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Abstract—New requirements posed by the Next Generation 

IoT demand the design of novel reference architectures. Rooting 

on cloud-native concepts (such as micro-services-based systems 

and containerization), this paper proposes an architecture to 

cover all needed aspects. The paper elicits a wide description of 

components of the architecture (horizontal planes and vertical 

capabilities) while providing a formal definition of the views of 

the architecture, setting the ground for an upcoming deployment 

and validation in real scenarios in the short future. In particular, 

functional, node, deployment and data views are presented, each 

of them addressing the concerns of a group of particular 

stakeholders.   

Keywords—Next Generation IoT; Reference Architecture; 

Views; Distributed; Enablers; Data 

I.  INTRODUCTION 

The Internet of Things (IoT) is evolving faster than ever. 
The unprecedented data explosion (both structured and -
mostly- unstructured [1]) combined with the evolving 
capabilities of virtual infrastructures, set the scene for 
developing new scalable architectural paradigms. 

Traditionally, IoT platforms have been focused on things’ 
monitoring and actuation, being also vendor-locked and rather 
use-case specific. During the last few years, some initiatives 
have pushed forward a series of research (FIWARE, 
OM2M/OpenCDM, IoT-EPI, AIOTI) and commercial (AWS 
IoT, CISCO, IBM Watson) actions to devise advanced, 
modern, domain-agnostic (and, sometimes, even open-source) 
IoT architectures. However, there is still plenty of new 
requirement tides coming from different backgrounds (e.g., Big 
Data Analytics, AI, Cloud/Edge Computing, 5G connectivity, 
Industrial Data Spaces or new tactile interfaces like Augmented 
or Virtual Reality) aiming to be considered as explicit part of 
future IoT approaches. Those trends are paving the way to 
realize the IoT landscape into a portfolio of all-encompassing 
digital transformation enablers, supporting the Next Generation 
Internet (NGI) vision [2]. 

The objective of this paper is to propose a Reference 
Architecture (RA) for the so-called Next Generation IoT, 
covering the mentioned technological compass, and posing a 
deployment perspective to build on in years to follow. The 
designs exposed in this paper are strongly linked with the 
advances performed by H2020 ASSIST-IoT project, on track to 
be finalized by October 2023 and to be validated in three real-
life scenarios on representative sectors (maritime ports, 
construction and automotive).  

The paper is organized as follows: Section II presents a 
review of the RA terminology and paradigms utilized for their 
design, as well as a summary of existing solutions. Section III 
lays the technological foundation of the proposed architecture, 
detailing horizontal planes and vertical capabilities, as well as 
the concept and characteristics of the term “enabler”. Section 
IV focuses on the rather formal description of the views of the 
architecture (Functional Data, Deployment and Node) while 
Section V reflects on future work and conclusions. 

II. BACKGROUND 

Reference Architectures (RAs) serve as blueprints to 
design, develop, implement and utilize IoT systems. They 
provide a set of guidelines, structures and models, which have 
to be flexible enough to be applicable in different domains and 
realized via different technological options, but without being 
so abstract that they become practically useless.  

A. Concepts 

Most of the concepts that are leveraged by RA designers 
have been defined by the ISO/IEC/IEEE 42010 standard [3]. 
The key ones are summarized here: 

• Stakeholder: person, team, or entities that have a 
concern (also referred to as “interest”) in a system. 
They can be technology (developers, administrators, 
maintainers, etc.) and non-technology related (users, 
acquirers, etc.). 

• Concern: aspect of interest of stakeholders related to 
the RA. It includes needs, goals, requirements, quality 
attributes, dependencies, responsibilities, etc. 
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• Views: depict the architecture from the perspective of 
specific concerns, showing how these are addressed. 
The core ones are typically the Logical (or Functional), 
the Data (or Information), the Development, and the 
Deployment and Operational view [4]. 

• Perspectives: set of guidelines, strategies and tasks 
ensuring that a system considers a set of properties 
through many architecture views. In some RAs, these 
are referred to as system characteristics, however, in 
ASSIST-IoT the term “Vertical” is used, as it will also 
include specific functionalities to address specific 
cross-cutting concerns. 

