

Architecture for Scalable, Self-*, human-centric,

Intelligent, Secure, and Tactile next generation IoT

ASSIST-IoT Technical Report #8

ASSIST-IoT: A Reference Architecture for

Next Generation Internet of Things

Alejandro Fornés-Leal, Ignacio Lacalle, Carlos E. Palau,

Paweł Szmeja, Maria Ganzha

Submitted to: EuCNC 2022, Grenoble, France

(7-10 June 2022)

This project has received funding from the European’s Union Horizon 2020 research

innovation programme under Grant Agreement No. 957258

ASSIST-IoT: A Reference Architecture for Next

Generation Internet of Things

Alejandro Fornés-Leal, Ignacio Lacalle, Carlos E.

Palau

Communications Department

Universitat Politècnica de València

Valencia, Spain

{alforlea, iglaub}@upv.es,

cpalau@dcom.upv.es

Paweł Szmeja, Maria Ganzha

Systems Research Institute

Polish Academy of Science

Warsaw, Poland

{pawel.szmeja, Maria.Ganzha}@ibspan.waw.pl

Abstract—New requirements posed by the Next Generation

IoT demand the design of novel reference architectures. Rooting

on cloud-native concepts (such as micro-services-based systems

and containerization), this paper proposes an architecture to

cover all needed aspects. The paper elicits a wide description of

components of the architecture (horizontal planes and vertical

capabilities) while providing a formal definition of the views of

the architecture, setting the ground for an upcoming deployment

and validation in real scenarios in the short future. In particular,

functional, node, deployment and data views are presented, each

of them addressing the concerns of a group of particular

stakeholders.

Keywords—Next Generation IoT; Reference Architecture;

Views; Distributed; Enablers; Data

I. INTRODUCTION

The Internet of Things (IoT) is evolving faster than ever.
The unprecedented data explosion (both structured and -
mostly- unstructured [1]) combined with the evolving
capabilities of virtual infrastructures, set the scene for
developing new scalable architectural paradigms.

Traditionally, IoT platforms have been focused on things’
monitoring and actuation, being also vendor-locked and rather
use-case specific. During the last few years, some initiatives
have pushed forward a series of research (FIWARE,
OM2M/OpenCDM, IoT-EPI, AIOTI) and commercial (AWS
IoT, CISCO, IBM Watson) actions to devise advanced,
modern, domain-agnostic (and, sometimes, even open-source)
IoT architectures. However, there is still plenty of new
requirement tides coming from different backgrounds (e.g., Big
Data Analytics, AI, Cloud/Edge Computing, 5G connectivity,
Industrial Data Spaces or new tactile interfaces like Augmented
or Virtual Reality) aiming to be considered as explicit part of
future IoT approaches. Those trends are paving the way to
realize the IoT landscape into a portfolio of all-encompassing
digital transformation enablers, supporting the Next Generation
Internet (NGI) vision [2].

The objective of this paper is to propose a Reference
Architecture (RA) for the so-called Next Generation IoT,
covering the mentioned technological compass, and posing a
deployment perspective to build on in years to follow. The
designs exposed in this paper are strongly linked with the
advances performed by H2020 ASSIST-IoT project, on track to
be finalized by October 2023 and to be validated in three real-
life scenarios on representative sectors (maritime ports,
construction and automotive).

The paper is organized as follows: Section II presents a
review of the RA terminology and paradigms utilized for their
design, as well as a summary of existing solutions. Section III
lays the technological foundation of the proposed architecture,
detailing horizontal planes and vertical capabilities, as well as
the concept and characteristics of the term “enabler”. Section
IV focuses on the rather formal description of the views of the
architecture (Functional Data, Deployment and Node) while
Section V reflects on future work and conclusions.

II. BACKGROUND

Reference Architectures (RAs) serve as blueprints to
design, develop, implement and utilize IoT systems. They
provide a set of guidelines, structures and models, which have
to be flexible enough to be applicable in different domains and
realized via different technological options, but without being
so abstract that they become practically useless.

A. Concepts

Most of the concepts that are leveraged by RA designers
have been defined by the ISO/IEC/IEEE 42010 standard [3].
The key ones are summarized here:

• Stakeholder: person, team, or entities that have a
concern (also referred to as “interest”) in a system.
They can be technology (developers, administrators,
maintainers, etc.) and non-technology related (users,
acquirers, etc.).

• Concern: aspect of interest of stakeholders related to
the RA. It includes needs, goals, requirements, quality
attributes, dependencies, responsibilities, etc.

