

Architecture for Scalable, Self-*, human-centric, Intelligent,

Secure, and Tactile next generation IoT

D6.1 ASSIST-IoT DevSecOps

Methodology and tools

Deliverable No. D6.1 Due Date 30-APR-2021

Type Report Dissemination Level Public

Version 0.8 WP WP6

Description This deliverable includes ASSIST-IoT Guidelines on DevSecOps Methodology.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 2 of 35

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 3 of 35

Authors
Name Partner e-mail

Ignacio Lacalle P01 UPV iglaub@upv.es

Eduardo Garro P02 PRODEVELOP egarro@prodevelop.es

Iordanis Papoutsoglou P04 CERTH ipapoutsoglou@iti.gr

Georgios Stavropoulos P04 CERTH stavrop@iti.gr

Oscar López P13 S21SEC olopez@s21sec.com

Mikel Uriarte P13 S21SEC muriarte@s21sec

Jordi Blasi P13 S21SEC jblasi@s21sec

History
Date Version Change

26-Feb-2021 0.1 Table of Contents proposed

03-March-2021 0.2 Table of Contents updated and assignments during 2nd Plenary

18-March-2021 0.3 PRODEVELOP contribution to assigned section

01-Aprl-2021 0.4 UPV and CERTH contribution to assigned section

15-April-2021 0.5 S21SEC compiled 1st draft version

20-April-2021 0.6 S21SEC version sent for internal review

29-April-2021 0.7 S21SEC version addressing comments from internal review

30-April-2021 0.8 S21SEC version addressing comments from PIC review

Key Data
Keywords DevSecOps, DevOps, software development life cycle SDLC, plan, code,

build, test, release, accept, deploy, operate, continuous integration CI,

continuous delivery CD

Lead Editor P013 S21SEC - Oscar López

Internal Reviewer(s) P02 PRODEVELOP, P15 OPL

mailto:iglaub@upv.es
https://s21sec.sharepoint.com/sites/IDI/Documentos%20compartidos/PROYSS/20201101%20AssistIoT%20H2020%20ICT%2056/WP6%20Testing%20integration%20and%20support/WP6%20Deliverables/D6.1/egarro@prodevelop.es
mailto:ipapoutsoglou@iti.gr
stavrop@iti.gr
file:///C:/Users/olopez/Downloads/olopez@s21sec.com
mailto:muriarte@s21sec
mailto:jblasi@s21sec

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 4 of 35

Executive Summary
DevSecOps is the natural extension of DevOps that advocates shift-security-left, security-by-design, and

continuous security testing by building automated security controls in DevOps workflow.

The applications and services where data security and privacy are of prime concern can use the DevSecOps for

delivering business application and services with agility, velocity, and assured security.

In this deliverable, a methodology based on a continuous security model for DevSecOps is presented based on

the following three supporting pillars: continuous workflow, open-source tools and cloud deployment

technologies for supporting workflow activities.

DevSecOps is defined as DevOps embedded with security controls providing continuous security assurance.

Following best DevSecOps practices with concrete target activities, the methodology proposed for ASSIST-IoT

will enable the activation of security controls using appropriate open-source tools to perform security assurance

tasks along the DevSecOps workflow.

The purpose of the deliverable D6.1 is the specification of technologies, tools and environment needed to be

put in place for instantiation of the DevSecOps approach of ASSIST-IoT.

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties and may not

be reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation, or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 5 of 35

Table of contents

Table of contents ... 5

List of tables .. 6

List of figures .. 6

List of acronyms .. 7

1. About this document .. 8

1.1. Deliverable context .. 8

1.2. The rationale behind the structure ... 8

2. Introduction ... 9

3. DevOps definition ... 9

4. DevOps Phases .. 10

4.1. CI/CD .. 12

5. Evolution from DevOps to DevSecOps ... 13

6. DevSecOps continuous security model ... 14

6.1. DevSecOps Principles ... 15

6.2. DevSecOps Workflow ... 16

6.2.1. Plan .. 16

6.2.2. Code ... 16

6.2.3. Commit .. 16

6.2.4. Build .. 16

6.2.5. Integrate ... 17

6.2.6. Package .. 18

6.2.7. Release ... 18

6.2.8. Configure ... 18

6.2.9. Accept .. 18

6.2.10. Deploy .. 19

6.2.11. Operate ... 19

6.2.12. Adapt .. 20

6.3. DevSecOps Practices ... 21

7. Open-Source Software and tools ... 22

7.1. Tools for collaboration and communication environment ... 23

7.2. Tools for source version control and CPD .. 23

7.3. Tools for build automation .. 24

7.4. Tools for continuous integration .. 24

7.5. Tools for deployment automation, infrastructure automation and configuration management 24

7.6. Tools for monitoring .. 25

8. DevSecOps ASSIST-IoT use case ... 26

9. DevSecOps ASSIST-IoT guidelines ... 29

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 6 of 35

9.1. ASSIST-IoT GitLab .. 29

9.2. ASSIST-IoT GitLab WP organization .. 30

10. Conclusions .. 33

References ... 34

List of tables

Table 1. OSS tools associated with DevSecOps practices .. 22

List of figures

Figure 1. DevOps overall conceptual map [12] ... 10
Figure 2. DevOps phases [13]. .. 10
Figure 3. DevSecOps embedded security control [26] ... 13
Figure 4: DevOps and DevSecOps comparative workflow ... 13
Figure 5: DevSecOps conceptual framework for continuous security model [26] .. 14
Figure 6. The Periodic DevOps table [23]. .. 23
Figure 7: DevSecOps methodology for ASSIT-IoT use case. ... 27
Figure 8: GitLab GUI .. 29
Figure 9: GitLab features to be used following DevSecOps practices in ASSIST-IoT 30
Figure 10: ASSIST-IoT GitLab internal structure/organisation .. 32

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 7 of 35

List of acronyms

Acronym Explanation

AWS Amazon Web Services

DevOps Development and Operations

DevSecOps Development, Security and Operations

CaC Compliance as Code

CI Continuous Integration

CD Continuous Deployment

CDE Continuous Delivery

CF Continuous Feedback

CT Continuous Testing

DAST Dynamic Application Security Testing

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IAST Interactive Application Security Testing

IDE Integrated Developed Environment

OWASP Open Web Application Security Project

OSS Open Source Software

PaaS Platform as a Service

SaC Security as Code

SAST Static Application Security Testing

SbD Security by Design

SCA Static Composition Analysis

SDLC Software Development Life Cycle

SSH Secure Shell Protocol

UAT User Acceptance Testing

VM Virtual Machine

RASP Runtime Application Self-Protection

XaaS Anything as a Service

XSS Cross-site scripting

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 8 of 35

1. About this document

The main objective of this document is to set the foundations of the ASSIST-IoT DevSecOps methodology and

the tools suite for the proposed continuous security model with DevSecOps.