B. Architecture Paradigms 

Nowadays, IoT architectures are growing in complexity: 
new features are being continuously included, workloads are 
extended and the number of components is rising. Architecture 
patterns are proper starting points to address such intricacy, 
supporting system components organization [5]. Some relevant 
architecture paradigms are the following (which in some cases 
can be combined together): layered, microkernel, event-driven, 
space-based, serverless and based on services. The latter, in 
turn, can be split into: (i) monolithic architecture, where its 
components form a unified, indivisible program or platform; 
(ii) service-oriented architecture (SOA), which decouples it 
into a set of modules, that are maintained independently and 
work together by means of an aggregation layer (messaging 
middleware); and (iii) microservices architecture, composed of 
lightly-coupled, independent services, which communicate 
with each other typically via API. 

C. State of the Art 

According to [6], RAs for NGIoT architectures must 
consider a set of features for providing or supporting: AI, 
Augmented Reality (AR), Digital Twins, Distributed Ledger 
Technologies (DLT), Edge Computing, Network Function 
Virtualization (NFV) and Tactile Internet. The first initiative 
bringing a RA for IoT was IoT-A [7]. It structures components 
modularly, in functional groups, namely: IoT process 
management, service organization, virtual entity, IoT 
communication, security and management. Other RAs have 
similar approaches, but with different modules/layers, like 
ITU-T Y.2060 ([8], in this case layered) and WSO2 ([9], 
layered). Others have evolved to include more advance 
features, mostly for addressing edge computing and 
virtualization, like RAMEC [10], OpenFog [11], ECC RA 2.0 
[12], LSP 3D [13] or AIOTI HLA [14], being most of them 
multi-dimensional to split functionalities from properties 
and/or cross-cutting concerns. Finally, there are a set of RAs 
that include concerns related to industrial processes that are 
worth mentioning, like IIRA [15], RAMI 4.0 [16] and FAR-
EDGE [17]. It should be mentioned that the degree of 
abstraction widely varies among them; whereas some do not go 
beyond recommendations, others specify implementation 
aspects in much higher details, even providing their own 
components for its realization. In any case, currently there is no 
single architecture addressing most of the features expected for 
NGIoT RAs, being that which is the aim of this paper.  

III. ARCHITECTURE APPROACH 

A. Design principles 

ASSIST-IoT proposes a RA governed by the following key 
principles and design decisions: (i) a microservice software 
architecture. Given the large number of technologies and 
features that can be used, keeping software in independent 
modules that can be later interconnected facilitates their 
maintenance and their use only when necessary; (ii) 
instantiation of these service in containers, hence decoupling 
them from the environment where they are executed; (iii) 
introduction of the abstract concept of enablers, which bring a 
particular feature to the system; and (iv) kubernetes as the 
suggested underlying technology for orchestrating enablers, 
bringing a set of production-readiness advantages. Although 
this kind of impositions are not usually mentioned in RAs, it 
allows to provide useful guidelines and recommendations for 
actual realization, avoiding ambiguity and facilitating its use.    

B. Conceptual architecture 

ASSIST-IoT proposes a conceptual, multidimensional, 
decentralized approach, with layers (called planes) intersecting 
vertical blocks, as one can see in Fig. 1. This architecture 
follows the ISO/IEC/IEEE 42010 standard, and it is influenced 
by other RAs (mostly by AIOTI HLA, OpenFog and the LSP 
3D architecture). The horizontal planes depict functionalities 
that can be grouped together, whereas verticals represent 
properties, cross-cutting concerns or NGIoT features that either 
needs cooperation among elements of more than one plane or 
that can exist in different planes, in an independent manner. 
Four planes are part of the architecture, namely: 

1) Device and edge: comprises the physical elements that 

support an architecture realization, from servers and edge 

nodes to IoT devices, sensors, and network hardware.   