This work is part of ASSIST-IoT project, that has received funding from the

European Union's Horizon 2020 research and innovation program under grant

agreement 957258.

• Views: depict the architecture from the perspective of
specific concerns, showing how these are addressed.
The core ones are typically the Logical (or Functional),
the Data (or Information), the Development, and the
Deployment and Operational view [4].

• Perspectives: set of guidelines, strategies and tasks
ensuring that a system considers a set of properties
through many architecture views. In some RAs, these
are referred to as system characteristics, however, in
ASSIST-IoT the term “Vertical” is used, as it will also
include specific functionalities to address specific
cross-cutting concerns.

B. Architecture Paradigms

Nowadays, IoT architectures are growing in complexity:
new features are being continuously included, workloads are
extended and the number of components is rising. Architecture
patterns are proper starting points to address such intricacy,
supporting system components organization [5]. Some relevant
architecture paradigms are the following (which in some cases
can be combined together): layered, microkernel, event-driven,
space-based, serverless and based on services. The latter, in
turn, can be split into: (i) monolithic architecture, where its
components form a unified, indivisible program or platform;
(ii) service-oriented architecture (SOA), which decouples it
into a set of modules, that are maintained independently and
work together by means of an aggregation layer (messaging
middleware); and (iii) microservices architecture, composed of
lightly-coupled, independent services, which communicate
with each other typically via API.

C. State of the Art

According to [6], RAs for NGIoT architectures must
consider a set of features for providing or supporting: AI,
Augmented Reality (AR), Digital Twins, Distributed Ledger
Technologies (DLT), Edge Computing, Network Function
Virtualization (NFV) and Tactile Internet. The first initiative
bringing a RA for IoT was IoT-A [7]. It structures components
modularly, in functional groups, namely: IoT process
management, service organization, virtual entity, IoT
communication, security and management. Other RAs have
similar approaches, but with different modules/layers, like
ITU-T Y.2060 ([8], in this case layered) and WSO2 ([9],
layered). Others have evolved to include more advance
features, mostly for addressing edge computing and
virtualization, like RAMEC [10], OpenFog [11], ECC RA 2.0
[12], LSP 3D [13] or AIOTI HLA [14], being most of them
multi-dimensional to split functionalities from properties
and/or cross-cutting concerns. Finally, there are a set of RAs
that include concerns related to industrial processes that are
worth mentioning, like IIRA [15], RAMI 4.0 [16] and FAR-
EDGE [17]. It should be mentioned that the degree of
abstraction widely varies among them; whereas some do not go
beyond recommendations, others specify implementation
aspects in much higher details, even providing their own
components for its realization. In any case, currently there is no
single architecture addressing most of the features expected for
NGIoT RAs, being that which is the aim of this paper.

III. ARCHITECTURE APPROACH

A. Design principles

ASSIST-IoT proposes a RA governed by the following key
principles and design decisions: (i) a microservice software
architecture. Given the large number of technologies and
features that can be used, keeping software in independent
modules that can be later interconnected facilitates their
maintenance and their use only when necessary; (ii)
instantiation of these service in containers, hence decoupling
them from the environment where they are executed; (iii)
introduction of the abstract concept of enablers, which bring a
particular feature to the system; and (iv) kubernetes as the
suggested underlying technology for orchestrating enablers,
bringing a set of production-readiness advantages. Although
this kind of impositions are not usually mentioned in RAs, it
allows to provide useful guidelines and recommendations for
actual realization, avoiding ambiguity and facilitating its use.

B. Conceptual architecture

ASSIST-IoT proposes a conceptual, multidimensional,
decentralized approach, with layers (called planes) intersecting
vertical blocks, as one can see in Fig. 1. This architecture
follows the ISO/IEC/IEEE 42010 standard, and it is influenced
by other RAs (mostly by AIOTI HLA, OpenFog and the LSP
3D architecture). The horizontal planes depict functionalities
that can be grouped together, whereas verticals represent
properties, cross-cutting concerns or NGIoT features that either
needs cooperation among elements of more than one plane or
that can exist in different planes, in an independent manner.
Four planes are part of the architecture, namely:

1) Device and edge: comprises the physical elements that

support an architecture realization, from servers and edge

nodes to IoT devices, sensors, and network hardware.

2) Smart nework and control: composed of functions that

facilitate virtualization and network connectivity, such as

MANO, and virtualized network functions (e.g., virtual

firewall, SD-WAN, VPNs, link aggregation, etc.).

3) Data management: groups functionalities related to

data, from acquisition to sharing, fusion, aggregation,

transformation, and storage.

