN controller.

Encapsulation readiness
The developed component has been encapsulated in a Docker image. Kubernetes

manifest and Helm chart have not been prepared yet.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.1.5. Multi-link enabler

4.1.5.1. Structure and functionalities

The requirements of the multi-link enabler have experienced several changes with respect to the original ones,

and as a result the enabler needed a re-design of its structure. The main goal of this enabler is to manage different

wireless access networks, so in case the primary link is down, a second communication link goes up without

noticing (at least, not by the user) any kind of service disruption (i.e., seamlessly). Originally, this enabler was

targeting video traffic (layer 7), but now it will target any traffic (layer 2-3); also, it intended to implement

redundancy, but as transmitting over many radio access technologies increases business costs, it will be finally

implemented as a reliability mechanism (not simultaneous transmissions but rather a backup mechanism – see

recommendation from AB member Prof. Joydeep Mitra in D2.9). Other features that need to be in place are:

 It should work at least for WiFi, fluidmesh and 5G networks, allowing establishing prioritisation of

channels.

 It must set up automatically the necessary tunnels.

 In case the primary link is restored, it should go back to the initial wireless technology.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/traffic_classification_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 34 of 83

The enabler has been completely re-designed without reducing its scope or diminishing the ambition of the task

(rather on the contrary), as when redundancy mechanisms were considered there was no need to set up the

wireless channels, just to check the one with better performance among the available ones (in terms of latency

and bandwidth). The current design is the one shown in Figure 26. It is an experimental approach, yet to be

implemented and therefore, it is still subject to modifications.

Figure 26. High-level diagram of the Multi-link enabler

NOTE1: This enabler will have two instances, one with the VPN client active and the other with the associated

VPN server running, as these tunnels require implementing a server-client mode (hence, connected). For easing

its management, they will be configured via a unified user interface.

NOTE2: The “internal” VPN will have a different implementation than the VPN enabler. The internal VPN

will require a “TAP” implementation, being the homonymous enabler implemented in “TUN” (TAP and TUN

are VPN modes, that work at layers 2 and 3, respectively). The dedicated enabler supports many more

connections without reducing performance, whereas in this case this is not as important as large number of

backup wireless technologies are not expected (tests will be done with three).

Implementation technologies

Table 13. Implementation technologies for the Multi-link enabler

Technology Justification Component(s)

Flask Widely used technology to easily develop REST APIs API

OpenVPN
Main technology considered for provisioning TAP tunnels

between the different access points of the network

VPN (Client and

Server)

Python

Custom component that will be used for establishing the

necessary bridges, bonding and prioritisation rules in a GWEN

(or similar device). It will bond the tunnels that will travel over

different radio technologies, establishing a primary one and

backups.

Bonding component

4.1.5.2. Communication interfaces

Table 14. Communication interfaces (API) of the Multi-link enabler

Method Endpoint Description

POST /interfaces/add Adds an interface to be bonded

GET /interfaces Gets a list of managed interfaces

PUT /interfaces Modifies the order of priority among the managed interfaces

POST /tunnel/client/add
Provisions a new client in the server, generating a set of keys

(returned)

GET /tunnel/client/ Returns the list of clients registered in the server

PUT /tunnel/client/enable Enables a client with the specified the public key

PUT /tunnel/client/disable Disables a client with the specified the public key

DELETE /tunnel/client/delete Deletes a client with the specified the public key

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 35 of 83

Method Endpoint Description

POST /interfaces/add Adds an interface to be bonded

GET /interfaces Gets a list of managed interfaces

PUT /interfaces Modifies the order of priority among the managed interfaces

POST /tunnel/attach
(In the client side) Connects to a VPN server making use of

the keys generated by the server when provisioned.

4.1.5.3. Use cases

The main use case of the enabler is related to the addition/elimination of tunnel interfaces to be managed (or

not) by this enabler. Hence, tunnels must have been created previously, making use of the dedicated endpoints

(the VPN-related use cases are very similar to those presented for the VPN enabler – Section 0, and for the sake

of avoiding presenting similar content, they are not indicated here). This includes bonding the selected tunnels

together, as well as bridging all of them.

Figure 27. Multi-link enabler UC (addition/elimination of interfaces)

STEP 1: The user adds a tunnel interface (previously provisioned) to be managed by the multi-link enabler.

STEP 2: The bonding component receives information related to this tunnel, and implements a manifest (or a

set of them) to be applied at host level.

STEP 3: The host applies the new network-related manifest to modify the involved rules. This implies a restart

of the service.

STEPS 4-6: After receiving the corresponding return messages, the API sends a message confirming (or

rejecting) the addition of the interface to the pool of those managed by the enabler.

NOTE: This flow is identical in the case of removal of interfaces and the arrangement of links into primary and

backup ones.

4.1.5.4. Implementation status

Due to the huge changes that this enabler has suffered, its implementation has been re-started, hence resulting

in not having its components ready by M18 (and hence, being features not available yet). The Readthedocs is

still in a very immature status, which is expected to be improved during the next period. Link to Readthedocs

(structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/multi_link_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 36 of 83

Table 15. Implementation status of the Multi-link enabler

Category Status

Components implementation

Due to the necessity of re-designing the enabler, the effort has been focused on

assessing the overall solution with dedicated hardware equipment, to then move

to a (more) virtualised approach and developing the necessary components.

Feature implementation status
Since the components have not been implemented, any feature is available at this

moment.

Encapsulation readiness
Any container has been developed yet (hence, K8s manifests and Helm charts

are not ready)

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.1.6. SD-WAN enabler

4.1.6.1. Structure and functionalities

The objective of this enabler is to provide access between nodes from different sites based on SD-WAN

technology. In particular, this enabler will implement mechanisms to connect K8s clusters via private tunnels,

facilitating (i) the deployment and chaining of virtual functions to secure connections between them and/or

towards the Internet and (ii) the implementation of functions to optimise WAN traffic (via WAN Acceleration

enabler – Section 4.1.7).

The SD-WAN enabler was initially designed with a central and (some) edge components, however, they will

be finally realised as independent enablers. This change is motivated mostly for deployment reasons, as an SD-

WAN edge has to be deployed independently on each cluster that will be included within the SD-WAN-

managed architecture. The functionalities of the WAN optimisation enabler will be combined with the original

SD-WAN edge component. Hence, the present enabler will comprise the central elements, which will be in

charge of controlling automatically the SD-WAN edges and hubs, enabling and securing the connections. Its

structure is presented Figure 28, consisting of the following elements:

 SD-WAN controller. Component in charge of managing the aspects related to SD-WAN

communication, including overlays, IP provisioning, tunnels, hub registration, connection and

observation, and cluster addition to be managed by it. Provides a REST API to interact with it.

 Rsync: Service that receives requests from the controller and dispatch K8s resources to the WAN

acceleration enablers and K8s resources of the involved clusters to setup the dedicated tunnels.

 Database: Stores key information regarding managed clusters, hubs, overlays, IP ranges, etc.

 Etcd: Internal metadata database used to exchange configuration between the controller and rsync.

Figure 28. High-level diagram of the SD-WAN enabler

An instance of the WAN acceleration enabler will be deployed in every cluster belonging to this architecture,

managed by the SD-WAN enabler. Any traffic that is sent to other clusters will go through it, over tunnels

provisioned by the SD-WAN enabler. It should be highlighted that, because of requiring configuring multiple

aspects related to K8s to be functional, the SD-WAN controller acts over K8s resources specifically designed

for the solution, therefore it interacts with the K8s API of the target cluster instead of the API of the WAN

acceleration enabler. In the edge part, its K8s API interacts with the custom K8s controller of the WAN

acceleration enabler, which configures its CNF (see WAN acceleration, Section 4.1.7).

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 37 of 83

Implementation technologies

Table 16. Implementation technologies for the SD-WAN enabler

Technology Justification Component(s)

MongoDB
Technology used to store information related to the objects managed

by the controller.
Database

gRPC
Internal communication interface, having greater performance than

API REST technologies.
rsync

Go Main language of the components. All

K8s custom resources
A set of K8s manifests must be send to the involved clusters to be able

to provision tunnels and virtualised service chaining functionalities.
rsync

4.1.6.2. Communication interfaces

Table 17. Communication interfaces (API) of the SD-WAN enabler

Method Endpoint Description

GET/POST/PUT/DELETE /overlays

Endpoint in charge of creating, modifying,

deleting and getting information regarding a

set of edge clusters (and hubs) managed by the

enabler.

GET/POST/PUT/DELETE /overlays/{id}/proposal
Endpoint in charge of defining IPSec proposals

that can be used for tunnels in an overlay.

GET/POST/PUT/DELETE /overlays/{id}/hubs

Defines a traffic hub in an overlay. Requires

certificate and kubeconfig file to be able to

manage it. See Section 4.1.7 to get information

about the role of hubs in the architecture.

GET/POST/PUT/DELETE /overlays/{id}/ipranges
Defines the overlay IP range used for the edge

clusters

GET/POST/PUT/DELETE /overlays/{id}/devices

Defines an edge cluster location (with SD-

WAN acceleration enabler). Among other

input, it required kubeconfig file and certificate

information.

GET/POST/PUT/DELETE /overlays/{id}/hubs/{id}/devices/{id}
Defines a connection between a hub and an

edge cluster.

4.1.6.3. Use cases

Although there are many operations, some of them follow the same communication schema, so they will be

grouped.

The first use case is related to the management of an overlay, which defines the clusters managed by the

enabler. The diagram and related steps are the following:

STEP 1: The user consumes the API of the SD-WAN controller to create, modify or delete an edge cluster part

of an overlay.

STEP 2: The information is stored or updated in the database.

STEP 3: The database confirms that the operation has been completed successfully.

STEP 4: Once the process has finished, the API returns a confirmation message.

NOTE: The flow is identical for the use cases related to definition of IP ranges to be used for the connections,

and IPSec configuration proposals for an overlay.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 38 of 83

Figure 29. SD-WAN enabler UC1 (overlay management)

The next use case is related to the provisioning and establishment of SD-WAN tunnels for edge nodes (and

hubs) belonging to an overlay. The diagram and involved steps are the following:

STEP 1: The user consumes the API of the SD-WAN controller to create, modify or delete a SD-WAN

connection (establish a tunnel).

STEPS 2-3 The SD-WAN Controller gathers the needed information about the overlay, the IP addresses and

IPSec proposals available from the database,

STEP 4: The Controller sends the required data to the rsync component.

STEP 5: The rsync component provisions the needed manifests and interacts with the API of the target cluster.

STEPS 6-7: If the operation is performed successfully (connection established, modified or deleted,

accordingly), a confirmation message is sent back from the API of the target edge cluster to the SD-WAN

controller.

STEP 8: Once the process has finished, the Controller returns a confirmation message.

NOTE: Although not shown in the diagram, some metadata information shared between the components is

stored in the etcd database.

Figure 30. SD-WAN enabler UC2 (tunnel establishment)

The last use case is related to the connection of hubs with edge cluster. The diagram and related steps are

depicted below. It should be mentioned that the flow may be activated in alternative ways (for instance, in the

previous use case, when a tunnel with the edge cluster is established, the connection with a hub can be indicated

and be part of the flow as well).

STEP 1: The user consumes the API of the SD-WAN Controller to create, modify or delete a connection

(establish a tunnel) between a hub and an edge cluster.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 39 of 83

STEPS 2-3: The SD-WAN Controller gathers needed information about the overlay, the IP addresses and IPSec

proposals available from the database, and sends the required data to the rsync component.

STEP 4: The Controller sends the required data to the rsync component to setup the hub.