DevSecOps continuous security practices in ASSIST-IoT will help to reduce, mitigate, and avoid potential

threats on the software delivery lifecycle, and to secure operations on NG-IoT environments like those

envisioned in the project.

1.1. Deliverable context

Keywords Lead Editor

Objectives O1: ASSIST-IoT Architecture supported by DevSecOps methodology and tools.

O2: Smart networking components supported by DevSecOps methodology.

O3: Definition and implementation of decentralized security and privacy, supported by

DevSecOps methodology and tools.

O4: Federation of smart AI enablers supported by DevSecOps methodology and tools.

O5: Definition and implementation of human-centric tools interfaces supported according

to DevSecOps methodology and tools.

O6: Definition, deployment, and evaluation of real-life pilots supported by DevSecOps

methodology and tools.

Work plan DevSecOps methodology and tools indicated in this report will be the foundation for secure

development and later secure operation for software components delivered in WP4 and

WP5. The DevSecOps methodology proposed for ASSIST-IoT will be followed as much as

possible during the integration WP6 (running as a parallel activity providing further outputs)

and the deployment of pilots in WP7.

Milestones This deliverable does not mark any specific milestone completion. However, it contributes

towards MS4 – Pilots deployed. Initial deployment of the three pilots on M18.

Deliverables The deliverable is the output for the task T6.1 DevSecOps Methodology. T6.1 DevSecOps

methodology will run in parallel with other WP6 Integration activities until to M30.

1.2. The rationale behind the structure
The main objectives of D6.1 are (i) to define DevSecOps foundations and methodology in ASSIST-IoT, and

(ii) to identify the DevSecOps tools to be used in the project. Section 3 and Section 4 details the traditional

context of DevOps and the phases from development to operation. Section 5 explains the evolution and different

approaches for DevOps and DevSecOps. Next, while Section 6 describes the DevSecOps methodology for

implementing a continuous security model based on DevSecOps principles, DevSecOps workflow, and Section

7 lists a large number of available tools that cover the targeted activities that will enable to activate security

controls and related practices as previously identified, and Section 8 describes a scenario use case approach for

DevSecOps in ASSIST-IoT. Finally, Section 9 proposes the first guidelines to use GitLab in ASSIST-IoT.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 9 of 35

2. Introduction

This document presents the project’s methodology, which will follow the DevSecOps approach as a continuous

model. It will contribute to develop security and operation in systems that requires continuous security, and

thus, enabling delivery pipelines to deliver the security ready applications and services, capitalizing the cloud

infrastructure and technologies. In particular, all applications and services where data security and privacy will

be the prime concern will use the DevSecOps continuous model proposed here for delivering business

application and services with agility, velocity, and assured security.

The DevSecOps approach for a continuous model is possible to be used in NG-IoT (Internet of Things) systems,

including fog computing, edge computing, cyber physical system (CPS), VNF (virtual network function)

applications of network communication or telecommunication, future 5G applications, etc., as these applications

are closely tied with cloud infrastructure technologies [1][2][3][4][5][6][7][8][9].

3. DevOps definition

Historically, the lack of cooperation among the development and operations teams in software production often

resulted in facing a lot of challenges along the software development lifecycle. For instance, if the deployment

strategy of the software suite of a company plans big releases every e.g., six months, there is a lot of risk

involved. For instance, if one thing goes wrong, it may break everything. Hence, the plan of deploying so many

changes at once leads to a very hard forensics processing on identifying what, where and why are located those

bugs that crashes the new release available.

This is where DevOps came into play. The term coined by Patrick Debois, in October 2009 [11], is referred to

“a movement of people who think it is time for a change in the IT Industry - time to stop wasting money, and

time to start delivering great software, and building systems that scale and last”. Hence, DevOps was about

fast, flexible development and provisioning of business processes, which by efficiently integrating development,

delivery, and operations, facilitates a lean, fluid connection of these traditionally separated silos [10].

Even though the DevOps term and movement has been discussed for nearly a decade, it lacks a widely accepted

definition. By consolidating the most cited definitions of DevOps, we will adopt the following statement from

[12]:

DevOps is a collaborative and multidisciplinary effort within an organization to automate

continuous delivery of new software versions, while guaranteeing their correctness and

reliability.

To be more precise, DevOps is a methodology that is helping organisations (and their production teams) to build

software in a way that enables continuous rapid deployment. In that sense, DevOps might be applied to very

different delivery sectors, although it but must be tailored to the environment and product architecture (e.g.,

even in very constrained environments like embedded systems, upgrades can be planned and delivered quickly

and reliably). Additionally, besides highly secured cloud-based delivery, DevOps need dedicated architecture

and hardware approaches that fulfil the agile and lean delivery methodologies.

Following the systematic analysis of the literature carried out in [12], the conceptual framework of DevOps is

composed of a conceptual map outlining four categories: process (which encompasses business-related

concepts), people (which covers skills and concepts regarding the culture and collaboration), delivery (related

with the CI/CD concept – Continuous Integration / Continuous Delivery-Deployment), and runtime (that

synthesizes concepts needed to guarantee the stability and reliability of services in a continuous delivery

environment).

The four conceptual categories of DevOps, and their interrelation with engineering and management

perspective, as well as with Development and Operations roles are depicted in Figure 1

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 10 of 35

Figure 1. DevOps overall conceptual map [12]

From the figure, it can be considered that while the process and people categories relate more to the management

perspective, runtime and delivery relate more to an engineering perspective. Moreover, within the engineering

perspective, while delivery concepts relate more to developers, runtime concepts relate more to operations role.