4) Application and services: related to functions to be

consumed by end-users, administrators and/or external

systems. It makes use of functions from lower planes (and also

verticals) to offer high-value applications for stakeholders.

Besides, five verticals have been identified:

1) Self-*: property of a system related to its autonomy or

semi-autonomy, comprising specific operations that do not

require human intervention (self-healing, self-configuration,

self-awareness, self-organization, etc.).

2) Interoperability: property that ensures that, (i) at

hardware level, equipment from different manufactures can

communicate within a deployment, and (ii) at sofware level,

services can share data thanks to the use of common formats

or protocols, or the use of dedicated tools.

Fig. 1. ASSIST-IoT Conceptual Architecture

3) Security, privacy and trust: Set of properties of the

architecture related to integrity and access restriction of data,

as well as guarding against malicious threats, among others.

4) Scalability: trait to ensure proper system performance

and dedication of resources in case of change of operational or

business conditions or requirements. It comprises not just

software, but also hardware and communication dimensions.

5) Manageability: related to the control of the lifecycle of

the functions of other planes and verticals, from their

instantiation and configuration to termination. It also

comprises the management of devices and coordination of

workflows.
In ASSIST-IoT, verticals in some cases are expected to be

supported by specific functions, are not just inherent properties.
For instance, self-* features include enablers with dedicated
policies or AI/ML methods; cybersecurity requires dedicated
monitoring agents; and data trust is to be ensured via
distributed DLT logging mechanisms.

Similarly, horizontal planes and vertical properties are
usually cross-dependent. To take an example, when forwarding
sensors' data to a remote persistent system, some enablers in
various planes must be involved (data management, network,
application...) as well as the intervention of management traits
for process configuration.

C. Enablers

In this RA, the term “enabler” is a conceptual abstraction
that represents a collection of interconnected microservices
(each of them referred to as “enabler component”) that jointly
provide a functionality for the system, and hence should fall
under one of the specified planes or verticals. The rationale
behind bringing this concept is mostly related to modularity.
This entails that only those enablers required for addressing a
specific scenario need to be considered.

Having functionalities realized as enablers has some
advantages for development and maintenance. It allows having
a conceptually more compacted view of the features available
in the system, similarly to what happens in a SOA architecture,
while having the benefits of working with microservices. Also,
no language or communication interface is mandated for
internal enabler designs, allowing flexible implementations.

Besides, enablers come with a set of common conventions
that need to be followed. These conventions aim at facilitating
enablers’ integration in k8s environments:

• Encapsulation principle: enablers can communicate
with each other only via an exposed interface (e.g.,
API, gRPC). Enabler components cannot be interacted
directly from outside enabler’s scope.

• Enablers should expose metrics and logs. ASSIST-IoT
proposes following k8s de facto conventions.
According to the first proposed design, metrics are
exposed via a dedicated “/metrics” endpoint, following
Prometheus-compatible format, whereas logs are sent
out via stderr and stdout interfaces.

IV. ARCHITECTURE VIEWS

Representing all the information provided by a RA in a
single, overloaded model would be impractical [4] and very
difficult to follow by the stakeholders that aim at using it. The
ASSIST-IoT RA follows a similar model as the 4+1 one from
[18], considering four views: functional, node, deployment and
data. For each of them, a summary of their scope and place in
the realization of an architecture is provided.

A. Functional View

The goal of the functional view (also referred to as Logical
view) is to define the functionalities provided by each
horizontal plane, thus fulfilling the needs of the stakeholders
and addressing their concerns. This view, whose functionalities
are summarized in Fig. 2, are of interest for acquirers/users as
well as developers and maintainers.

The device and edge plane is materialized primarily by
processing elements and devices. Since the architecture is
access-network agnostic, its realization will depend on the
requirements of the business scenario (e.g., latencies,
bandwidths, etc.). The nodes belonging to the edge must have
enough processing power to support enablers from upper
planes, as well as to include specific features or capabilities for
the target environment (i.e., functionalities related to use cases,
like localization awareness).

Following, for the smart network and control plane, eight
enablers have been identified. The first and most important one
is the smart orchestrator. It follows ETSI MANO principles
[19] and current trends towards virtualization and Cloud-
Native principles [20] (hence, towards containerization of
network services rather than their instantiation in virtual
machines). In the proposed architecture, role of the smart
orchestrator does not stop at controlling the lifecycle of
network-related functions but extends to the rest of enablers.