2) Smart nework and control: composed of functions that 

facilitate virtualization and network connectivity, such as 

MANO, and virtualized network functions (e.g., virtual 

firewall, SD-WAN, VPNs, link aggregation, etc.).  

3) Data management: groups functionalities related to 

data, from acquisition to sharing, fusion, aggregation, 

transformation, and storage.   

4) Application and services: related to functions to be 

consumed by end-users, administrators and/or external 

systems. It makes use of functions from lower planes (and also 

verticals) to offer high-value applications for stakeholders. 

 
Besides, five verticals have been identified: 

1) Self-*: property of a system related to its autonomy or 

semi-autonomy, comprising specific operations that do not 

require human intervention (self-healing, self-configuration, 

self-awareness, self-organization, etc.).  

2) Interoperability: property that ensures that, (i) at 

hardware level, equipment from different manufactures can 

communicate within a deployment, and (ii) at sofware level, 

services can share data thanks to the use of common formats 

or protocols, or the use of dedicated tools. 



 

Fig. 1. ASSIST-IoT Conceptual Architecture 

3) Security, privacy and trust: Set of properties of the 

architecture related to integrity and access restriction of data,  

as well as guarding against malicious threats, among others. 

4) Scalability: trait to ensure proper system performance 

and dedication of resources in case of change of operational or 

business conditions or requirements. It comprises not just 

software, but also hardware and communication dimensions. 

5) Manageability: related to the control of the lifecycle of 

the functions of other planes and verticals, from their 

instantiation and configuration to termination. It also 

comprises the management of devices and coordination of 

workflows. 
In ASSIST-IoT, verticals in some cases are expected to be 

supported by specific functions, are not just inherent properties. 
For instance, self-* features include enablers with dedicated 
policies or AI/ML methods; cybersecurity requires dedicated 
monitoring agents; and data trust is to be ensured via 
distributed DLT logging mechanisms.  

Similarly, horizontal planes and vertical properties are 
usually cross-dependent. To take an example, when forwarding 
sensors' data to a remote persistent system, some enablers in 
various planes must be involved (data management, network, 
application...) as well as the intervention of management traits 
for process configuration. 

C. Enablers 

In this RA, the term “enabler” is a conceptual abstraction 
that represents a collection of interconnected microservices 
(each of them referred to as “enabler component”) that jointly 
provide a functionality for the system, and hence should fall 
under one of the specified planes or verticals. The rationale 
behind bringing this concept is mostly related to modularity. 
This entails that only those enablers required for addressing a 
specific scenario need to be considered.   

Having functionalities realized as enablers has some 
advantages for development and maintenance. It allows having 
a conceptually more compacted view of the features available 
in the system, similarly to what happens in a SOA architecture, 
while having the benefits of working with microservices. Also, 
no language or communication interface is mandated for 
internal enabler designs, allowing flexible implementations. 

Besides, enablers come with a set of common conventions 
that need to be followed. These conventions aim at facilitating 
enablers’ integration in k8s environments: 

• Encapsulation principle: enablers can communicate 
with each other only via an exposed interface (e.g., 
API, gRPC). Enabler components cannot be interacted 
directly from outside enabler’s scope.  

• Enablers should expose metrics and logs. ASSIST-IoT 
proposes following k8s de facto conventions. 
According to the first proposed design, metrics are 
exposed via a dedicated “/metrics” endpoint, following 
Prometheus-compatible format, whereas logs are sent 
out via stderr and stdout interfaces. 

IV. ARCHITECTURE VIEWS 

Representing all the information provided by a RA in a 
single, overloaded model would be impractical [4] and very 
difficult to follow by the stakeholders that aim at using it. The 
ASSIST-IoT RA follows a similar model as the 4+1 one from 
[18], considering four views: functional, node, deployment and 
data. For each of them, a summary of their scope and place in 
the realization of an architecture is provided. 

A. Functional View 

The goal of the functional view (also referred to as Logical 
view) is to define the functionalities provided by each 
horizontal plane, thus fulfilling the needs of the stakeholders 
and addressing their concerns. This view, whose functionalities 
are summarized in Fig. 2, are of interest for acquirers/users as 
well as developers and maintainers. 