As a summary, DevOps integrates the two worlds of development and operations, using automated

development, deployment, and infrastructure monitoring. It is an organizational shift in which, instead of

distributed siloed groups performing functions separately, cross-functional teams work on continuous

operational feature deliveries. This approach helps to deliver value faster and continuously, reducing problems

due to miscommunication between team members, and accelerating problem resolution.

4. DevOps Phases

Although there are several approaches aiming to identify which are the different DevOps stages or phases, those

that are most frequently adopted in DevOps culture are presented in Figure 2. It includes eight phases: Plan,

Code, Build, Test, Release, Deploy, Operate, Monitor.

Figure 2. DevOps phases [13].

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 11 of 35

A short description of what is the objective of each phase as extracted from [13] is described next:

1. Plan: The Plan stage covers everything that happens before the developers start writing code, and it is

mainly relate with the Product/Project Manager role. Requirements and feedback are gathered from

stakeholders and/or customers and used to build a product roadmap to guide future development. The

product roadmap can be broken down in different ways like features or user stories, creating a backlog

of tasks that lead directly to the customers’ requirements. The tasks on the backlog can then be used to

plan sprints and allocate tasks to the team to begin development.

2. Code: In addition to the standard toolkit of a software developer, the DevOps team has a set of plugins

installed in their development environments to aid the development process, including consistent code-

styling and avoiding common security flaws. This set of plugins helps to teach developers good coding

practice while boosting collaboration providing some consistency to the codebase. These tools also help

to resolve issues later in the testing pipeline, resulting in fewer failed builds.

3. Build: Once a developer has finalized a task, he/she commits his/her code to a shared code repository.

There are many ways this can be done, but typically the developer submits a pull request (i.e., a request

to merge his/her new code with the shared codebase). Another developer then reviews the changes

he/she has made, and once there are no issues, the pull-request is approved. This manual review is

supposed to be quick and lightweight, but it is effective at identifying issues early. Simultaneously, the

pull request triggers an automated process, which builds the codebase and runs a series of end-to-end,

integration and unit tests to identify any regressions. If the build fails, or any of the tests fail, the pull-

request fails, and the developer is notified to resolve the issue. By continuously checking code changes

into a shared repository and running builds and tests, traditional integration issues that arise when

working on a shared codebase are minimised.

4. Test: Once a build succeeds, it is automatically deployed to a staging environment for deeper, out-of-

band testing. The testing that is performed during this phase is up to the organisation and what is relevant

to the application, but this stage can be considered a testbed that lets to plug in new testing without

interrupting the flow of developers or impacting the production environment. The staging environment

may be an existing hosting service, or it could be a new environment provisioned as part of the

deployment process. This practice of automatically provisioning a new environment at the time of

deployment is referred to as Infrastructure-as-Code (IaC) and is a core part of many DevOps pipelines.

Once the application is deployed to the test environment, a series of manual and automated tests are

performed. Manual testing can be traditional User Acceptance Testing (UAT), where people use the

application as the customer to highlight any issues or refinements that should be addressed before

deploying into production. At the same time, automated tests might run security scanning against the

application, check for changes to the infrastructure and compliance with hardening best-practices, test

the performance of the application or run load testing.

5. Release: The Release phase is a milestone in a DevOps pipeline, as it is the point at which a build is

ready for deployment into the production environment. By this stage, each code change has passed a

series of manual and automated tests, and the operations team can be confident that breaking issues and

regressions are unlikely. Depending on the DevOps maturity, it is possible to automatically deploy any

build that makes it to this stage of the pipeline. Developers can use feature flags to turn off new features,

so they cannot be seen by the customers until they are ready for action. Alternatively, in case to looking

for a more control of when builds are released to production, it could be proposed to have a regular

release schedule, or only release new features once a milestone is met. It can also include a manual

approval process at the release stage, which only allows certain people to authorise a release into

production.

6. Deploy: This stage is when a build is released into production. The same IaC that built the test

environment can be configured to build the production environment. As it is already confirmed that the

test environment has been built successfully, the DevOps practitioner can be confident that the

production release will go satisfactorily on. A blue-green deployment will let to switch to the new

production environment with no outage. Then the new environment is built, and it sits alongside the

existing production environment. When the new environment is ready, the hosting service points all

new requests to the new environment. If at any point, an issue is found with the new build, by simply

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 12 of 35

telling the hosting service to point requests back to the old environment, the practitioner can come up

with a fix.

7. Operate: The new release is now live and being used by the customers. In this stage, the operations

team should make sure that everything is running smoothly. Based on the configuration of the hosting

service, the environment automatically scales with load to handle peaks in the number of active users.

The organisation has also built a way for the customers/stakeholders to provide feedback on their

service, as well as tooling that helps to collect feedback for helping on shaping next releases of the

future development of the product. This feedback loop is important, as the customer is the best testing

team, donating many more hours to testing the application than the DevOps pipeline itself.

8. Monitor: The final phase of the DevOps cycle is to monitor the environment, sustained by the customer

feedback, by collecting data and providing analytics on customer behaviour. It can also include

monitoring for potential performance bottlenecks in the DevOps pipeline, which are impacting the

productivity of the development and operations teams. All of this information is then fed back to the

Product Manager and the development team to close the loop on the DevOps process. Although it can

be seen that is the beginning of a new loop, it should be considered that the DevOps is a continuous

process (i.e., there is no start or end, just the continuous evolution of a service throughout its lifespan).

4.1. CI/CD
Ideally, and with the goal of agile and rapid deployment, DevOps software shall move continually through the

aforementioned eight DevOps stages in an infinity loop. In this sense, some of the previous defined stages are

grouped within the so-called Continuous everything concept, which is also known as Continuous Integration

and Continuous Delivery and Deployment (CI/CD) concept. CI/CD are the foundational component of modern

software DevOps development, as they involve the Code, Build, Test, Release and Deploy phases of the

DevOps lifecycle. A breakdown of these terms and how they are related to the phases of the pipeline are

described next.