Fig. 2. Functional view representation – summary

Regarding SDN, a first trait can be found in the use of k8s
itself, as cluster network can be controlled programmatically
via dedicated plugins and controllers, managed by the
orchestrator. Also, for those deployments with SDN-enabled
equipment, three enablers (controller, auto-configuration and
traffic classification) are envisioned. Apart from dedicated
VNFs that may fall under its responsibility, the plane is
completed with self-contained network realization, which is
devoted to provisioning of private networks over public ones.
This is realized via VPNs and SD-WAN technologies.

Services related to data governance and semantics are part
of the data management plane. In short, it includes any service
that distributes, stores or processes data. Semantic functions
include a repository (hub of data models, schemas and
ontologies), annotation (processing of data to be compliant
with a particular semantic format), and translation (data
transformation from one semantic format to another). So far,
governance functions are delivered by two enablers: edge data
broker, which aims at realizing pipelines for controlling the
flow of the data over the system (i.e., distribute it within a
path), and long-term data storage enabler, which will allow
storing data in distributed fashion and be consumed by other
enablers or applications.

The application and services plane encompasses any
functions to be consumed by external systems or human users.
It includes dashboards, for end users and administrators (tactile
dashboard, including KPI reports, and performance and
diagnosis indicators); human-centricity enablers to provide
Augmented, Virtual or Mixed reality consumption of
information managed by the architecture; and OpenAPI
management to facilitate access to external users or systems.

Fig. 3. Node view representation

B. Node View

This view maps to the logical element supporting the
deployment of the functionalities depicted in the functional
view. This view is not restricted solely to hardware equipment,
but also to additional firmware and software elements as one
can see in Fig. 3. This has an interest for both hardware
developers and edge nodes or gateway providers.

As one of the principles of the architecture lies in the use of
a k8s distribution (e.g., microk8s, k3s, k0s, etc.) as underlying
container orchestrator, this must be part of pre-installed
software, and the lower layers of the node view must support it
(including the selected Operating System). In any case, the
design of the nodes is quite open. Hardware (as well as the
abstraction layer or firmware that allows its usage) depends on
the requirements of the business scenario and its use cases. It
stands not just for processing capabilities (e.g., RAM, CPU,
GPU, etc.), but also for communication interfaces (e.g., WiFi,
5G, CAN, UWB, Ethernet, Serial...), and additional connectors
(USB, for antennas, etc.). The same happens for pre-installed
software (for instance, software needed to enable the use of
GPU in the deployed containers), and regarding container
runtime, any option compatible with k8s is allowed.

C. Deployment View

The deployment view responds to the necessity of exposing
how an architecture is instantiated to address particular
scenarios. This includes both the system topology and the
deployment of enablers, including their combination to realize
composite services. This view is of utility for developers,
system administrators and maintainers.

The system topology of an architecture (see Fig. 4) can be
composed of different interconnected tiers, each of them
consisting of a set of physical elements, including networking
and processing nodes. The following design principles drive
the construction of this view for later implementations:

• The number of tiers comes from the business scenario
and its use cases. Communication among nodes (from
the same or different tiers) must be IP-based.

• A k8s distribution must be installed in all nodes.
Clusters should be formed with nodes with similar
capabilities, and logically each tier should have a k8s
master and one (or more) k8s workers.

Fig. 4. Deployment view – topology representation

• A central node might be part of the deployment site or
available at cloud premises. If nodes are part of
different networks, connectivity must be secured via
VPN or SD-WAN technologies.

• Decentralized, distributed use cases must be supported,
without need of always interacting with nodes of upper
tiers.

• In the scope of this view, a service is a combination of
enablers, which may belong to different planes. The
communication among (and towards) them can only
take place via the exposed interface.

Some enablers are essential and should be part of any
architecture realization to be considered an ASSIST-IoT
deployment. These include: smart orchestrator, long-term data
storage, edge data broker, tactile dashboard, OpenAPI
manager, DLT logging and auditing enabler, basic security and
manageability enablers.

D. Data View

Lastly, the data view aims at facilitating a high-level design
of flow of data along the system (i.e., regarding their
collection, transmission, processing and use), in an abstract,
uncomplicated way, for addressing specific use cases. This
view can be of particular interest for data engineers as well as
for developers and maintainers.