STEP 5: The rsync provisions the needed manifests and interacts with the API of the target hub cluster.

STEPS 6-7: If the operation is performed successfully (connection established, modified or deleted,

accordingly), a confirmation message is sent from the API of the target hub cluster to the SD-WAN Controller.

SETP 8: Then, the controller mandates the rsync to prepare the required K8s resources so the hub provisions

(modifies or deletes) the tunnel with the edge node.

STEPS 9-10: By means of custom K8s resources, the hub cluster sends in turn a set of K8s resources to the

edge cluster to set up (modify or delete) the secured connection between them.

STEPS 11-13: If the operation is performed successfully, a confirmation message is sent back from the API of

the target hub cluster to the SD-WAN controller.

STEP 14: Once the process has finished, the Controller returns a confirmation message.

NOTE: Although not shown in the diagram, some metadata information shared between the components is

stored in the etcd database.

Figure 31. SD-WAN enabler UC3 (connection of hubs with edge cluster)

4.1.6.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html

Table 18. Implementation status of the SD-WAN enabler

Category Status

Components implementation
Because of internal planning, the implementation of this enabler will start at

M18. Therefore, components are still immature to be delivered.

Feature implementation status
Since the components have not been implemented, any feature is available at

this moment.

Encapsulation readiness
Any container has been developed yet (hence, K8s manifests and Helm charts

are not ready)

Deployed with the Orchestrator

in a laboratory environment
Not yet

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/sd_wan_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 40 of 83

4.1.7. WAN Acceleration enabler

4.1.7.1. Structure and functionalities

The WAN acceleration enabler will incorporate features that will improve the connections among the clusters

and/or sites managed by ASSIST-IoT, and towards the Internet. It will be controlled by the SD-WAN enabler

for establishing tunnels, and will be in charge of implementing features to support multiple WAN links,

firewalling, tunnelling setups and traffic control, including traffic shaping. Depending on its configuration (via

the SD-WAN enabler), it could act as:

 An SD-WAN Edge component, present in each K8s cluster, with a dedicated K8s controller and a

Containerised Network function (CNF) through which traffic goes through it. The CNF will embed

functions to setup aspects such related to IPSec, firewalling, DNS, DHCP and WAN link management,

whereas a Custom Definition Resource (CRD) controller contains all the sub-controllers to create, query

and configure these features.

 A SD-WAN hub, which will act as a middleware among clusters and/or between them and the Internet,

enabling the introduction of additional CNFs related to security, filtering, traffic shaping, etc. Once the

basic features are implemented, the incorporation of additional ones (as CNFs) will be evaluated.

The structure diagram of the enabler is presented in the Figure 32. Although the CNF exposes an API, this will

be only consumed by the enabler’s dedicated K8s controller, which will be triggered via the host’s K8s API as

a response to a user command, or after a call from the SD-WAN enabler.

Figure 32. High-level diagram of the WAN Acceleration enabler

Implementation technologies

Table 19. Implementation technologies for the WAN acceleration enabler

Technology Justification Component(s)

openWRT
Linux operating system targeting embedded devices to route

network traffic. It enables acting over network-related aspects.
SD-WAN CNF

ovn4nfv-k8s-plugin
CNI plugin based on OVN to create virtual networks in run time

over a K8s cluster.

Deployed on target

cluster, CRD controller

K8s custom resource

definition controller

Controller created to act upon the K8s manifest sent by the SD-

WAN enabler, to configure CNF rules related to firewalling,

IPSec and access networks.

CRD Controller

IPSec
Technology to establishing tunnels between clusters managed by

SD-WAN.
SD-WAN CNF

Multus CNI

CNI plugin to allow containers to have multiple network

interfaces (in this case, Cilium as the main one from the project,

and the aforementioned ovn4nfv-k8s-plugin)

Deployed on target

cluster

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 41 of 83

4.1.7.2. Communication interfaces

Table 20. Communication interfaces (API) of the WAN Acceleration enabler

Method Endpoint Description

GET/PUT /services/{id}

To list all the services supported by the CNF, and execute

an operation for one (e.g., mwan3, firewall, IPsec-

related).

GET/PUT /interfaces/{id}
To list all the available interfaces and their specific

information, allowing enabling or disabling them.

GET/POST/PUT/DELETE /mwan3/policies/{id}
Policies define how traffic will be routed through the

WAN managed interfaces.

GET/POST/PUT/DELETE /mwan3/rules/{id}
Rules apply policies over specific source/destiny IP

addresses, ports, IP type, protocol, etc.

GET/POST/PUT/DELETE /firewall/zones/{id}
Groups one or many interfaces to be source or destination

for forwarding, rules and redirects.

GET/POST/PUT/DELETE /firewall/redirects/{id} To define NAT rules.

GET/POST/PUT/DELETE /firewall/rules/{id}
To specify accept, drop and reject rules to restrict access

to specific ports or hosts.

GET/POST/PUT/DELETE /firewall/forwardings/{id} To control traffic between zones.

4.1.7.3. Use cases

The use cases related to the depicted endpoints will always follow the same flow, either for configuring or

querying the CNF components. These use cases are related to WAN interfaces, policies, firewall, as explained

above, and the diagram and involved steps are the following:

Figure 33. WAN Acceleration enabler UC (configuring/querying the CNF)

STEP 1: The user consumes the Kubernetes API to interact with the K8s’ custom resource developed for the

enabler. In the end, it will entail configuring or querying the CNF.

STEP 2: The information is sent from the K8s API to the involved controller.

STEP 3: The controller performs the required action, interacting with the API exposed by the CNF.

STEPS 4-6: Once the process has finished, the K8s API will return a confirmation message, based on the

response from the CNF.

Another use-case is triggered by the SD-WAN enabler, when it establishes, configures and deletes tunnels

on the edge cluster or hub that it manages. The flow is identical, but instead of initiated by a user it is done by

the SD-WAN enabler.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 42 of 83

4.1.7.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html

Table 21. Implementation status of the WAN Acceleration enabler

Category Status

Components implementation
Because of internal planning, the implementation of this enabler will start at

M20. Therefore, components are still immature to be delivered.

Feature implementation status
Since the components have not been implemented, no feature is available at this

moment.

Encapsulation readiness
No container has been developed yet (hence, K8s manifests and Helm charts are

not ready)

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.1.8. VPN enabler

4.1.8.1. Structure and functionalities

This enabler facilitates access to a node or device from a different network to the site’s private network using a

public network (e.g., the Internet) or a non-trusted private network. VPN enabler should allow High Availability

(HA) strategies, with servers distributed in different nodes, and failover mechanisms. As a first step, the site’s

network will be considered trusted, so VPNs will not be needed to connect nodes or devices that belong to it.

The VPN Enabler will expose two endpoints: (i) an HTTP REST API for managing the VPN and its clients and

(ii) the VPN endpoint to which the clients will connect, as one can observe from the general diagram of the

enabler (Figure 34).

Figure 34. High-level diagram of the VPN enabler

NOTE: At this moment, to connect two host machines directly using a VPN (for instance, to add it as a remote

K8s cluster/node via VPN), it is recommended to use a VPN without using the containerised version.

Instructions for this use case will be provided (encapsulation exception that will be documented in D3.7).

Implementation technologies

Table 22. Implementation technologies for the VPN enabler

Technology Justification Component(s)

Node.js

It is a Cross-platform execution environment. It is written in JS and

allows the realization of highly scalable web servers. The enabler

API uses Node JS as the leading technology.

API

Express
A fast and minimalist web framework for used to create the API

endpoints.
API

WireGuard

WireGuard is a fast, modern, secure and easy to configure VPN

tunnel. WireGuard is faster, simpler, leaner, and more useful than

IPsec, so it intends to be considerably more performant than

OpenVPN.

VPN server

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/wan_acceleration_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 43 of 83

4.1.8.2. Communication interfaces

Table 23. Communication interfaces (API) of the VPN enabler

Method Endpoint Description

GET /info Adds an interface to be bonded

GET /info/conf Gets a list of managed interfaces

GET /keys Modifies the order of priority among the managed interfaces

GET/POST/DELETE /client
Endpoint to get information about a client, eliminating it, or activating

it.

DELETE /client Returns the list of clients registered in the server

PUT /client/enable Enables a client with the specified the public key

PUT /client/disable Disables a client with the specified the public key

Table 24. Communication interface (UDP) of the VPN enabler – VPN server

VPN Tunnel Dedicated port Port to connect VPN clients to the VPN server

4.1.8.3. Use cases

The first use case of this enabler appears when a user wants to obtain information about the network

interface of the VPN server. Its diagram and related steps are the following:

STEP 1: The user makes an HTTP GET request to the API to obtain the information about the VPN server

network interface.

STEP 2: The API executes interacts with the VPN server to get the information.

STEPS 3-4: The output returned by the server is sent to the user via the API, finishing the operation.

Figure 35. VPN enabler UC1 (get network interface information)

NOTE: The flow is identical for retrieving the configuration file of the network interface (in step 2, considering

another command).

The second use case is to generate the needed keys to create a new VPN client. The diagram and the involved

steps are the following:

STEP 1: The user makes an HTTP GET request to the API to generate the needed keys to create a new VPN

client.

STEP 2: The API forwards the action to the VPN Server.

STEP 3: The VPN Server generates the needed keys (public, private and pre-shared) and returns them to the

API.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 44 of 83

STEP 4: The API passes the keys to the user. With these steps, the client keys are provisioned but the client is

not enabled yet. To enable it, the following flow applies, initiated by the user:

STEP 5: A user makes an HTTP POST request to the API to create a new client, attaching the pre-shared and

the public keys in the request body.

STEP 6: The API assigns an IP address of the VPN server subnet to the new client and communicates with the

VPN server to provision the client, using the provided keys and the assigned IP.

STEP 7: The VPN server adds the new client to its configuration and to the network interface.

STEP 8: The VPN server returns the result of the operation to the API.

STEP 9: The API sends an HTTP request to the LTSE API to save the information of the new client.

STEP 10: If it is stored successfully, the LTSE returns a confirmation.

STEP 11: Finally, the API returns the necessary data (server public key, client IP, ...) to configure a client and

establish a connection to the VPN server.

Figure 36. VPN enabler UC2 (generate client keys and create client)

The third use case is to delete a VPN client. The diagram and steps are the following:

STEP 1: The user makes an HTTP DELETE request to the API to delete the client specified by its public key.

STEP 2: The API forwards the action to the VPN Server.

STEPS 3-4: The VPN server removes the client from its configuration and from the network interface, returning

the result of the operation.

STEP 5: The API sends an HTTP request to the LTSE API to delete the client.

STEP 6: If it is deleted successfully, the LTSE returns a confirmation.

STEP 7: The API returns the result of the operation.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 45 of 83

Figure 37. VPN enabler UC3 (delete client)

The fourth use case is to enable/disable a VPN client. The VPN server does not distinguish between creating

and enabling a client, nor deleting and disabling it. However, thanks to the LTSE, the keys and internal IP

addresses are kept in case clients are enabled or disabled. The diagram and involved steps are the following:

STEP 1: The user makes an HTTP PUT request to the API to enable the client specified by its public key.

STEPS 2-3: The API sends an HTTP request to the LTSE API to obtain the client information, which returns

it.

STEP 4-6: The API communicates with the VPN server to create or delete the user. It also adds/removes the

peer to its configuration and to the network interface, returning the result of the operation.

STEP 7-8: The API sends an HTTP request to the LTSE API to update the client (set enabled field to true). If

everything is OK, the LTSE API returns an answer to the API,

STEP 9: The API returns the result of the whole operation.