Continuous Integration: One of the biggest difficulties in coordinating a software development team is

managing the collaboration of many developers on a single codebase. A shared code repository is key to solving

this problem However, there can be issues when merging the changes made by multiple people on the same

piece of code. Continuous integration aligns with the Code and Build phases of the DevOps pipeline. It generally

refers to performing all of code tests, unit tests, and integration tests. By merging smaller changes more

regularly, the issues become smaller and easier to manage, improving overall productivity.

Continuous Delivery: It can be seen as an extension of Continuous Integration, which automates the process

of deploying a new build into production. The goals of Continuous Delivery are (i) to perform automated testing

on each new build in order to verify that builds are ready for release into production; (ii) to manage the automatic

provisioning and configuration of deployment environments as well as testing of these environments for

stability, performance, and security compliance; and (iii) to deploy a new release into production when approved

and manually triggered by the organisation. As it can be seen in Figure 2, Continuous Delivery embraces the

Test and Release phases of the pipeline, allowing organisations to manually trigger the release of new builds as

regularly as they choose.

Continuous Deployment: It is a more advanced version of Continuous Delivery. The goals are the same, but

the manual step of approving new releases into production is now automated. It involves the Test, Release, and

Deploy phases of the pipeline. In a Continuous Deployment model, each build which passes all the checks and

balances of the pipeline are automatically deployed into the production environment.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 13 of 35

5. Evolution from DevOps to DevSecOps

DevSecOps is defined in [26] as DevOps embedded with security controls providing continuous security

assurance. DevSecOps is a natural extension of DevOps that advocates for shifting security-left to security-by-

design and continuous security testing by making use of automated security controls in the DevOps workflow.

Figure 3 illustrates how DevSecOps adds a continuous security assurance embedding security controls across a

DevOps workflow.

Figure 3. DevSecOps embedded security control [26]

Therefore, DevSecOps is DevOps with security. Hence, in DevSecOps models, DevOps teams should also

collaborate with security team, developing a culture wherein development and operations team include security

as integral component in their work products [14]. In addition, DevSecOps aims to bring cultural transformation

in an organization by changing people’s mindset that building and delivering security enabled applications is

everybody responsibility and not just a tick mark towards end of the completed work. Automation plays a pivotal

role in bringing this cultural transformation and mindset change. OSS drive this automation capitalizing the

cloud infrastructure and related technologies.

Figure 4: DevOps and DevSecOps comparative workflow

In Section 6 we propose a methodology for implementing a continuous security model for DevSecOps.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 14 of 35

6. DevSecOps continuous security model

This section presents the general overview for each of the steps of the DevSecOps Methodology. Following the

research work on [26] we propose a methodology for a continuous security model for DevSecOps based on the

following three supporting pillars.

• DevSecOps continuous workflow applying DevSecOps practices and principles embedded with

security controls.

• Open Source software tools: to support continuous workflow activities as necessary technologies.

• Cloud infrastructure technologies: to support continuous workflow activities.

Figure 5 describes a conceptual framework that is the basis for designing security assurance controls for

DevSecOps.

Figure 5: DevSecOps conceptual framework for continuous security model [26]

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 15 of 35

As it can be seen, the framework extends the fundamental principles and practices of DevOps [27][28][29] and

it consists of five parts:

1) Fundamental elements. Organizational core units of development, security, and operations in a team,

applying principles and practices by the organization for the people, process and technology.

2) DevSecOps Principles. A set of guidelines providing foundation for security controls in the continuous

security model.

3) DevSecOps Workflow. Different stages to deliver application and services.

4) DevSecOps Practices. Different activities executed along the workflow that activate security controls.

5) Open-Source Software tools and cloud technologies as enablers for supporting the continuous security

model.

The fundamental or key elements mentioned above as people, process and technology will work according to

business requirements to contribute to development, security, and operation. The next sections describe in detail

the rest of the proposed DevSecOps framework of the project.

6.1. DevSecOps Principles
The DevSecOps principles are a set of guidelines for providing the foundation for creating different security

controls in the DevSecOps continuous security model.

• Culture Communication, Collaboration and Sharing.

o The DevSecOps is a techno-cultural transformation that necessitates mind shift of the

development, operations, and security people to collaborate, communicate and share

information to deliver security ready applications with velocity and agility.

• Automation

o Automation is the backbone of DevSecOps workflow implementation and enables the

implementation of DevSecOps principles and practices

• Metrics, Measurements and Quality Assurance

o Metrics for performance and quality measurement for an automated delivery flow (i.e. agility,

velocity, security, and quality)

• Shift Security Left

o Shifting security to left advocates building security controls into the applications at earlier

stages of the development cycle

• Security-by-Design

o SbD is an approach to system implementation that focuses on minimizing the vulnerabilities

and reducing the attack surface of the system through designing and building security controls

at every stage of the system implementation.

• Security-as-Code

o SaC is about implementing security checks and controls into the workflow through codes

• Infrastructure-as-Code

o IaC treats infrastructure, both physical servers and virtual resources, as programmable unit and

uses software development approach for their provisioning and configuration

• Compliance-as-Code

o CaC advocates using code, to define, implement and validate security policy and controls in the

workflow

• Adaptative Security

o An adaptive security system does not wait for incident to happen but anticipate before it can

and act proactively to prevent system from any possible security breach.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 16 of 35

6.2. DevSecOps Workflow

6.2.1.Plan

Both functional and non-functional security requirements, including security, are analysed by the experts from

business, development, security, and operations. The features are broken into working software, deliverable in

small duration. Based on threat modelling, an adaptive security architecture and design approach is adopted to

build incremental security controls in every development cycle. An end-to-end planning that involves

integration of all the stages of workflow is performed.

Security controls in DevSecOps for Plan phase are:

• Security requirement analysis

• Threat modelling

• Adaptative security architecture and design

• Security use, misuse, and abuse test cases

• Code review and security guidelines check

• Software inventory management

6.2.2. Code

Developers are provided with secure code development guidelines. The coding guidelines are checked and

enforced through available plug-ins for the Integrated Development Environment (IDE) used by the developers.

Security controls in DevSecOps for Code phase

• Security use, misuse, and abuse test cases

• Code review and security guidelines check

• Source code version control security

• Unit and integration security testing

• Static application security testing (SAST)

6.2.3. Commit

At this stage, developers check in their code in a source repository, which is automatically version controlled.