As an architecture that supports decentralized use cases,
specific flows of data are not imposed. To construct them, the
concept of “data pipelines” is introduced. Pipelines are
graphical descriptions with textual elements that show how
data are managed by the system, from its generation/capture
(source) through their “path” (processed by enablers) towards
their destination (sink), where they are consumed. At sources,
data is represented as a “message”, which should include
relevant information (entities, measurements, events, etc.,
without requiring the degree of formality of typical UML
diagrams). Paths between enablers are then indicated, and the
processing carried out in each of them depends entirely on their
respective functionalities. Sinks can be user applications, other

enablers (e.g., long-term storage) or even other data pipelines.
An example of data pipeline is shown in Fig. 5.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel reference architecture for the
Internet of Things, considering new requirements and
recommendations posed by the Next Generation IoT. This
architecture is driven following cloud-native patterns, adapted
to the edge. At a conceptual level, it is organized in planes,
which depict functionalities that can be logically grouped
together, and verticals, which include properties, cross-cutting
concerns and NGIoT features that can exist in multiple planes
or require cooperation among them.

The constant technological evolution claims for a blueprint
architecture that takes it into account, being flexible enough to
avoid fast obsolescence. The modularity brought by the
conceptual abstraction of enablers plays this role, facilitating
the inclusion, modification or deletion of plane and vertical
features over time. Besides, being inspired in former works and
standards, the architecture is represented in four separated
views rather than in an overloaded, all-encompassing model,
namely functional, node, deployment and data view. Each of
them is intended to provide relevant information targeting
specific stakeholders, offering guidelines and recommendations
for an actual realization, while trying to avoid too much
abstraction or ambiguity.

As a yet novel architecture, there is still room for enhancing
and extending the information provided by the views in order
to ease its application for realizing specific use cases, or even
constructing additional views for addressing other
stakeholders’ concerns. To this end, the project is developing
its own set of enablers to facilitate its application and
evaluation in different scenarios.

Being part of an on-going research action, the proposed
architecture will be actually tested in real, relevant use cases. In
particular, it will be used to: (i) solve latency issues while
carrying virtual reality applications in a maritime terminal, (ii)
allow an accurate fall arrest detection of smarter (wearable-
wearing) workers in construction plants, and (iii) improve the
training and real-time inspection of defects in car surfaces,
among others.

REFERENCES

[1] J. ho Park, M. M. Salim, J. H. Jo, J. C. S. Sicato, S. Rathore, and J. H.
Park, “CIoT-Net: a scalable cognitive IoT based smart city network
architecture,” Human-centric Comput. Inf. Sci., vol. 9, no. 1, pp. 1–20,
Dec. 2019.

[2] NGI Project, “A Vision of the Future Internet,” 2020.

[3] ISO/IEC/IEEE 42010, “Systems and software engineering - Architecture
description,” 2011.

Fig. 5. Example of data pipeline

[4] N. Rozanski and E. Woods, Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison Wesley,
2011.

[5] A. Sharma, M. Kumar, and S. Agarwal, “A Complete Survey on
Software Architectural Styles and Patterns,” in Procedia Computer
Science, 2015, vol. 70, pp. 16–28.

[6] NGIoT Project, “D3.1. IoT research, innovation and deployment
priorities in the EU,” 2020.

[7] M. Bauer et al., “Final architectural reference model for the IoT,” 2013.

[8] ITU-T, “Y.2060: Overview of the Internet of things,” 2012.

[9] WSO2, “A Reference Architecture for the Internet of Things,” 2015.

[10] A. Willner and V. Gowtham, “Towards a Reference Architecture Model
for Industrial Edge Computing,” Comput. Sci., 2020.

[11] OpenFog Consortium, “OpenFog Reference Architecture for Fog
Computing,” 2017.

[12] ECC and AII, “Edge Computing Reference Architecture 2.0,” 2017.

[13] CREATE-IoT Project, “D6.3. Assessment of convergence and
interoperability in LSP platforms,” 2020.

[14] AIOTI WG Standardisation, “High Level Architecture (HLA) Release
5.0,” 2020.

[15] IIC, “The Industrial Internet of Things Volume G1: Reference
Architecture v1.9,” 2019.

[16] VDI/VDE Society Measurement and Automatic Control (GMA), “Status
Report Reference Architecture Model Industrie 4.0 (RAMI4.0),” 2015.

[17] FAR-EDGE Project, “D2.4. FAR-EDGE Architecture and Components
Specification,” 2017.

[18] P. B. Kruchten, “The 4+1 View Model of Architecture,” IEEE Softw.,
vol. 12, no. 6, pp. 42–50, 1995.

[19] ETSI, “GS NFV-MAN 001 Network Functions Virtualisation (NFV);
Management and Orchestration,” 2014.

[20] 5G-PPP Software Network Working Group, “Cloud-Native and
Verticals’ services,” 2019.