Figure 38. VPN enabler UC4 (enable/disable client)

The last use case is to connect to the VPN using a client. To that end, a user has to configure an external VPN

client. The diagram and involved steps are the following:

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 46 of 83

Figure 39. VPN enabler UC5 (connect client)

STEP 1: The user configures a VPN connection and starts the connection process using a client.

STEP 2: The client tries to establish a connection to the server exposed by the VPN enabler.

STEP 3: The server checks the client credentials (the keys) and, if the credentials are valid, establishes the VPN

connection.

STEPS 4-5: Information about the connection is sent to the client, which can be seen by the user.

4.1.8.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/vpn_enabler.html

Table 25. Implementation status of the VPN enabler

Category Status

Components implementation A first version of the components is already in place.

Feature implementation status

There are some pending features before closing the development of this enabler:

 HA strategy has not been implemented yet.

 Endpoints for listing and auditing clients in a customized way will be added

in future versions. Now, the information about the VPN status and its clients

only is provided by the execution of WireGuard commands

Encapsulation readiness Docker images and Helm Chart created and tested

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.2. Data Management enablers

4.2.1. Semantic Repository enabler

4.2.1.1. Structure and functionalities

This enabler offers a “nexus” for data models and ontologies, that can be uploaded in different file formats, and

served to users with relevant documentation. This enabler aims at supporting files that describe data models or

data transformations, such as ontologies, schema files, semantic alignment files, etc. Additionally, human-

readable documentation for the models will be served. Offered files, their metadata and documentation are, in

principle, public, so that this enabler could be used as support for a shared semantic ecosystem. The secure

access restrictions may be more tightly controlled with an API manager in future versions. In short, the core

function of this enabler is to be a database of data models and ontologies, with public read access, supporting:

 Versioning: different versions of data models,

 Ownership: only the data model owner may update a data model,

 Provision & search: data models are public and browseable,

 Documentation: serving that provided by data model owner.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/smart/vpn_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 47 of 83

Figure 40. High-level diagram of the Semantic Repository enabler

Implementation technologies

Table 26. Implementation technologies for the Semantic Repository enabler

Technology Justification Component(s)

Akka HTTP HTTP server API server

MongoDB Data persistence Database

MinIO Store for the data models and documentation pages File storage

Scala Custom documentation compiler server and plugins Documentation compiler

4.2.1.2. Communication interfaces

Most of the endpoint URLs contain the version id fragment, which may be for example numeric, conforming to

the Semantic Versioning standard, or almost any other string. To specify the latest available version, “latest”

should be used as the version id.

Table 27. Communication interfaces (API) of the Semantic Repository enabler

Method Endpoint Description

GET / Lists available repositories.

POST/PUT/

DELETE
/{namespace id}

Creates (POST), updates (PATCH), or removes (DELETE) a specified

namespace and its settings.

GET /{namespace id} Returns the settings of the namespace and lists models in it.

GET /{namespace id}/{model id}
Returns the metadata of the model and lists the available versions of the

given model.

POST/PUT/

DELETE

/{namespace id}/{model

id}/{version id}

Creates (POST), updates (PATCH), or removes (DELETE) metadata of

a version of a model (version, creation data, modification date,

description, etc.).

GET
/{namespace id}/{model

id}/{version id}
Returns the metadata of the given model version.

POST/

DELETE

/{namespace id}/{model

id}/{version id}/content?

format={data format}

Sets (POST) or removes (DELETE) a specified file from the server.

GET

/{namespace id}/{model

id}/{version id}/content?

format={data format}

Returns the specified version of a data model in a given format.

E.g., /raul/saref/1.1/content?format=rdfxml returns a ‘saref’ model from

repository ‘raul’ in version 1.1 in file format RDF/XML

POST/

DELETE

/{namespace id}/{model

id}/{version id}/doc/{file

name}

Uploads (POST) or deletes (DELETE) additional documentation source

files (images, styles, Markdown) that can be used during documentation

compilation.

GET
/{namespace id}/{model

id}/{version id}/doc
Returns the documentation for a model.

POST /dg?[param1=value1 …]
Requests a compilation of a set of documentation source files in

« sandbox » mode. The compiled files are returned to the user.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 48 of 83

NOTE: Starting with an empty database, if a user wants to create a repository named e.g., ‘tea’ and store in it

a data model named ‘pu-erh’ in two formats, the process to do this is as follows:

1. POST /tea with JSON specifying the settings for the new repository.

2. POST /tea/pu-erh/1.0/ with JSON specifying the metadata of the data model.

3. POST /tea/pu-erh/1.0/content?format=rdfxml with the raw XML content.

4. POST /tea/pu-erh/1.0/content?format=ttl with the raw Turtle content.

Access to the endpoints in the initial version will be based on simple authentication. This could be later delegated

to the authentication and authorisation enablers. Additionally, roles may be defined to control which users can

access which functionalities. For example, repository and model creation may be restricted to only selected

users.

4.2.1.3. Use cases

The first use case of this enabler is related to the modification of metadata, which allows a user to modify the

metadata of namespaces, models, model versions, and other objects in the Semantic Repository. This is done

via an HTTP REST interface, following the sequence diagram and steps specified below:

Figure 41. Semantic Repository enabler UC1 (modify metadata)

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server instructs the database to update an appropriate document with the new metadata,

which returns the updated result.

STEP 4: The API server reports the update result to the user.

The second use case refers to the request of metadata, which allows a user to retrieve the metadata of

namespaces, models, model versions, and other objects in the Semantic repository.

Figure 42. Semantic Repository enabler UC2 (get metadata)

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server requests the needed information from the database, which returns it.

STEP 4: The API server returns the metadata to the user.

For each model, there can be many versions in the Repository, and for each such version there can be multiple

available formats.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 49 of 83

The third use case involves allowing a user to upload a file representing a given model, with an associated

version and format. The Semantic Repository stores the file, records the upload, and automatically triggers

documentation compilation, if there is an appropriate documentation plugin available. Documentation

compilation is performed asynchronously.

STEP 1: The user uploads a data model to the API server.

STEPS 2-3: The API server forwards the file stream to file storage, which acknowledges the successful upload

of the file.

STEPS 4-5: The API server requests a document update in the database, which returns an updated result.

STEP 6: The API server acknowledges the successful upload to the user and returns additional metadata (e.g.,

MD5 checksum).

STEP 7: The API server requests to compile the newly uploaded file to the stateless documentation compiler.

STEPS 8-9: The documentation compiler requests the needed files from the file storage, returning them.

STEPS 10-11: The documentation compiler invokes an appropriate documentation compilation plugin, which

returns the compiled documentation.

STEPS 12-13: The documentation compiler stores the documentation in the file storage, which acknowledges

a successful upload.

STEP 14: The documentation compiler returns the compilation result information to the API server.

STEPS 15-16: The API server updates an appropriate document in the database with the information about the

compiled documentation. The database returns an update result.

Figure 43. Semantic Repository enabler UC3 (upload file with model)

The fourth use case is related to the downloading of data models and documentation pages via the API

server.

STEP 1: The user sends an HTTP request to the API server. The server validates the request.

STEPS 2-3: The API server requests the needed file from file storage, which returns a stream of the requested

file.

STEP 4: The API server forwards the file stream to the user.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 50 of 83

Figure 44. Semantic Repository enabler UC4 (get file with model)

To preview the results of documentation compilation without the need to upload a data model, this (fifth) use

case allows a user is to use a documentation “sandbox” that offers them to interface directly with the stateless

documentation compiler.

STEP 1: The user sends an HTTP request to the documentation compiler. The request contains the compressed

source files and instructions for which plugin to invoke and with what parameters.

STEPS 2-3: The documentation compiler invokes an appropriate documentation plugin, which returns the

compiled documentation files.

STEP 4: The documentation compiler returns the compressed output files to the user.

Figure 45. Semantic Repository enabler UC5 (use documentation sandbox)

The last use case is related to the use of the Graphical User Interface (GUI), which acts as an entry point for

all the functionalities of the enabler. The GUI component interfaces only with the API server.

STEP 1: The user performs an action in the GUI.

STEPS 2-3: The GUI relays the request to the API server, which returns a response to the request.

STEP 4: The GUI is updated with the new information.

Figure 46. Semantic Repository enabler UC6 (manage the enabler with the GUI)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 51 of 83

4.2.1.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html

Table 28. Implementation status of the Semantic Repository enabler

Category Status

Components implementation

The status of the development of components is the following: the API server is

under development, at 70%; the database is under development, at ~90%; The

file storage is done; the documentation plugins have started but yet immature,

and the GUI and the documentation compiler have not started yet.

Feature implementation status

Currently, the enabler allows storing and retrieving models, versioning models

and namespacing models. It is still pending:

 Namespace ownership and privileges.

 Generating documentation.

Encapsulation readiness
All components are encapsulated in Docker images and are deployable through

Docker compose. Any Helm chart has been prepared yet.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.2.2. Semantic Translation enabler

4.2.2.1. Structure and functionalities

Semantic Translation enabler offers a configurable service to change the contents of semantically annotated

data following translation rules (so-called “alignments”), or alignment files. The core use case, around which

this enabler is designed, is to move data between semantic ontologies (which can be thought of as data schemas

or vocabularies) that can express the same information, without changing the meaning of the information.

Flexibility of design and expressivity of configuration files allow for other use-cases, such as semantic reduction

(removing selected information, e.g., because of privacy reasons), further annotation (adding additional

information based on data content and possibly external variables), or even encoding or encrypting selected data

items into a serialised form.

The Semantic Translator supports RDF as the only modern standard for semantic data. By design it supports

and promotes the “core ontology” design, in which data transformations are always unidirectional and done to,

or from a central ontology, and paired into “translation channels” to achieve bidirectional transformations. In

this manner, n-to-n translations can be easily implemented, and the cost of including a new data model in

existing deployments does not grow exponentially. Translation services are offered as a “static” API for batch

data, or through a publish-subscribe broker for streaming data.

Figure 47. High-level diagram of the Semantic Translation enabler

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_repository_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 52 of 83

Implementation technologies

Table 29. Implementation technologies for the Semantic Translation enabler

Technology Justification Component(s)

Akka Http Http server API Server

Apache Jena RDF Processing Alignment application core

Scala Custom messaging channels management Translation channel manager

PostgreSQL Data Persistence Storage

Apache Kafka Message Broker Streaming Broker

Javascript Web interface GUI

4.2.2.2. Communication interfaces

Table 30. Communication interfaces (API) of the Semantic Translation enabler – API Server

Method Endpoint Description

POST /alignments Upload new alignment.

GET /alignments/[{name}/{version}]
Get list of stored alignments, or retrieve a specific

alignment file.

DELETE /alignments/{name}/{version} Remove an alignment by name and version.

POST /convert
Convert IPSM-AF 1.0 XML alignment (older format) into

IPSM-AF 1.0 RDF alignment

POST /convert/TTL
Convert cells in IPSM-AF 1.0 RDF alignment file from

XML into TTL cell format.

POST/GET /channels
Create a new translation channel (POST) or list currently

active channels (GET)

DELETE /channels/{channelID} Remove a channel by ID

GET /logging Get logging level information

POST /logging/{level} Set logging level

POST /translation One-time translation using a sub-list of stored alignments

GET /version Get version information.

GET /swagger Display REST API summary with “try it out” options.

Table 31. Communication interfaces of the Semantic Translation enabler – Streaming broker

Method Endpoint Description

Pub/Sub Multiple topics Subscribe to an output topic or publish to an input topic.

Input topic Multiple topics

Messages sent to input topic of any translation channel will enter the

streaming core to be semantically translated following the translation

channel configuration.