A commit is followed by a build that provides immediate feedback for any break in the application source code

base.

Security controls in DevSecOps for Commit phase are:

• Code review and security guidelines check

• Source code version control security

• Unit and integration security testing

• Static application security testing (SAST)

• Software composition analysis (SCA)

6.2.4. Build

The build stage starts with compiling the changed source code while resolving all the dependencies. During

compilation it can trigger static code analysis and SCA, using appropriate tools.

After the Commit step, which provide as outcomes a series of isolated software elements

(binaries/services/virtualised components) available (tagged and versioned) in the shared code repository, sub-

divided in proper sub-project folders, with clear pull/push mechanisms (based on Git protocol), the Build

mechanisms aim to convert the code pieces into actionable software featuring functionalities in the system.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 17 of 35

However, this process may differ depending on the type of software development conducted and, more

specifically, to the language and technologies used (e.g. compiling binaries, composing a service, building a

docker image, etc.).

Technically, the actual build operation is performed by automated scripts that make such transformation (e.g.,

dockerfile to convert a codebase into a docker image), combining source code into runnable code. If the code

presents any flaw (e.g., code does not compile, it cannot be executed, it does not properly interpret environment

variables or path, some libraries break, dependencies are not up-to-date), the build tool informs the user or the

committer developer to modify the commit and the process starts over again.

The “Build” stage of the DevOps pipeline has turned into a security-powered step in DevSecOps, embedding

security controls whenever generating the image/compiled binary/service and executing individual micro-

testing actions over them before verifying for deployment. As a first step, DevSecOps introduces Static

Application Security Testing (SAST) [15], consisting of isolated security tests applied over the source code

(e.g., SQL injection or XSS) before proceeding with actual build. The objective of SAST [15] [16] is to look

for vulnerabilities in the source code at different stages of the DevSecOps workflow and perform continuous

testing as a continuous security practices into the different phases of DevSecOps practices. In addition, SAST

tools allow organisation to incorporate ad-hoc rules for finding specific vulnerabilities in the code (e.g., the

known OWASP Top 10 [17] or others previously defined after risk analysis) and in the third-party dependencies.

The SAST process also generates a series of useful metrics and logs that are kept for potential further analysis

and record. Afterwards (once SAST are successfully checked in the piece of code), the traditional (DevOps)

build process takes place. In addition, after packaging and prior to store in an artifact repository package code

it should consider including a digital signature.

Build result is crucial in the DevSecOps pipeline as it performs the first verification and testing at a very early

stage of the cycle. This effect (promoted in DevSecOps) contributes to the so-called shift left philosophy,

consisting of breaking the application in smaller pieces with regards to security issues identification, so that it

is easier and cheaper to solve those after a more accurate location of the breach.

Security controls in DevSecOps for Build phase are:

• Software inventory management

• Source code version control security

• Unit and integration security testing

• Container and Infrastructure as Code (IaC) analysis

• Software composition analysis (SCA)

• Static application security testing (SAST)

• Security smoke testing

6.2.5. Integrate

This stage is characterized as integration of application software components as one system, including hardware

infrastructure consideration. The system integration and security tests are conducted looking for any interface

that breaks between two different interacting components, including any third-party software. The infrastructure

configuration codes are validated as per the application requirement.

Security Controls in DevSecOps for Integrate phase are:

• Source code version control security

• Unit and integration security testing

• Container and Infrastructure as Code (IaC) analysis

• Artifact Repository Security Management

• Software composition analysis (SCA)

• Static application security testing (SAST)

• Dynamic application security testing (DAST)

• Fuzzy testing

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 18 of 35

• Interactive application security testing (IAST)

• Run-time application self-protection

• Continuous vulnerability scanning

• Security patch application

• Security smoke testing

6.2.6. Package

All the required binaries used by an application to deliver the expected features, like web server, database, third-

party libraries, are bundled together in one application package along with release notes, installation and

configuration scripts or instructions. This packaged software is stored, mostly, in a separate artifact repository.

Once the checks for building the application successfully advance, the result of this step (in DevOps flow)

consists of a “packaged” executable coded. In ASSIST-IoT (as presented in deliverable D3.5), the pieces of

source code will be packaged following a virtualisation approach, meaning that those will be either Docker

Images, Kubernetes (or similar) Pods and/or Virtual Network Functions. Finally, the build step includes

performing single automated testing of the functioning of the runnable code. The way that Package stage of

DevSecOps will be performed in ASSIST-IoT is described in Section 9.

Security Controls in DevSecOps for Package phase are:

• Artifact repository security management

6.2.7. Release

The packaged application is delivered from artifact repository to a staging environment for the user acceptance.

The staging environment is replica of production environment and the application is tested for expected

behaviour in production.

Security Controls in DevSecOps for Release phase are:

• User acceptance and security testing

• Artifact repository security management

6.2.8. Configure

The application installed at the staging environment is configured with necessary configuration data for

acceptance testing.

As mentioned earlier, the release and later configure step in DevSecOps pipeline is the point at which a build is

ready for deployment into the production environment. By this stage, each code change has passed a series of

manual and automated tests, and the operations team can be confident that breaking issues and regressions are

unlikely.

All builds arriving at this point would have passed a SAST, DAST and usual controls and tests, and the artifacts

will be (signed) and ready in the shared repository of the project/organisation, but still at the “staged repository”,

waiting for final validation and release to a production-close environment/repository.

Security Controls in DevSecOps for Configure phase:

• Dynamic application security testing (DAST)

• Interactive application security testing (IAST)

6.2.9. Accept

The users and the quality assurance team execute different functional and non-functional testing to validate

application features and performance as per expectations. The user experiences are shared to the development

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 19 of 35

team for resolution and improvisation in next iteration. The different security tests, like penetration test, fuzz

test, DAST, etc., are performed to identify and rectify any security gaps.

The acceptance stage in DevOps workflow [13] and concerns the integration of testing to ensure the security as

described in the Component analysis of DevOps and DevSecOps [18] in Hong work.

Mayoral-Vilches et al. [19] have described four methods of software security testing in this present phase. The

methods consist of black-box and machine learning security methods that pinpoint the potential vulnerabilities.