The device and edge plane is materialized primarily by 
processing elements and devices. Since the architecture is 
access-network agnostic, its realization will depend on the 
requirements of the business scenario (e.g., latencies, 
bandwidths, etc.). The nodes belonging to the edge must have 
enough processing power to support enablers from upper 
planes, as well as to include specific features or capabilities for 
the target environment (i.e., functionalities related to use cases, 
like localization awareness).  

Following, for the smart network and control plane, eight 
enablers have been identified. The first and most important one 
is the smart orchestrator. It follows ETSI MANO principles 
[19] and current trends towards virtualization and Cloud-
Native principles [20] (hence, towards containerization of 
network services rather than their instantiation in virtual 
machines). In the proposed architecture, role of the smart 
orchestrator does not stop at controlling the lifecycle of 
network-related functions but extends to the rest of enablers. 



 

Fig. 2. Functional view representation – summary 

Regarding SDN, a first trait can be found in the use of k8s 
itself, as cluster network can be controlled programmatically 
via dedicated plugins and controllers, managed by the 
orchestrator. Also, for those deployments with SDN-enabled 
equipment, three enablers (controller, auto-configuration and 
traffic classification) are envisioned. Apart from dedicated 
VNFs that may fall under its responsibility, the plane is 
completed with self-contained network realization, which is 
devoted to provisioning of private networks over public ones. 
This is realized via VPNs and SD-WAN technologies. 

Services related to data governance and semantics are part 
of the data management plane. In short, it includes any service 
that distributes, stores or processes data. Semantic functions 
include a repository (hub of data models, schemas and 
ontologies), annotation (processing of data to be compliant 
with a particular semantic format), and translation (data 
transformation from one semantic format to another). So far, 
governance functions are delivered by two enablers: edge data 
broker, which aims at realizing pipelines for controlling the 
flow of the data over the system (i.e., distribute it within a 
path), and long-term data storage enabler, which will allow 
storing data in distributed fashion and be consumed by other 
enablers or applications. 

The application and services plane encompasses any 
functions to be consumed by external systems or human users. 
It includes dashboards, for end users and administrators (tactile 
dashboard, including KPI reports, and performance and 
diagnosis indicators); human-centricity enablers to provide 
Augmented, Virtual or Mixed reality consumption of 
information managed by the architecture; and OpenAPI 
management to facilitate access to external users or systems. 

 

Fig. 3. Node view representation 

B. Node View 

This view maps to the logical element supporting the 
deployment of the functionalities depicted in the functional 
view. This view is not restricted solely to hardware equipment, 
but also to additional firmware and software elements as one 
can see in Fig. 3.  This has an interest for both hardware 
developers and edge nodes or gateway providers. 

As one of the principles of the architecture lies in the use of 
a k8s distribution (e.g., microk8s, k3s, k0s, etc.) as underlying 
container orchestrator, this must be part of pre-installed 
software, and the lower layers of the node view must support it 
(including the selected Operating System). In any case, the 
design of the nodes is quite open. Hardware (as well as the 
abstraction layer or firmware that allows its usage) depends on 
the requirements of the business scenario and its use cases. It 
stands not just for processing capabilities (e.g., RAM, CPU, 
GPU, etc.), but also for communication interfaces (e.g., WiFi, 
5G, CAN, UWB, Ethernet, Serial...), and additional connectors 
(USB, for antennas, etc.). The same happens for pre-installed 
software (for instance, software needed to enable the use of 
GPU in the deployed containers), and regarding container 
runtime, any option compatible with k8s is allowed. 

C. Deployment View 

The deployment view responds to the necessity of exposing 
how an architecture is instantiated to address particular 
scenarios. This includes both the system topology and the 
deployment of enablers, including their combination to realize 
composite services. This view is of utility for developers, 
system administrators and maintainers. 