Output topic Multiple topics
Output topic of a translation channel contains only the translated input

message.

Monitoring topic Multiple topics
If monitoring is enabled for a translation channel, the monitoring topic will

output short timestamp information per each processed message.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 53 of 83

4.2.2.3. Use cases

The first use case is related to the definition/storage of an alignment. Here, a user/client is able to store

(compiled) alignment data to the Storage component triggering the following steps:

Figure 48. Semantic Translation enabler UC1 (store alignment)

STEP 1: The user/client sends an HTTP request containing the alignment data to the API server. The server

validates the request.

STEP 2: The API server sends the alignment data to the Alignment application core component for compilation.

STEP 3: The Alignment application core component returns the compiled alignment to the API server.

STEPS 4-5: The API server saves the compiled alignment data to the Storage component, which the alignment

metadata.

STEP 6: The API server returns the metadata to the user/client.

The second use case enables a user/client to read metadata of an alignment stored in the database. This use

case has this sequence diagram:

Figure 49. Semantic Translation enabler UC2 (get alignment metadata)

STEP 1: The user/client sends an HTTP request to the API server.

STEP 2: The API server sends an alignment metadata request to the Storage component,

STEP 3: The storage component returns it to the API.

STEP 4: Finally, the API server returns the metadata description to the user/client.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 54 of 83

The last use case allows a user/client to define/create a streaming-based translation channel using available

(compiled) alignments.

STEP 1: The user/client sends channel creation request to the API server.

STEP 2: The API server requests the Alignment application core to retrieve alignments required by the

translation channel parameters.

STEPS 3-4: The Alignment application core retrieves the required (compiled) alignments from the Storage.

STEP 5: The Alignment application core returns the resulting translation information to the API server.

STEP 6: The API server asks the Channel manager component to create necessary topics for performing

streaming translation.

STEPS 7-8: Channel manager forwards the topic creation request to the Streaming broker, which returns

channel data.

STEP 9: The Channel manager the channel metadata to the API server.

STEP 10: The API server sends the result back to the user/client.

4.2.2.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html

Table 32. Implementation status of the Semantic Translation enabler

Category Status

Components implementation

In the current version, the HTTP server, the API, the Streaming translation core

and the Channel manager are done. The database storage is under construction

(50%), whereas the alignment format v1.0 is done, and a second version is under

construction (~30%).

Feature implementation status

Currently, this enabler has implemented streaming and batch translation

capabilities. It is still pending:

 Translation channel persistence (under construction).

 Support for IPSM-AF 2.0.

Encapsulation readiness
All components are encapsulated in Docker images and are deployable through

Docker compose. Any Helm chart has been prepared yet.

Deployed with the Orchestrator

in a laboratory environment
Not yet

Figure 50. Semantic Translation enabler UC3 (create stream-based translation channel)

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_translation_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 55 of 83

4.2.3. Semantic Annotation enabler

4.2.3.1. Structure and functionalities

This enabler offers a syntactic transformation service, that annotates data in various formats and lifts it into

RDF. Currently supported list of data formats include JSON, CSV and XML. Annotation is configured using

RML (RDF Mapping Language) files, with CARML extension for streaming annotation. The core functionality

is designed to be integrated into a pipeline before the Semantic Translation enabler, which requires the use of

RDF. Semantic annotation lifts data to RDF, which can then be translated into different ontologies.

Batch annotation is done through a stateless REST API, that accepts (i) data to be translated and (ii) an RML

file, returning the annotated result. Streaming translation was initially prototyped on Apache Flink, but because

of performance concerns, high resource usage, difficult configuration and complicated deployment, the

streaming components were re-designed and technology stack was changed. Apache Flink streaming can be still

used in the old (beta) release of this enabler. New streaming infrastructure based on CARML Processor and

custom Scala components will offer much better usability, and will be able to better manage different persistent

configurations for streaming annotation.

Figure 51. High-level diagram of the Semantic Annotation enabler

Implementation technologies

Table 33. Implementation technologies for the Semantic Annotation enabler

Technology Justification Component(s)

Akka Http Http server Streaming configuration API Server

RML Mapping language All

Javascript Frontend RML editor YARRML

Node.js Batch annotation REST API Batch API Server

RML Mapper Java RML annotation Batch annotation core

CARML Processor Streaming annotation Streaming core

Scala Custom messaging channels management Streaming core

PostgreSQL Data Persistence Configuration Persistence

Apache Kafka Message Broker Streaming Broker

4.2.3.2. Communication interfaces

Table 34. Communication interfaces (API) of the Semantic Annotation enabler – API server

Method Endpoint Description

POST :4000/execute
Send annotation definition (RML) and data to be annotated. Receive

annotated data.

GET :4000/ Display Swagger GUI

GET :8081/ Flink Web GUI for configuration of streaming annotation.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 56 of 83

Table 35. Communication interfaces of the Semantic Annotation enabler – Streaming broker

Method Endpoint Description

Pub/Sub Multiple topics Subscribe to an output topic or publish to an input topic.

Input

topic
Multiple topics

Messages sent to input topic of any annotation channel will enter the streaming core

to be semantically annotated following the translation channel configuration.

Output

topic
Multiple topics Output topic of a annotation channel contains only the translated input message.

Error

topic
Multiple topics

If error topic is configured for an annotation channel, the error topic will output

information about any errors, that prevented publishing the annotated message on the

output channel, including invalid data format and other annotation errors.

4.2.3.3. Use cases

The first use case involves authoring RML files using GUI editor. Preparation of RML files to configure

annotation can be done in any text editor offline, or via the provided GUI. Using the GUI is fairly simple, with

the option to write annotation files directly in RML, or in YARRML – a more human-readable format, that

compiles to RML. Additionally, prepared RML can be tested on example data defined by the user. The GUI

also comes with some simple built-in examples, that the user can modify to create their own RML and

YARRML. This use case follows the next steps and sequence diagram:

STEP 1: User edits YARRML in the web browser editor, either starting from scratch, or from one of the

provided examples.

STEP 2: User defines test data to test, if written YARRML is correct.

STEP 3: User requests annotation of provided example data with the defined YARRML.

STEPS 4-5: YARRML editor compiles YARRML to RML. It uses the RML and test data to an request

annotation job at the RML Mapper.

STEPS 6-7: RML Mapper performs the annotation and returns the result, which is displayed by the YARRML

editor to the user.

STEPS 8-9: User requests the compiled RML file, which is the compiled from YARRML by the editor.

STEP 10: YARRML editor presents RML to the user, who can then download it, or continue editing, or testing

on different data.

Figure 52. Semantic Annotation enabler UC1 (prepare RML files)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 57 of 83

The second use case is related to the use of batch annotation. Using it is quite straightforward, as the service

is stateless and idempotent. All information necessary to perform annotation must be sent in a single request by

the user, who then receives the annotated result. The sequence diagram and involved steps are the following:

Figure 53. Semantic Annotation enabler UC2 (batch annotation)

STEP 1: User prepares annotation rules in RML and data to be annotated and sends it to the batch API server.

STEP 2: Batch API server prepares annotation job and sends it to RML Mapper.

STEP 3: RML Mapper performs annotation using data from the request and returns results – whether annotation

was successful, or resulted in an error.

STEP 4: API server forwards annotated data and any errors to the user.

Before using the streaming annotation, a channel must be configured. Channel configuration specifies

topics (input, output, and optional error topic) and annotation file to be used. Annotation files must be uploaded

beforehand, and are retrieved, using ID specified in the channel configuration information. This third use case

follows the next sequence diagram:

Figure 54. Semantic Annotation enabler UC3 (configure channel for stream annotation)

STEP 1: User uploads RML file to be used later.

STEPS 2-3: The API server uses the Configuration persistence component to store RML file under a given ID,

returned by the latter component.

STEP 4: The API server forwards the stored RML ID to the user.

STEP 5: User sends channel configuration, that specifies the ID of the uploaded RML file.

STEPS 6-7: The API server retrieves a previously stored RML file from the persistence component, which

returns it (or an error, if there is no RML file stored under the given ID).

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 58 of 83

STEP 8: The API server sends channel configuration with RML file to the streaming core.

STEP 9: The Streaming core configures topics in the streaming broker and materializes the annotation channel,

storing RML and topic configuration in memory.

STEP 10: Streaming core confirms channel creation and returns channel ID and configuration information.

STEP 11: The API server forwards channel ID and configuration information to the user.

The last (forth) use case is the use of streaming annotation capabilities. This is performed via interaction

with the streaming broker, which exposes input, output, and optional error topics. A consumer may subscribe

to output topics, and optionally to error topics. In general, channels do not need to have an error topic configured,

and error topics can be shared by multiple channels so that errors are aggregated.

Any message published on an input topic passes through the streaming core and is either annotated and

published on the output topic, or an error is generated and forwarded to the error topic (if it exists for the given

channel). A consumer does not need to have been subscribed to the output topic to subscribe to the error topic.

In practice, consumers interested in handling annotation errors are not in the same group of interests, as “regular”

clients that publish or receive messages via the annotator. This use case has the following diagram and involved

steps:

Figure 55. Semantic Annotation enabler UC4 (stream annotation)

STEP 1: Consumer subscribes to an output topic of a previously configured annotation channel.

STEP 2: Consumer (optionally) subscribes to an error topic of an annotation channel that was configured

previously.

STEP 3: Producer publishes a message on an input topic of a previously configured annotation channel.

STEP 4: Streaming broker forwards the message to be annotated to the streaming core.

STEP 5: The streaming core attempts to annotate the message, following the configuration of the annotation

channel. If there are any errors, they are forwarded to the error topic of the annotation channel.

STEP 6: If there are any errors, they are forwarded to subscribers of the error topic.

STEP 7: If the annotation was successful, the streaming core publishes it on the output topic of the annotation

channel.

STEP 8: Streaming broker distributes the annotated message to all subscribers of the annotation channels output

topic.

4.2.3.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/semantic_annotator_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 59 of 83

Table 36. Implementation status of the Semantic Annotation enabler

Category Status

Components implementation

Currently, the following components are finished: HTTP server for batch

annotation, API REST for batch annotation and GUI editor. The streaming-

related components are in different stages of development: HTTP server for

streaming annotation (0%), Streaming translation core (~30%), Streaming

Broker (~50%) and Configuration persistence (0%).

Feature implementation status
Batch annotation and GUI editor features are in place, whereas Streaming

annotation is still under construction.

Encapsulation readiness

Batch annotation components are encapsulated in Docker images and are

deployable through Docker compose. Streaming annotation components are not

encapsulated. Any Helm chart has been prepared yet.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.2.4. Edge Data Broker

4.2.4.1. Structure and functionalities

The Edge Data Broker (EDB) enables the efficient management of data demand and data supply among edge

nodes based on a publish/subscribe schema, taking into account load balancing criteria. This enabler distributes

data where it is needed for application, services, and further analysis while considered essential only in those

deployments that involve IoT architectures.

A group of innovative features are provided by the Edge Data Broker, which facilitates the creation of pipelines,

in which data flow can be controlled. Control over the conditional paths is achieved through scriptable broker

nodes, while data may be analysed to cause alert events, directed to specific sinks depending on pre-defined

conditions. The data broker is scriptable with a highly expressive language to enable a wide range of uses.

Figure 56 presents the four components of Edge Data Broker enabler that are used to achieve the operational

and intelligent functionalities:

 Subscriptions and messages between the broker and the Edge Nodes,

 Management of message scheduling, routing and delivery,

 Common interfaces for searching and finding information,

 Integration with other data brokers, and

 Distribution load-balancing strategies.