These methods are Dynamic Application Security Testing (DAST), Deep Static Application Security Testing

(Deep SAST), Fuzz testing, and Penetration Testing. The methods are included in Björnholm [20] work with

the addition of Dependency Scans. All these methods are different and are important to uncover pitfalls prior to

deploying the software.

Security Controls in DevSecOps for Accept phase are:

• User acceptance and security testing

• Artifact repository security management

• Penetration testing

• Software composition analysis (SCA)

• Static application security testing (SAST)

• Dynamic application security testing (DAST)

• Fuzzy testing

• Interactive application security testing (IAST)

• Run-time application self-protection

• Continuous vulnerability scanning

• Security patch application

• Security smoke testing

6.2.10. Deploy

The accepted application is deployed over production environment and smoke testing is performed to identify

any functional and non-functional issues. The issues identified at this stage is more expensive to fix as compared

to previous stages.

The deployment phase is not different to the DevOps as it incorporates the configuration and system integration

as task [19]. The authors regard this phase as the most critical and the phase calls for the definition of secure

deployment mechanisms and systematic configuration practices. The deployment phase is envisioned to be

consisted of smaller parts. Morales et al. [24], work names these parts as application security monitoring, secure

deployment process, secure environment, and secure operational enablement.

Security Controls in DevSecOps for Deploy phase are:

• Secrets management

• Infrastructure provisioning and orchestration

• Security patch application

• Infrastructure hardening and security testing

• Container and infrastructure security testing

6.2.11. Operate

The deployed applications and the production environment are monitored continuously for performance and

malicious activities. This allows stakeholders to verify if the deployed security controls are functioning as

expected. and take necessary action to address the deviations. Zero-day vulnerabilities are patched as quickly

as possible to minimize exposure time. The team leverages infrastructure-as-code tools for patch updates, and

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 20 of 35

configuration changes to target machines at scale, providing speed, accuracy, and consistency with no human

error.

The operation phase comes after the systems deployment in production. Hong [18] mentions that the verification

compliance and control are tasks in the operational phase. The tasks in the operational phase are described by

Mao et al. [25] and include automated security checks and monitoring feedback loops. In more details, red teams

and bug bounties are essential in the operational phase to create a feedback loop between security teams and

developers.

Security Controls in DevSecOps for Operate phase are:

• Application and system logging

• Continuous monitoring and alerting

• Intrusion prevention detection and response

• Security incident management

• Security metric measurement and analysis

• Security audit and compliance

• Penetration testing

• Dynamic application security testing (DAST)

• Fuzzy testing

• Interactive application security testing (IAST)

• Run-time application self-protection

• Continuous vulnerability scanning

• Security smoke testing

• Infrastructure hardening and security testing

• Container and infrastructure security testing

• Red, Blue and Purple Team testing

• Monkey testing

6.2.12. Adapt

The ability to scale infrastructure on demand and replacing a compromised environment in minutes, drives the

adaptability which is facilitated through by using right set of automation tools.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 21 of 35

6.3. DevSecOps Practices
DevSecOps practices are a set of different activities that will activate security controls to perform security

assurance tasks.

The list below describes DevSecOps Practices and target activities associated:

• Continuous Testing (CT)

o SCA (Static Composition Analysis)

o SAST (Static Application Security Testing)

o Unit and integration testing

o DAST (Vulnerability scan, PenTest, Exploit Test)

o Acceptance, Smoke, Load and Performance Testing

o IAST (Interactive Application Security Testing)

o Infrastructure Configuration and Security Testing

• Continuous Planning, Design and Development (CPD)

o Development Environment

o Threat modelling and Security-by-Design

o Source Version Control

o Development Management

• Continuous Integration

o Integration Automation

o Build Automation

o Artifact Repository

• Continuous Delivery

o Configuration Management

o Delivery Automation

• Continuous Deployment

o Deployment Automation

• Continuous Operation

o Logging, Analysis, Visualization & Notification

o Continuous Monitoring

o IDS, IPS & Security Information and Event Management

o RASP (Runtime Application Self-Protection)

o Infrastructure orchestration

o Secret management

• Continuous Feedback

o Collaboration & Communication Environment

o Quality & Performance Measurements, Analytics, Trending & Alerting

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 22 of 35

7. Open-Source Software and tools

As indicated in the Section 6, software tools are mandatory in automating the DevSecOps methodology. In

particular, the proposed DevSecOps framework for ASSIST-IoT will rely on open-source tools. ¡Error! No se e

ncuentra el origen de la referencia. lists a large number of tools that covers target activities that will enable

to activate security controls and related practices as described in Section 6.3.

Table 1. OSS tools associated with DevSecOps practices

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 23 of 35

A different overview to analyse software tools for DevSecOps is DevOps Periodic Table [23], with a well-

known list of more than 100 software tools, that provides context of the use and DevSecOps practices used by

each tool as shown below in Figure 6.

Figure 6. The Periodic DevOps table [23].

The next sections identify different tools associated with the different DevSecOps stages of ASSIST-IoT.

7.1. Tools for collaboration and communication environment
The DevOps strategy focuses on human collaboration across silos. Concretely, this entails different departments

sharing knowledge, process, and practices, which requires sharing specific tools.

On the one hand, Gitlab not only provides a code repository but also has a wiki system that enables developers

and operators to share knowledge. Gitlab offers an issue management system, which is typically used by

developers and business analysts to share knowledge through agile practices like issues comments and pull

requests processes. Making operators also familiar with these issues helps them to understand the product and

project contexts. Moreover, documenting production problems known by operators in the issue management

system is an essential step toward handling non-functional requirements prioritization in the development flow.