The system topology of an architecture (see Fig. 4) can be 
composed of different interconnected tiers, each of them 
consisting of a set of physical elements, including networking 
and processing nodes. The following design principles drive 
the construction of this view for later implementations: 

• The number of tiers comes from the business scenario 
and its use cases. Communication among nodes (from 
the same or different tiers) must be IP-based. 

• A k8s distribution must be installed in all nodes. 
Clusters should be formed with nodes with similar 
capabilities, and logically each tier should have a k8s 
master and one (or more) k8s workers. 



 

Fig. 4. Deployment view – topology representation 

• A central node might be part of the deployment site or 
available at cloud premises. If nodes are part of 
different networks, connectivity must be secured via 
VPN or SD-WAN technologies. 

• Decentralized, distributed use cases must be supported, 
without need of always interacting with nodes of upper 
tiers. 

• In the scope of this view, a service is a combination of 
enablers, which may belong to different planes. The 
communication among (and towards) them can only 
take place via the exposed interface. 

Some enablers are essential and should be part of any 
architecture realization to be considered an ASSIST-IoT 
deployment. These include: smart orchestrator, long-term data 
storage, edge data broker, tactile dashboard, OpenAPI 
manager, DLT logging and auditing enabler, basic security and 
manageability enablers. 

D. Data View 

Lastly, the data view aims at facilitating a high-level design 
of flow of data along the system (i.e., regarding their 
collection, transmission, processing and use), in an abstract, 
uncomplicated way, for addressing specific use cases. This 
view can be of particular interest for data engineers as well as 
for developers and maintainers.   

As an architecture that supports decentralized use cases, 
specific flows of data are not imposed. To construct them, the 
concept of “data pipelines” is introduced. Pipelines are 
graphical descriptions with textual elements that show how 
data are managed by the system, from its generation/capture 
(source) through their “path” (processed by enablers) towards 
their destination (sink), where they are consumed. At sources, 
data is represented as a “message”, which should include 
relevant information (entities, measurements, events, etc., 
without requiring the degree of formality of typical UML 
diagrams). Paths between enablers are then indicated, and the 
processing carried out in each of them depends entirely on their 
respective functionalities. Sinks can be user applications, other 

enablers (e.g., long-term storage) or even other data pipelines. 
An example of data pipeline is shown in Fig. 5. 

V. CONCLUSIONS AND FUTURE WORK 

This paper presents a novel reference architecture for the 
Internet of Things, considering new requirements and 
recommendations posed by the Next Generation IoT. This 
architecture is driven following cloud-native patterns, adapted 
to the edge. At a conceptual level, it is organized in planes, 
which depict functionalities that can be logically grouped 
together, and verticals, which include properties, cross-cutting 
concerns and NGIoT features that can exist in multiple planes 
or require cooperation among them.  

The constant technological evolution claims for a blueprint 
architecture that takes it into account, being flexible enough to 
avoid fast obsolescence. The modularity brought by the 
conceptual abstraction of enablers plays this role, facilitating 
the inclusion, modification or deletion of plane and vertical 
features over time. Besides, being inspired in former works and 
standards, the architecture is represented in four separated 
views rather than in an overloaded, all-encompassing model, 
namely functional, node, deployment and data view. Each of 
them is intended to provide relevant information targeting 
specific stakeholders, offering guidelines and recommendations 
for an actual realization, while trying to avoid too much 
abstraction or ambiguity.  

As a yet novel architecture, there is still room for enhancing 
and extending the information provided by the views in order 
to ease its application for realizing specific use cases, or even 
constructing additional views for addressing other 
stakeholders’ concerns. To this end, the project is developing 
its own set of enablers to facilitate its application and 
evaluation in different scenarios. 

Being part of an on-going research action, the proposed 
architecture will be actually tested in real, relevant use cases. In 
particular, it will be used to: (i) solve latency issues while 
carrying virtual reality applications in a maritime terminal, (ii) 
allow an accurate fall arrest detection of smarter (wearable-
wearing) workers in construction plants, and (iii) improve the 
training and real-time inspection of defects in car surfaces, 
among others. 
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