Figure 56. High-level diagram of the Edge Data Broker

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 60 of 83

Implementation technologies

Table 37. Implementation technologies for the Edge Data Broker

Technology Justification Component(s)

VerneMQ MQTT-based data broker All

Lua Scripts Data hooks and routing Data Management

Kubernetes Nodes clustering and orchestration All

4.2.4.2. Communication interfaces

Table 38. Communication interfaces (API) of the Edge Data Broker

Method Endpoint Description

GET /health

The health check will return:

 200 when the Edge Data Broker is accepting connections and is joined with the cluster

(for clustered setups).

 503 will be returned in case any of the above two conditions are not met.

GET /metrics Configurable endpoint that provides multiple metrics relevant to monitoring and alerting.

Table 39. Communication interfaces (MQTT) of the Edge Data Broker – Data Routing

Pub Sub Multiple topics
The Pub/Sub interface of the Broker can be used to send/receive data among devices

and applications

4.2.4.3. Use cases

Three use cases have been identified for the EDB. The first use case represents the data distribution

mechanism, where an IoT device publishes a message in an ASSIST-IoT Gateway (e.g., GWEN) and the

subscriber receives the message from another, located in another area. This functionality is feasible as the EDB

is based on clustered nodes deployed in various devices. The sequence diagram and involved steps are:

STEPS 1-2: A first client subscribes to a topic of the Edge Data Broker on Gateway 1. The gateway

acknowledges the subscription.

STEPS 3-4: A second client subscribes to the same topic of the Edge Data Broker enabler on Gateway 2. Again,

the broker acknowledges it.

STEP 5: The first client publishes a message on the previous topic.

STEPS 6-7: The Edge Data Broker distributes the message to all the workers of the Cluster, and then the second

client receives it.

Figure 57. Edge Data Broker UC1 (data distribution)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 61 of 83

A key function of the Edge Data Broker enabler is the rule engine. This feature can be used to transform the

data and republish to different topics, in case some rule is triggered. The second use case (related to rules)

considers the diagram and steps depicted below:

STEPS 1-2: A first client subscribes to a topic of the Edge Data Broker on Gateway 1. The gateway

acknowledges the subscription.

STEPS 3-4: A second client subscribes to an alert topic of the Edge Data Broker enabler on Gateway 2. Again,

the broker acknowledges it.

STEP 5: The first client publishes a message on the topic. This message has a value that can trigger a rule.

STEPS 6-8: The Rule Engine transforms this message to produce an alert and publishes this alert on the alert

topic.

STEP 9: The Edge Data Broker distributes the alert to all the subscribed workers of the cluster.

STEP 10: The second client receives the published alert message.

Figure 58. Edge Data Broker UC2 (rule engine)

In the third use case, data filtering functionality provides local intelligence capabilities to the Edge Data

Broker, improving the efficient management of the data. The received data is filtered in real time and routed

based on conditional events so that the subscriber will receive only meaningful data.

STEPS 1-2: A first client subscribes to a topic of the Edge Data Broker on Gateway 1. The gateway

acknowledges the subscription.

STEPS 3-4: A second client subscribes to the filtered topic of the Edge Data Broker enabler on Gateway 2.

Again, the broker acknowledges it.

STEP 5: The first client publishes a message on the topic. This message has a value that exceeds or is bellow a

predefined threshold.

STEPS 6-7: The filtering system receives this message and either deletes it or passes it to the filtered topic

based on the filter (threshold).

STEP 8: The second client either receives or not the message.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 62 of 83

Figure 59. Edge Data Broker UC3 (data filtering)

4.2.4.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html

Table 40. Implementation status of the Edge Data Broker

Category Status

Components implementation A first version of the components is already in place.

Feature implementation status

The operational and management functionalities implemented so far include: (i)

routing and distributing pub/sub messaged over the distributed broker, (ii) data

filtering based on thresholds, and (iii) rule engine to create alerts.

In the following months, the adaption of EDB in different pilots will be explored

and customised hooks/rules/deployments will be applied based on use case needs.

Encapsulation readiness

A Docker image for ARM64 has been created and tested. A Helm chart for

deploying a cluster of EDB has been created. Both have been tested on a Cluster

with two RaspberryPis 4 model B (for ARM64 architecture). Data filtering and

rule engine features not encapsulated yet.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.2.5. Long-term Storage Enabler

4.2.5.1. Structure and functionalities

The role of the Long-Term Storage Enabler (LTSE) is to serve as secure and resilient storage, offering different

storage sizes and individual storage space for other enablers (which could request back when they are being

initialised in Kubernetes pods). Therefore, it is considered one of the ASSIST-IoT essential enablers, envisioned

to be deployed on the cloud rather than the edge. Figure 60 depicts the high-level overview of the LTSE

components, which functionalities are also described:

 LTSE Gateway: The entrance gate to the LTSE, acting as a proxy from ASSIST-IoT enablers and

external services, whose data should be collected either at SQL server databases or NoSQL cluster

nodes. To do so, the LTSE Gateway is based on REST API request, with appended SQL/NoSQL

endpoints, respectively. Furthermore, the LTSE gateway also guarantees that the data will be kept safe,

in face of various kinds of unauthorised access requests, or hardware failures, by only allowing access

to the data once the Identity Manager and the Authorisation enablers have confirmed their access rights.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/edge_data_broker_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 63 of 83

 LTSE NoSQL cluster: A group of one or more LTSE NoSQL node instances that are connected

together, and carry out the distribution of tasks, searching and indexing, across all the NoSQL nodes.

Every NoSQL node in the NoSQL cluster can handle HTTP and transport traffic by default with the

external enablers through the LTSE gateway. The transport layer is used exclusively for communication

between nodes; the HTTP layer is used by REST clients. The full hierarchy would be therefore,

noSQL_Cluster > noSQL_Node > noSQL_Index > noSQL_document. For High Availability (HA),

noSQL_document in LTSE_noSQL_Index may be distributed across multiple shards, which in turn are

distributed across multiple nodes, if configured.

 LTSE SQL server: It manages the SQL databases, formed by different enablers data tables. It

performs, hence, backup database actions on behalf of the enablers. The SQL_Server can handle

multiple concurrent connections from external enablers via the LTSE Gateway. In general, the full

hierarchy is: SQL_Cluster > SQL_Database > SQL_schema > SQL_table > SQL_row. For High

Availability, a master database with one or more standby servers could be set up.

Figure 60. High-level diagram of the Long-term Storage enabler

Implementation technologies

Table 41. Implementation technologies for the Long-term Storage enabler

Technology Justification Component(s)

GinGonic
Gin is a web framework written in Go (Golang). It features a martini-like API with

much better performance.

LTSE

Gateway

PostgREST

A standalone web server that turns a PostgreSQL database directly into a RESTful

API. The structural constraints and permissions in the database determine the API

endpoints and operations.

LTSE

Gateway

Elasticsearch

API

Elasticsearch exposes REST APIs that are used by the UI components and can be

called directly to configure and access Elasticsearch features

LTSE

Gateway

Elasticsearch

A search and analytics engine which is based on Apache Lucene. Completely open

source and built with Java, Elasticsearch is a NoSQL database, able to store data in

an unstructured way that cannot use SQL to query it.

LTSE NoSQL

Cluster

PostgreSQL

Open source object-relational database known for reliability and data integrity.

ACID-compliant, it supports foreign keys, joins, views, triggers and stored

procedures.

LTSE SQL

Server

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 64 of 83

4.2.5.2. Communication interfaces

Table 42. Communication interfaces (API) of the Long-term Storage enabler

Method Endpoint Description

POST
/SQL/DATABASES/:databasenam

e
Creates a databasename in the LTSE SQL cluster

POST
/SQL/DATABASES/:databasenam

e/TABLES/:tableName
Creates a tablename in the databasename of LTSE SQL server

POST
/SQL/DATABASES/:databasenam

e/TABLES/:tableName/…

DATA/data

Inserts data into the tablename on the databasename of LTSE SQL

server

GET
/SQL/DATABASES/:databasenam

e/TABLES/:tableName
Obtains all the data contained within the tableName of the

databasename of LTSE SQL server

PUT /noSQL/INDEX/<indexName>

Creates a new index indexName in the LTSE noSQL cluster. When

creating an index, you can specify the settings for the index,

mappings for fields in the index, and Index aliases

GET
/noSQL/INDEX/< indexName >

Returns information about indexName index from the LTSE noSQL

cluster

PUT
/noSQL/INDEX/<indexName>/DO

CUMENT/<_id>

Adds a JSON document to the specified <indexName > index of the

LTSE noSQL cluster and makes it searchable with an <_id>

GET
/noSQL/INDEX/<indexName>/_do

c/<_id>

Retrieves the specified JSON document <_id> from the indexName

of the LTSE noSQL cluster.

4.2.5.3. Use cases

There are 4 main use cases that apply in this enabler.

The first one is related to the storage of NoSQL data of an authorised Enabler on a NoSQL cluster, after

provisioning an index on it. The diagram with the required steps is summarised below:

Figure 61. LTSE UC1 (store NoSQL data)

STEP 1: The Enabler_IDx interacts via LTSE gateway with the LTSE, requesting to create a NoSQL storage.

STEPS 2-3: The LTSE Gateway checks the authorization rights of the Enabler_IDx from IdM/Authorization

enablers, which confirms or denies Enabler_IDx access to the LTSE noSQL cluster.

STEP 4: If granted, LTSE Gateway request the generation of Enabler_IDx index into LTSE noSQL_Cluster.

STEPS 5-6: LTSE noSQL_Cluster confirms the generation of <IndexName> index and inform to LTSE

gateway, which, in turn, forwards the index details to the Enabler_IDx.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 65 of 83

STEP 7: The Enabler_IDx requests ingestion of NoSQL data document to LTSE Gateway.

STEP 8: LTSE Gateway request the ingestion of Enabler_IDx NoSQL data document into <IndexName> of

the LTSE noSQL_Cluster.

STEPS 9-10: LTSE noSQL_Cluster confirms the ingestion of document _id into the <IndexName> index of

the LTSE noSQL_Cluster and informs to LTSE gateway, which, in turn, forwards the document details to the

Enabler_IDx.

The second use case is related to the retrieval of NoSQL documents with a specific <IndexName> from the

NoSQL cluster. The diagram and the related steps are the following:

STEP 1: The Enabler_IDx interacts via LTSE gateway with the LTSE, requesting specific data allocated into

its NoSQL storage Index.

STEPS 2-3: The LTSE Gateway checks the authorization rights of the Enabler_IDx from IdM/Authorization

enablers, which confirms or denies Enabler_IDx access to the LTSE NoSQL cluster.

STEP 4: If granted, LTSE Gateway request the associated information demanded into Enabler_IDx

<IndexName> of LTSE noSQL_Cluster.

STEP 5: The LTSE gateway, in turn, forwards the document to the Enabler_IDx.

Figure 62. LTSE UC2 (get NoSQL data)

The third use case is related to the storage of SQL data of an authorized Enabler on a SQL server, after

provisioning the required database and table. The diagram and the related steps are the following:

STEP 1: The Enabler_IDx interacts via LTSE Gateway with the LTSE, requesting to create a SQL storage.

STEPS 2-3: The LTSE Gateway checks the authorization rights of the Enabler_IDx from IdM/Authorization

enablers, which confirms or denies Enabler_IDx access to the LTSE SQL server.

STEP 4: If granted, LTSE Gateway requests the generation of Enabler_IDx database into LTSE SQL_Server.

STEPS 5-6: LTSE SQL_Server confirms to the LTSE Gateway the generation of :databaseName SQL database,

which, in turn, forwards the index database details to the Enabler_IDx.