7.2. Tools for source version control and CPD
Tools for source version control are one of the key activities integrated in the practices for continuous planning

design and development (CPD). Source code management tools usually intend to promote collaboration among

developers. These tools are basic blocks to implement continuous integration and, therefore, continuous

delivery. From this traditional perspective, one could relate source code management solely to the delivery

category of concepts. However, source code management can also be used by operators to store artifacts and

automation scripts, and to access software information that can impact operations activities. For example, a

development bug may cause a memory leak that impacts operations. When storing infrastructure-related

artifacts, whether in the infrastructure-as-code style or just as plain text, operators provide developers with better

insight into how the software is executed. Therefore, source code sharing among developers and operators

becomes a real point of collaboration. The most traditional tools in this category are SVN and Git. More

complete platforms, such as GitLab and GitHub, can also wrap Git, providing easier-to-use visualizations for

code changes, as well as integrating with additional tools like the issue manager.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 24 of 35

7.3. Tools for build automation
Build tools are highly developer-centered. Their goals relate to enabling continuous delivery and the delivery

category of concepts. This group does not only include tools that generate deployable packages, also called

builds, but also tools that generate essential artifacts and feedback using the source code as input. Each

programming language has some tools to cope with the build process by supporting dependencies resolution,

implementation of custom tasks, or generation of deployable packages. Examples of dependency managers, also

called package managers, are PIP for Python, RubyGems for Ruby, NuGet for .NET, and Maven and Gradle,

which compete in the Java landscape. Gradle eases the implementation of custom tasks during the build, as also

done by GNU Make, which is often used for GNU/Linux packages, or Rake for Ruby.

Some of the cited tools, such as Maven, are also responsible for producing the deployable package, such as

WAR files for Java environments. However, for some languages, such as Python and Ruby, there is no need for

producing a deployable package as a single-file artifact. It is also possible to use more generic package tools

coupled to the target environment, such as Debian packages. Each programming language also has some unit-

test frameworks that provide vital feedback for developers about the correctness of the software. Some examples

are JUnit and Mockito for Java, RSpec for Ruby, and NUnit for .NET. More sophisticated testing that automates

the end-user behaviour for web applications is possible with browsing automation tools, such as Selenium.

Another type of feedback for developers is regarding source code quality, which is provided by source-code

static analysis tools, such as SonarQube and Analizo. While SonarQube classifies code problems and evaluates

coverage metrics as well as technical debts in several programming languages via its plugins, Analizo supports

the extraction of a variety of source code metrics for C, C++, C#, and Java codes.

In general, source-code analysis tools can point to issues in source-code, such as non-compliance to the standard

style, problems in maintainability, risk of bugs, and even vulnerability breaches. Source-code static analysis

tools vary in supported programming languages and in the way they are delivered. They can be provided as a

service, or even within the developer environment through tools such as PMD for the Eclipse IDE.

7.4. Tools for continuous integration
Continuous integration tools orchestrate several automated actions that, together, implement the deployment

pipeline pattern. Among the stages orchestrated by the pipeline are package generation, automated test execution

for correctness verification, and deployment to both development and production environments. These tools are

related to the delivery category of concepts. The main actors responsible for defining the pipeline structure are

typically developers. Operators usually collaborate on defining the deployment stages; they are also in charge

of maintaining the continuous integration infrastructure running as a service to developers. For this, operators

run continuous integration tools such as Jenkins or GitLab CI. Deployable packages can be stored on

repositories like Nexus for enabling future rollback. Since downtime of continuous-integration infrastructure

results in the interruption of continuous delivery, it is common to use highly available third-party services, such

as GitLab and Travis.

7.5. Tools for deployment automation, infrastructure

automation and configuration management
Deployment automation tools are employed in the deployment stages of the pipeline to make the continuous

delivery process viable. They enable frequent and reliable deployment processes, as well as other concepts

related to the delivery category. Although the use of deployment automation tools is a joint effort between

developers and operators, the primary mission of continuous delivery is putting the deployment schedule under

business control. Every automated deployment approach relies on the concept of IaC. It requires engineers to

specify servers, networking, and other infrastructure elements in files modelled after software code. In this

model, deployment and infrastructure definitions are shared among developers and operators, allowing effective

cooperation between them. Automated deployment can encompass not only the deployment of the package to

the production environment, but also the provisioning of the target environment. Such provisioning is usually

performed in cloud environments, such as Amazon Web Services (AWS), Google Cloud, and Azure. These

platforms deliver a vast amount of infrastructure services via Infrastructure as a Service (IaaS) model, such as

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 25 of 35

launching VMs, databases, queues, and so on. The creation of all these resources can also be orchestrated, on

e.g., Amazon’s platform, through the usage of AWS Cloud Formation. Operators and developers can share the

task of using IaaS services. It is also possible to use a Platform as a Service (PaaS), such as Heroku. In the PaaS

approach, the platform is responsible for the deployment, and developers do not know the underlying virtual

infrastructure.

Configuration management tools are important in cloud deployments when using IaaS, where the environment

provisioning is followed by the execution of scripts that effectively install the application in the target

environment. A deployment script can be written using Shell Script, but configuration management tools such

as Chef and Puppet offer advantages by leveraging OS portability and idempotence mechanisms, which are

difficult to achieve with Shell Script. An example of language construct of Chef that leads to portability is using

the “package” resource, which is resolved to a concrete package manager, such as Apt, only at execution time.

An example of an idempotent mechanism of Puppet in the “service” resource is declaring the desired final state

of the service as “running” rather than writing a command to start the service.

Another alternative for deployment is containerization, primarily implemented by Docker. Docker containers

resemble VMs. The main difference is that they are more lightweight, considering they share the kernel of the

host. Docker and related tools, such as Docker Compose, Kubernetes, and Rancher, allow the specification of

containers and their dependency relationships. These specifications generate container images in the build stage,

which are later instantiated in the target environment. Docker has been used not only for deploying applications

but also for deploying the underlying infrastructure. Containerization could be seen as complementary to the

deployment script strategy (done by Chef or Puppet). However, in practice, these strategies seem to compete.

A Chef script is executed continuously on the target node, and its success depends on the previous target node

state. However, in containerization the whole containerized environment is generated in the build, so the

environment is destroyed and rebuilt at each new software version. When compared to the Chef strategy, Docker

yields faster and more reliable deployment, but at the expense of bigger builds. Complementary usage of

configuration management and containers entails the setup of Docker environment and update of the OS

software, like SSH. Another usage is to manage configuration that varies across diverse environments (testing,

staging, production). Such a configuration cannot be embedded in container images since the same image must

be deployed in every environment.

As the application evolves, the database structure evolves. Traditionally, “database administrators” maintain the

database structure. The adoption of emergent design and the need for frequent releases have encouraged the use

of database migrations tools such as Flyway, which controls the automated application of schema updates across

different environments, thus enabling developers to manage database structure themselves.