STEPS 7-8: Then, Enabler_IDx requests to the LTSE Gateway the generation of a table into LTSE SQL_Server.

The LTSE Gateway forwards this request to the SQL server.

STEPS 9-10: LTSE SQL_Server confirms to the LTSE Gateway the generation of :tableName SQL table,

which, in turn, forwards the table details to the Enabler_IDx.

STEP 11-12: The Enabler_IDx requests ingestion of SQL data to LTSE Gateway, which forwards this petition

to the SQL_Server (within the table of the database provisioned).

STEPS 13-14: LTSE SQL_Server confirms the ingestion of SQL data into the :databaseName SQL database,

and :tableName SQL table of the LTSE SQL_Server and informs to LTSE gateway, which, in turn, forwards

the details to the Enabler_IDx.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 66 of 83

Figure 63. LTSE UC3 (store SQL data)

Finally, the last use case is related to the retrieval of SQL data table from a specific SQL database of the SQL

server. The diagram and the involved steps are the following:

STEP 1: The Enabler_IDx interacts via LTSE gateway with the LTSE, requesting specific data allocated into

its noSQL storage Index.

STEPS 2-3: The LTSE Gateway checks the authorization rights of the Enabler_IDx from IdM/Authorization

enablers, which confirms or denies Enabler_IDx access to the LTSE server.

STEPS 4-6: If granted, LTSE Gateway requests the associated information demanded into Enabler_IDx

:tableName of :databaseName of LTSE SQL_Server, which, in turn, forwards the table to the Enabler_IDx.

Figure 64. LTSE UC4 (get SQL data)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 67 of 83

4.2.5.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.h

tml
Table 43. Implementation status of the Long-term Storage enabler

Category Status

Components implementation

The noSQL cluster, and SQL server components are in place. The creation of

databases, tables and indexes, as well as the ingest of SQL data and NoSQL

documents have been tested in the laboratory.

Feature implementation status

Although supported, it is recommended for the time being to not deploy the

LTSE with High Availability, i.e., configure the helm charts with a single

PostgreSQL database and a single Elasticsearch node. Other pending features

are:

 Implementing the remaining endpoints.

 Integration with the cybersecurity enablers.

Encapsulation readiness

All the three components are encapsulated in charts, where the LTSE NoSQL

and LTSE SQL components are subcharts, i.e., dependencies of the LTSE

gateway.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.3. Application and Services enablers

4.3.1. Tactile Dashboard

4.3.1.1. Structure and functionalities

The Tactile Dashboard enabler has the capacity to represent data through meaningful combined visualizations

in real time. It also provides (aggregates and homogenizes) all the User Interfaces (UIs) for the configuration of

the different ASSIST-IoT enablers, and associated components. It should be noticed that the tactile dashboard

is a general GUI generation framework (based on partner PRO’s own PUI9 framework).

The PUI9 framework is based on the VueJS framework. It allows the creation of fully reusable web components

that can be used to create web pages (SPA) or complex web APPs. In addition, new applications using the tactile

dashboard framework have a basic layout with a login screen and a fully configurable menu. The main

advantages of the tactile dashboard framework are: modern, responsive and in some cases adaptive design; very

good performance; based on web components, responsive; responsive components; each component has its own

HTML template, internal JavaScript code, styles, and translations; gentle learning curve, being very easy and

quick to start being productive.

Hence, each pilot will implement its own tactile dashboard according to its requirements, but all of them will

be based on this framework, which will have in common that it is divided into three main components: Frontend,

Backend, and PUI9 database. The following figure sketches the architectural diagram of tactile dashboard

components.

Figure 65. High-level diagram of the Tactile Dashboard

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/datamanagement/long_term_data_storage_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 68 of 83

 Tactile frontend: The tactile frontend is what the ASSIST-IoT user interacts with. Therefore, it is

responsible for most of what a user actually sees, including the definition of the structure of the web

page, the look and feel of the web page, and the implementation of mechanisms for responding to user

interactions (clicking buttons, entering text, etc.)

 Tactile backend: An HTTP server that listens to the requests coming from the tactile frontend in a

specific port number, which is always associated with the IP address of the hosting computer. Thus, the

tactile backend waits for tactile frontend requests coming to that specific port, performs any actions

stated by the request, and sends any requested data via an HTTP response.

 PUI9 database: It is the place to store the tactile embedded information so that it can easily be accessed,

managed, and updated. It might store information about ASSIST-IoT pilot’s users, sensors’ data, list of

daily instructions, or reports. When a user requests some data to the tactile dashboard frontend webpage,

the data inserted into that page comes from the PUI9 database.

Implementation technologies

Table 44. Implementation technologies for the Tactile Dashboard

Technology Justification Component(s)

VueJS Basic development framework. Frontend

Vuetify Adds a set of base web components on which PUI9 components are built. Frontend

Datatables Allows the display of tabulated information. Frontend

Axios To make AJAX requests. Frontend

NPM Tool for dependency management. Frontend

Webpack Tool for packaging the application. Frontend

Babel Tool for transpiling modern JavaScript code. Frontend

Eslint Code format validator Webpack loaders. Frontend

Java 8
Core Java platform, able to improve efficiency in developing and running Java

programs

Backend

Spring Provides flexible Java libraries Backend

SQL
Tactile dashboard is compatible with several SQL databases (PostgreSQL, Oracle,

SQL Server)

Backend

4.3.1.2. Communication interfaces

Table 45. Communication interfaces (API) of the Tactile Dashboard

Method Endpoint Description

POST /login/signin Login

POST /model_id/list Provides the list of model_id

GET /model_id/get Provides the model_id

PUT /model_id/update Updates the model_id

POST /model_id/insert Creates a new registry into model_id

DELETE /model_id/delete Deletes a registry into model_id

4.3.1.3. Use cases

Three use cases are envisioned for this enabler. They refer to the user login page, to the data forms listing, and

to the access to external enablers APIs. The first use case will be instantiated by a user once it opens a web

browser and types in the address bar the corresponding IP address/DNS of the instantiated tactile dashboard.

Automatically, the Tactile dashboard will prompt the login webpage over which the user should introduce

his/her credentials, which will be further evaluated in the tactile dashboard backend by querying this information

to the embedded database of the application.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 69 of 83

Figure 66. Tactile Dashboard UC1 (login webpage)

STEPS 1-2: The user opens a web browser and navigates to the web address containing the PUI9 application,

and then the tactile dashboard frontend prompts the login webpage, demanding users’ credentials.

STEPS 3-4: The user types his/her credentials and click on the login/submit frontend button, which forwards

the details to the tactile backend.

STEPS 5-6: The backend communicates with the PUI9 database to collect the user’s access rights1 and checks

if the user has rights to access the application.

STEPS 7-8: If the user’s credentials are approved, the backend requests to the fronted to prompt the main menu

webpage of the application to the user.

The second use case will be instantiated also by a user once it has been logged in accordingly. The use case is

about listing a specific data requested by the user in the corresponding menu of the application. The diagram

and involved steps are summarised below:

STEP 1: The user opens a web form page, and request listing a specific queried data.

STEPS 2-3: The frontend gathers the query, and forwards the details to the tactile dashboard backend, which,

in turn, demands to the PUI9 database (either PostgreSQL, Oracle, or SQL Server) the user’s requested data.

STEPS 4-5: The PUI9 database receives the backend query, compiles the requested data from the user, and

provide the details back to the backend, which in turn, provides it to the fronted.

STEP 6: The tactile dashboard frontend prints in the specific web page form, the user’s queried data.

Figure 67. Tactile Dashboard UC2 (show data managed by PUI9 database)

1 The users’ access profiles can be stored within the enabler database or taken from the external, more advanced IdM and authorization

enablers databases, accessible by means of API commands from the tactile dashboard backend (see use case 3 of the tactile dashboard).

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 70 of 83

The third use case may (or may not) be instantiated by the user, when he/she demands additional information

which is not collected in the PUI9 database (e.g., data stored in the LTSE or EDB), or additional graphical

functionalities not supported by the tactile dashboard (e.g., charts generation from the Business KPI enabler),

but as highlighted in the examples, by other ASSIST-IoT enablers. Therefore, instead of the logical tactile

dashboard workflow (frontend – backend – PUI9 database), the backend directly communicates with the API

of the associated enabler.

Figure 68. Tactile Dashboard UC3 (show data not managed by PUI9 database)

STEP 1: The user opens a web form page, and request listing a specific queried data/functionality not

stored/supported by the tactile dashboard.

STEPS 2-3: The frontend forwards the details to the tactile dashboard backend, which, in turn, communicates

with the external ASSIST-IoT enabler API.

STEP 4: The external ASSIST-IoT enabler proceeds internally with the request based on the API command

from the tactile dashboard backend, and provide the requested data/functionality.

STEPS 5-6: The tactile dashboard backend receives the external ASSIST-IoT enabler response, and forwards

the information to the frontend, which, finally, prints the user’s demanded data/graphical functionality.

4.3.1.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html

Table 46. Implementation status of the Tactile Dashboard

Category Status

Components implementation

The tactile dashboard framework is fully operational. However, until now, only

one webpage and the manageability enabler webpage have been generated. The

tactile dashboards of the pilots and any pages need for configuring/managing

other enablers are still missing.

Feature implementation status

As each ASSIST-IoT pilot (and potentially many enablers) will demand a

particular tactile dashboard/page to be configured, as well as a set of enablers to

be consumed, the required HTTP methods to be supported in order to allow the

communication between the tactile dashboard backend and the rest of deployed

enablers is still pending to define and implement.

Encapsulation readiness
The example tactile dashboard, as well as the manageability dashboard are

already containerized, and a Helm chart has been created for them.

Deployed with the Orchestrator

in a laboratory environment

True, some integration tests between the manageability dashboard and the

orchestrator have been carried out in UPV laboratories.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/tactile_dashboard_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 71 of 83

4.3.2. Business KPI Reporting enabler

4.3.2.1. Structure and functionalities

All valuable logs, time-series analytics and Key Performance Indicators (KPIs) desired by the end-user should

be available for representation in graphs, charts, pies, etc. The Business KPI enabler will allow to embed them

as User Interfaces (UIs) within the tactile dashboard. It will facilitate the visualization and combination of charts,

tables, and other visualization graphs in order to search for hidden insights. The enabler is composed of (i) a

server component containing the business logic engine, accompanied with (ii) a UI component that defines the

graphical UI that users interact with, and (iii) a Command Line Interface (CLI) tool especially designed for

developers. Figure 69 presents the architectural diagram of the Business KPI reporting enabler and its internal

components:

Figure 69. High-level diagram of the Business KPI Reporting enabler

 Business KPI Server: Collects data from data collectors (e.g., tactile dashboard PUI9 database, LTSE,

or EDB enablers) into a dedicated database and provides access to it to the UI and CLI components via

an internal REST API.

 Plugins: Business KPI functionalities are implemented through modular plugins (Discover, Tag, Lens,

Maps, etc.), which contain the business logic and communicate with the UI and CLI components, based

on the data collected in the Business KPI server. Furthermore, if willing to, custom plugins can also be

easily integrated if needed, thanks to having a modular approach.

 Business KPI UI: Whenever the end-user accesses the Business KPI enabler via the Tactile Dashboard

webpage, the UI component loads all server plugins that comprise the core functionalities of the

Business KPI enabler. Hence, the UI component provides an editor to create and explore interactive

visualizations and a set of functionalities to arrange the visualizations according to ASSIST-IoT end-

user goals.

 Business KPI CLI: The CLI component enables custom plugins built by 3rd party developers to interact

with the Business KPI Server, so that it is reachable from the UI to e.g., provide new data aggregation

methods, or to visualize new chart types, colour palettes, etc.

Implementation Technologies

Table 47. Implementation technologies for the Business KPI Reporting enabler

Technology Justification Component(s)

Kibana

Open source program specialized in providing data visualization in various

convenient formats (histograms, line graphs, pie charts, sunbursts, geospatial

map displays, and other common visualization options)

Business KPI server,

Plugins, Business UI,

Business CLI

4.3.2.2. Communication interfaces

All charts and graphs in the Business KPI enabler are stored as saved-objects (basically a JSON-object that

describes which visualizations are included). Therefore, the API methods are not those which allow generating

the graphs but are, however, managed with Graphical User Interfaces that connect with a specific database.

Nevertheless, the business KPI enabler is formed by spaces and data views, which allow to customize the

webpage layout for visualizations.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 72 of 83

Table 48. Communication interfaces (API) of the Business KPI Reporting enabler

Method Endpoint Description

POST /api/spaces/<space_name> Create a Business KPI space_name

GET /api/spaces/<space_name> Retrieve a Business KPI space_name

DELETE /api/spaces/<space_name> Delete a Business KPI space_name

POST /api/data_views/data_view Create a data view with a custom title (JSON file)

POST /api/saved_objects/data-view/my-view Update <my-view> data view (JSON file)

GET /api/data_views/data_view/my-view Retrieve the data view <my-view>

DELETE /api/data_views/data_view/my-view Delete a data view <my-view>

4.3.2.3. Use cases

There is a single use case that applies to this enabler. It is related to the generation of graphs from time-series

data stored in the LTSE of ASSIST-IoT deployments. Its diagram and the involved steps are the following:

Figure 70. Business KPI Reporting enabler UC (generate graphs from time-series data)

STEP 1: The Business KPI server connects with the LTSE in order to have access to the time-series data

produced in the ASSIST-IoT deployment.

STEPS 2-3: The Business KPI server and the Plugins provide access to the time-series data from LTSE, and

the different graph types supported by the enabler to the UI/CLI, respectively.

STEPS 4-5: The user accesses to the webpage/menu of the tactile dashboard that allocates the business KPI

enabler GUI (or connects to the CLI terminal), and selects visualising data in a specific format.

STEPS 6-8: Thanks to the plugins, the user can observe the data in the demanded format.

4.3.2.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html

Table 49. Implementation status of the KPI Reporting enabler

Category Status

Components implementation All the components are already implemented.

Feature implementation status
The integration of the Business KPI enabler with the tactile dashboard has been

postponed for the second term of the project.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/business_kpi_reporting_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 73 of 83

Category Status

Encapsulation readiness
The enabler is already encapsulated, and a Helm chart has been provided.

However, it has not been properly deployed and tested in a K8s cluster yet.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.3.3. Performance and Usage Diagnosis enabler

4.3.3.1. Structure and functionalities

Performance and Usage Diagnosis (PUD) enabler collects performance metrics from monitored targets by

scraping metrics to HTTP endpoints and highlighting potential problems in the ASSIST-IoT platform. This

allows to autonomously act in accordance (if enabled) or to notify the platform administrator for fine-tuning the

associated machine resources.

The PUD enabler provides an end-to-end approach to the infrastructure and application monitoring, covering

all levels with easy instrumentation. The enabler collects performance metrics aiming to maintain operational

simplicity while being able to adapt to a variety of scales/levels of the ASSIST-IoT infrastructure. By scraping

metrics from endpoints with an HTTP pull model, PUD enabler will stay synchronised with the ASSIST-IoT

infrastructure under monitoring. Its structure remains unchanged from its initial design.

Figure 71. High-level diagram of the Performance and Usage Diagnosis enabler

Implementation Technologies

Table 50. Implementation technologies for the Performance and Usage Diagnosis enabler

Technology Justification Component(s)

Prometheus Server Retrieval, Storage and Querying Metrics PUD Server

Prometheus Alert

Manager
Handles alerts sent by PUD Server Alert Manager

Prometheus

PushGateway

Push time series from short-lived batch jobs to an intermediary job that

PUD Server can scrape
Push Gateway

Kube State Metrics
Service that listens to the Kubernetes API server and generate metrics

about the state of the objects
-

4.3.3.2. Communication interfaces

Table 51. Communication interfaces (API) of the Performance and Usage Diagnosis enabler

Method Endpoint Description

HTTP

Pull
/metrics

PUD follows an HTTP pull model: It scrapes Prometheus metrics from endpoints

routinely. The abstraction layer between the application and PUD is an exporter, which

takes application-formatted metrics and converts them to Prometheus metrics.

HTTP

Push
/write

Remote write feature of PUD allow transparently sending samples and its primarily

intended for long term storage.

HTTP

Push

/metrics/job/

some_job

PUD PushGateway allows ephemeral and batch jobs to expose their metrics. Since these

kinds of jobs may not exist long enough to be scraped, they can instead push their

metrics to a PushGateway that then exposes those metrics to PUD.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 74 of 83

4.3.3.3. Use cases

The first use case of PUD enabler is the monitoring of the whole Kubernetes cluster that it lives in. This can

be achieved with kube-state-metrics, a project under the Kubernetes organization, which generates Prometheus

format metrics based on the current state of the Kubernetes native resources. This is done by connecting to the

Kubernetes API and gathering information about resources and objects, e.g., Deployments, Pods, Services, and

StatefulSets.

The second use case of the PUD is the monitoring the enablers of the ASSIST-IoT architecture by scraping

metrics provided from each enabler’s exporter routinely and storing them in Prometheus’s server. Both use

cases follow the same sequence diagram and steps, summarised as follows:

Figure 72. PUD UC (monitoring cluster and enablers)

In both use cases, the system administrator can use PromQL, which allows the users to select and aggregate

time-series data in real time. The results of an expression can be shown as a graph in Prometheus’s user interface.

PUD’s alerting system can be used for sending out notifications about firing alerts to an external service, through

Prometheus alert manager, whenever an alerting rule has been met.

STEP 1: Initialising PUD by configuring the main server and all of its components via command-line flags or

a configuration file.

STEP 2: The PUD server scrapes metrics from endpoints routinely from exposed HTTP endpoints. Once an

endpoint is available, it can start scraping numerical data, capture it as a time series, and store it in a local

database.

STEP 3: The user can access PUD’s User Interface which provides a functional query language called PromQL

(Prometheus Query Language) that lets the user select and aggregate time-series data in real time. The result of

an expression can either be shown as a graph, viewed as tabular, or consumed by external systems.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 75 of 83

STEP 4: When an alert occurs, the PUD server sends it to an alert manager. The latter then manages those

alerts, including silencing, inhibition, aggregation and sending out notifications via methods such as email, on-

call notification systems, and chat platforms.

NOTE: Steps 2,3 and 4 may happen concurrently and in a different order.

4.3.3.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_ena

bler.html

Table 52. Implementation status of the Performance and Usage Diagnosis enabler

Category Status

Components implementation A first version of the components is already in place.

Feature implementation status

Currently, PUD enabler is configured to scrape Kube-state-metrics and Edge

Data Broker endpoints, as well as to monitor Edge Data Broker and Kubernetes

clusters. Next release features will include:

 Configuring PUD enabler to scrape other enablers endpoints.

 Implementing and configuring an adapter for the communication between

PUD and LTSE (i.e., use LTSE as persistent storage of PUD metrics).

 Integrating a new UI into the enabler (probably Grafana dashboard).

Encapsulation readiness Docker images and Helm Chart created and tested.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.3.4. OpenAPI Management enabler

4.3.4.1. Structure and functionalities

The OpenAPI Management enabler will be an API manager that allows enablers to publish their APIs, to

monitor the interfaces lifecycles, and make sure that needs of external third parties (including granted Open Call

projects), as well as applications that are using the APIs, are being met. Hence, the OpenAPI manager will

provide the tools to ensure successful API usage in the developers’ environment, help end-users for business

insight analytics, as well as help ASSIST-IoT admins to preserve platform’s security and protection. To achieve

this, all ASSIST-IoT enablers should document their API in a common API specification format, which in

principle has been identified to be the Swagger-JSON format.

Figure 73. High-level diagram of the OpenAPI Management enabler

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/performance_and_usage_diagnosis_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 76 of 83

The OpenAPI management enabler has the following components:

 OpenAPI Publisher: A collection of tools that API providers use to define their APIs. These tools are

also responsible to generate API documentation, manage access and usage policies, and can as well be

used for testing-debugging purposes.

 OpenAPI Portal: A community site that allows users access to documentation, tutorials, software

development kits etc. It can also allow to manage subscription keys and obtain support from the API

provider if needed.

 OpenAPI Gateway: A server that acts as an API front-end, which receives API requests and passes

them to the backend. Afterwards it returns the responses back to the requester. It can modify the requests

and responses on the fly, and it can also provide the functionality to support authentication,

authorization, security, audit and caching.

 OpenAPI Catalog: The OpenAPI management enabler has a registry/catalog embedded, to store,

update and query the published JSON schemas of each enabler.

Implementation technologies

Table 53. Implementation technologies for the OpenAPI Management enabler

Technology Justification Component(s)

Swagger,

Swagger UI

Swagger is a set of open source tools for writing REST-based APIs. It

simplifies the process of writing APIs by notches, specifying the standards &

providing the tools required to write beautiful, safe, performant & scalable

APIs.

OpenAPI publisher,

OpenAPI portal

KrakenD

KrakenD is an extensible, high performance API Gateway that aid with the

adoption of microservices and secure communications. KrakenD is easy to

operate and run and scales out without a single point of failure.

OpenAPI Gateway

MongoDB Small NoSQL database selected for storing the published APIs API Catalog

4.3.4.2. Communication interfaces

Table 54. Communication interfaces (API) of the OpenAPI Management enabler

Method Endpoint Description

GET/POST/PUT/DELETE /apis/{enabler_id} Get/add/modify/delete a new API design document for an enabler.

GET /apis Return all the API design document published.

4.3.4.3. Use cases

The first use case of OpenAPI management enabler is built around an external user who wants to consult the

API documentation of a specific enabler. The following flow and steps describe the process:

Figure 74. OpenAPI Management enabler UC1 (get API documentation)

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 77 of 83

STEP 1: An OpenAPI caller requests a specific enabler’s API documentation by communicating with the

OpenAPI portal.

STEP 2: The portal processes the request and communicates with its API catalog.

STEP 3: The catalog returns the desired documentation.

STEP 4: The enabler outputs the requested API documentation.

The second use case is about an ASSIST-IoT admin/developer who wants to publish a newly designed API

document. The enabler process is described below:

Figure 75. OpenAPI Management enabler UC2 (publish API document)

STEP 1: An ASSIST-IoT admin designs an API document and wants to publish it, starting a communication

with the OpenAPI Publisher.

STEP 2: The request is then pushed from the OpenAPI Publisher to the OpenAPI Portal.

STEP 3: The Portal registers the document in the catalog.

STEPS 4-5: After registering the document, this can be shown in the portal.

STEP 6: Finally, the user receives an acknowledgement that the document has been published (or an error

message, if an error has occurred).

The third use case involves an external entity who wants to interact with an ASSIST-IoT enabler. The figure

and steps below describe the flow for being redirected to the correct enabler:

Figure 76. OpenAPI Management enabler UC3 (interact with enablers)

STEP 1: An user starts a connection with the OpenAPI portal to interact with an ASSIST-IoT enabler.

STEPS 2-3: The OpenAPI Portal gets the required JSON Schema from the catalog.

STEP 4: After the schema is completed with the correct endpoints, the configuration is sent to the gateway to

establish the connection.

STEPS 5-6: Once the connection is established, the Portal sends an acknowledgement to the requester.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 78 of 83

4.3.4.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html

Table 55. Implementation status of the Open API Management enabler

Category Status

Components implementation A first version of all the components is in place.

Feature implementation status
The basic features of these components are working, but adaptations for the

project and integration with the identity management are still missing.

Encapsulation readiness Components are yet to be encapsulated.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.3.5. Video Augmentation enabler

4.3.5.1. Structure and functionalities

This enabler receives images or video captured either from ASSIST-IoT Edge nodes, or from ASSIST-IoT

databases, and using Machine Learning Computer Vision functionalities, performs object detection/ recognition

of particular end-user assets (e.g., cargo containers, cars’ damages). It should be noticed that in order to carry

out the proper object recognition in an operation, an appropriate annotated dataset should be ready and available

for training and testing. Figure 77 presents the architectural diagram of the video augmentation enabler and

internal components.

Figure 77. High-level diagram of the Video Augmentation enabler

 API: The entrance gate to the video augmentation enabler. It provides a set of restful API endpoints,

over which the user can easily interact with the enabler to e.g., run an ML training process, run an ML

inference, or get the status of the current training process.

 Data Pre-processor: Since the dataset can be collected from various sources such as Cameras or

Databases, but it may not be used directly for performing ML analysis processes (e.g., the dataset

contains unorganized or noisy data), a data pre-processing can be done. Data pre-processor provides

tools for cleaning the raw data such as taking care of missing values, categorical features, and

normalization.

 ML trainer: An ML model is a function with learnable parameters that maps an input to the desired

output. The optimal parameters are obtained by training the model on data. ML Trainer will carry out

the process of feeding the network with millions of training data points so that it systematically adjusts

the knobs close to the correct values. Although the video augmentation ML trainer already supports

some ML models, additional ML models can be retrieved from the FL Repository. Since the training

process of images/videos may be computationally intensive, as the data can be passed through Neural

Network with several training rounds, it is recommended to be performed on a GPU.

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/openapi_management_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 79 of 83

 Inference engine: The Inference engine provides the process of running a trained ML over a specific

input through an interpreter. The interpreter, based on TensorFlow, is designed to be lean and fast, and

uses a static graph ordering and a custom (less-dynamic) memory allocator to ensure minimal load,

initialization, and execution latency.

Implementation Technologies

Table 56. Implementation technologies for the Video Augmentation enabler

Technology Justification Component(s)

Fast API Widely used technology to developed REST APIs in an easy way API

Tensorflow
This platform is used because of its well-documented and useful object

detection API

Data PreProcessor, ML

trainer

OpenCV Widely-used library and tools for computer vision Inference engine

4.3.5.2. Communication interfaces

Table 57. Communication interfaces (API) of the Video Augmentation enabler

Method Endpoint Description

POST /train/{model_id}

Executes a training session over the annotated data

in the Video Augmentation data folder with the ML

model {model_id}.

GET /train_status Provides the status

POST /inference_local/{model_id}

Performs inference or validate process over the

stored data (video or image) with the trained model

model_id.

POST /inference_streaming/{IP_address,model_id}

Performs inference or validate process over the

video being streamed at IP_address with the trained

model model_id.

4.3.5.3. Use cases

The two main use cases of this enabler are related to the training and the inference process of a computer vision

ML model over a local or streaming image/video set. The first use case, i.e., the training process, will be

initiated by a user, once the labelled data is updated and allocated in the corresponding local folder.

Figure 78. Video Augmentation enabler UC1 (model training)

STEP 1: The user starts a new training process via API command, once the properly annotated data is present

in a folder accessible by the training module.

STEPS 2-3: The API communicates with the PreProcessor in order to start a new pre-processing (if required),

and afterwards it forwards the processed data to the ML trainer to actually start the training of a new ML model.

STEPS 4-7: When the training process is finished, if expressed, the ML model is stored in the FL repository

and notified to the user.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 80 of 83

The second use case is related to the inferencing of new video set (either stored in local folder or received via

an HTTP streaming service) with a trained ML model. In this case, the following steps and diagram apply:

STEP 1: The user starts an inference process via API command, making use of model trained previously by the

dedicated module. The video format over which the Video Augmentation enabler will perform the inference

(local or streaming) is also included in the body of the API endpoint.

STEP 2: The API informs to the Inference engine to start the new process.

STEPS 3-4: The Inference engine starts the process and sends the output video files to a video player user

application (outside of the scope of Video Augmentation enabler).

STEP 5: The video player reproduces the inferenced filed in order to be visualised by the user.

Figure 79. Video Augmentation enabler UC2 (video inference)

4.3.5.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html

Table 58. Implementation status of the Video Augmentation enabler

Category Status

Components implementation
All the components are already implemented, except for the API, which is still

at a 20% of its development.

Feature implementation status

The basic functionalities related to training and inferencing are ready, however,

not instantiable from the API. The integration of the video augmentation enabler

with the FL repository has been postponed for the second term of the project.

Encapsulation readiness

The video augmentation enabler is already encapsulated in the form of a Docker,

but it has not been deployed over a Kubernetes cluster yet, and no helm chart has

been generated.

Deployed with the Orchestrator

in a laboratory environment
Not yet

4.3.6. MR enabler

4.3.6.1. Structure and functionalities

The novel interface that is used in the MR enabler offers a human-centric interaction through better cooperation

of the end-users with the IoT environment. Through the MR enabler, the human effort and decisions are

introduced in the loop of every critical action, whenever needed. The MR enabler aids human-friendly haptics

and the end-user can receive and provide tactile, real-time and visual feedback as well as data capable of

identifying critical improvements, preventions and triggers in long-, short-term, or real-time. Through reporting

functions, the MR enabler gathers reliable data to extract information and perform analytics. Decision-making

is improved as human flexibility, creativity and expertise, interact with IoT platforms and devices. The

functionalities of the MR enabler are summarised as follow:

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/video_augmentation_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 81 of 83

 Identifying assets (along with relevant data) at close proximity,

 Visualizing rendered (3D) models through the head-mounted MR devices, along with highlighted zones

of the same model. The models and all related data come from the long-term storage,

 Receiving alert messages from real-time data streams and displaying them to the user, and

 Capturing and storing media files in order to include them in a report.

The present design has a few changes compared to D4.1, as it includes one additional component. This

component manages the configuration of the MR enabler, directly communicating with the ASSIST-IoT

platform, where the user can configure it in order to be functional with other components and systems in the

IoT ecosystem.

Figure 80. High-level diagram of the MR enabler

Implementation Technologies

Table 59. Implementation technologies for the MR enabler

Technology Justification Component(s)

Unity Parametrisation of the MR enabler Configuration MR

Unity Retrieval, Storage and Querying Data Data Integration

Unity Information visualisation Data Publication

4.3.6.2. Communication interfaces

The MR enabler will retrieve, gather and integrate all the necessary data via external REST API endpoints or

other services provided. The following endpoints are used to function with the rest of the components:

Table 60. Communication interfaces of the MR enabler

Method Endpoint Description

 REST API Not defined yet The MR enabler will send reports (data and image) to the LTSE.

 MQTT Not defined yet MQTT messages will be send to MR enabler in order to visualise them.

4.3.6.3. Use cases

The MR enabler supports various use cases in the health and safety process, performed by the end-user (such

as, identification of assets or elements at close proximity, visualization of rendered (3D) models and related

content, real-time alerting, notifications and reporting of required actions). In the following graph, the main

sequence diagram of the internal components of the MR enabler are presented, while the detailed steps are

further described below.

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 82 of 83

STEP 1: The Configuration component of the MR enabler sends a GET request to the ASSIST-IoT

Management Platform, in order to receive the up-to-date configurations that exist online.

STEPS 2-4: If the connection with the Platform is successful, the Management Platform responds with the

proper configurations, forwarded to the internal components to apply them.

STEP 5: The data is integrated by the MR enabler and can either be sent to other enablers, or visualized to the

Inspector via the MR-HMD (Head Mounted Device).

STEP 6: As soon as an end-user visualises the site data, he/she is able to take an informative action through the

graphics interface of the MR enabler.

STEPS 7-8: The action performed by the end-user through the HMD will be integrated by the MR enabler and

sent to other enablers, if needed.

STEP 9: A response will return to the graphics interface (MR HMD) of the end-user.

Figure 81. MR enabler UC (3D visualisation, asset identification, alerting and notification)

4.3.6.4. Implementation status

Link to Readthedocs (structure defined in WP6 documentation task):

https://assist-iot-enablers-

documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html

Table 61. Implementation status of the MR enabler

Category Status

Components implementation A first version of the components is already in place.

Feature implementation status

The following features of the MR enabler are ready: (i) visualization and

manipulation of the rendered model of an area with the highlighted areas, (ii)

creation of reports using attached media, and (iii) integration with Edge Data

Broker enabler via MQTT protocol. There are some pending features before

closing the development of this enabler:

 Integration with other enablers (such as, LTSE, Semantic, Location

management system).

 Identification of workers at close proximity (pending integration with other

enablers to activate this feature)

Encapsulation readiness
This enabler cannot be encapsulated (see deliverable 3.6, Chapter 5.2

Encapsulation exceptions)

Deployed with the Orchestrator

in a laboratory environment

This enabler cannot be encapsulated (see deliverable 3.6, Chapter 5.2

Encapsulation exceptions)

https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html
https://assist-iot-enablers-documentation.readthedocs.io/en/latest/horizontal_planes/application/mr_enabler.html

Deliverable D4.2 – Core Enablers Specification and Implementation

Version 1.0 – 30-APR-2022 - ASSIST-IoT© - Page 83 of 83

5. Future Work

This deliverable encompasses not only the information provided in this document, but also the first software

results related to the horizontal planes of the architecture. These software outcomes are in different degree of

development: some of them are containerised, others integrated with K8s (manifests ready) or already packaged

(in Helm charts), whereas the implementation of a few of them has not started yet. It should be highlighted that

the development of the enablers identified as essential has been prioritised for this first release, and hence a

functional version is ready. The software material (source code) associated to those advances has been submitted

attached to this document (in the form of a compressed file) extracted from the collaborative code repository of

the project (GitLab).

In this document, an update and extension of the specifications provided in the first iteration of this deliverable.

This includes an update of the functionalities, of the schematic of their internal components, and of the endpoints

to be provisioned. Besides, new information is provided, including (i) the technological selections, not just

candidate ones, (ii) a set of relevant use case diagrams, where the interaction from users (or from relevant

enablers) with the enablers and its internal interactions are depicted, and (iii) a reporting table of the current

development status. The enablers developed so far allow for starting and/or continuing efforts related to this

and other work packages:

 To finish the development of the components of the enablers (WP4). It should be highlighted that the

efforts devoted to SD-WAN related enablers were postponed to be initiated after the finalisation of this

deliverable.

 To containerise, and/or generate the K8s manifests required to deploy them in those cases that have not

virtualised the overall solution (WP4).

 To test the enablers in a common, staging environment (WP6), following a common testing and

integration methodology.

 To perform the needed modifications for ensuring proper interactions with other enablers from WP4 &

WP5.

 To package, publish and release the enablers as Helm charts (WP6).

 To start implementing them in pilots for further validation and assessment (WP7), either fully or

partially packaged.

 To prepare/fine-tune them (if needed) for their forthcoming usage by the Open Call awarded projects.

In the next (and last) iteration of the deliverable, all the enablers will have a functional packaged version

available. They will be accompanied by another document, in which all the modifications and deviations will

be reported, as well as an update with the final enabler templates.