7.6. Tools for monitoring
Monitoring tools usually track applications’ non-functional properties, such as performance, availability,

scalability, resilience, and reliability. Self-healing, alerts, log management, and business metric follow-up are

example tasks performed by monitoring tools; they relate to the runtime category of concepts. Examples of tools

for monitoring and alerting are Nagios, Zabbix, and Prometheus. Examples of log management tools are

Graylog and Logstash. Cloud services also play an essential role in guaranteeing non-functional properties of

applications, since they provide elastic resources that can be allocated on demand. It is also typical for cloud

services to provide monitoring and alerting services. The tendency toward cross-functional, full-stack teams,

combined with the expectation that developers must be accountable for the product pushes the use of these tools

to the development team.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 26 of 35

8. DevSecOps ASSIST-IoT use case

The application of the DevSecOps methodology through the continuous security model is described in the

following use case, that will need to be adapted and mapped to concrete tools but that is compliant with the

approach and maps with software tools previously described.

The following figure presents the continuous approach for DevSecOps in ASSIST-IoT, from development

environment to production environment. DevSecOps generic features tools are identified and highlighted in the

diagram as previously identified in Section 7. The concrete tools will be further detailed during the next steps

of the project within the context of WP6 Integration task.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 27 of 35

Figure 7: DevSecOps methodology for ASSIT-IoT use case.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 28 of 35

The different steps describe the further work to possible selection of OSS tools, and will be useful to provide

an overview on the idea of the implementation of the DevSecOps methodology.

1. Continuous planning and tracking for development testing and deployment activities.

2. Code using IDE tools and SAST tools plugins integrated into IDE.

3. Commit code in git source version control repository.

4. Integration automation process pulls the source and build the application.

5. Integration automation runs SCA for dependency check and launch SAST tools.

6. Integration automation runs Acceptance, Smoke, Load and Performance Testing, with Unit and

integration testing for Integration and Security test execution.

7. Integration automation launches Orchestration Platform and Configuration Management for

configuration and build deployment at pre-production server.

8. Integration automation runs Acceptance, Smoke, Load and Performance Testing for Application

Acceptance and Security test execution.

9. Integration automation launches DAST tools for vulnerability scanner, pentesting and exploit tests.

10. Build automation tool uploads tested package to artifact repository.

11. Wait for approval for Production Deployment.

12. Integration automation launches Orchestration Platform for production server configuration and build

deployment.

13. Configuration management download tested package from Artifact repository and deploys to

production.

14. Integration automation launches Acceptance, Smoke, Load and Performance Testing and DAST tools

for vulnerability scanner, pentesting and exploit test at production server.

15. Production server goes live with updated application and continuous operation.

16. Continuous operation with logging, analysis, visualization, and notification tools. Continuous

Monitoring and Security Information and Event Management and DAST tools

17. Continuous feedback through all the stages development, build, integration, testing and deployment

tools at different stages of the workflow.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 29 of 35

9. DevSecOps ASSIST-IoT guidelines

9.1. ASSIST-IoT GitLab

GitLab is a common and broadly used tool in DevSecOps corporate approaches for implementing and

supporting DevSecOps methodology. As mentioned, and detailed in ¡Error! No se encuentra el origen de la r

eferencia., GitLab takes part and contributes widely in different parts of DevSecOps methodology.

As cited in ¡Error! No se encuentra el origen de la referencia., GitLab is a tool that provides features to s

upport DevSecOps methodology and practices described in this deliverable. Generically to CI/CD, but also in

other practices mentioned generically in the methodology such as: CPD providing support to source version

control activities, CI providing support to CI activities (integration automation, build automation, and artifact

repository), CD and CDP with CF due to features supported. The DevSecOps practices and associated activities

that could not be handled using GitLab CE will use additional software tools integrated and automated as much

as possible as described in the ¡Error! No se encuentra el origen de la referencia..

Previous experience of some partners inside the consortium like S21Sec and CERTH, using GitLab in other

funded H2020 projects like FORTIKA, where GitLab was used as a central source code repository, also as

container registry, and to implement CI/CD pipeline to deploy a cloud marketplace of services, has been also a

crucial point to assume the decision.

ASSIST-IoT developments will configure and use the GitLab Workflow, with the purpose to help ASSIST-

IoT teams to work cohesively and effectively from the first stage of implementing software development in

WP4 and WP5 tasks from developing software components associated to each of the subtasks, towards the WP6

Testing integration and support where the last stage, deploying implementation to pilot use cases will be done

in WP7.

GitLab Community Edition [30] will be used as the first approach in ASSIST-IoT and the purchase of different

features will be evaluated during the timeline of WP6 Testing, integration, and support tasks.

GitLab allows to support DevSecOps methodology described to cross-check committed code and work on the

code collaboratively before moving it to the CI/CD pipeline. GitLab offers git repository management, code

reviews, issue tracking, activity feeds and wikis. Contextualising the role in ASSIST-IoT’s DevSecOps flow

(as shown in Figure 8), GitLab has been chosen as it is a highly modular tool that allows the incorporation of

“features” and “applications” to be seamlessly integrated in the DevOps flow. GitLab also incorporates a

“DevOps overview” dashboard that allows to realise, in a glance, the activity taken place with regards to

commits, deployments, etc.

Figure 8: GitLab GUI

GitLab Community Edition [30] will be used as the first approach in ASSIST-IoT and the purchase of different

features will be evaluated during the timeline of WP6 Testing, integration, and support tasks.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 30 of 35

ASSIST-IoT team has agreed on applying DevSecOps methodology described in this deliverable with the

support of Open-Source tools identified and selecting GitLab as DevSecOps open platform identifying and

using the following main features

• GitLab CI/CD pipelines as top level components for continuous integration delivery and deployment.

• GitLab Package Registry: ASSIST-IoT will use package registry integrated into GitLab, registry for a

variety of common package managers, enabling publish and share packages, which can be easily

consumed as a dependency in downstream projects

• GitLab Container Registry: ASSIST-IoT will use container registry integrated into GitLab, to maintain

docker images project developments associated to different GitLab projects associated to the different

software developments and enablers, making possible that each of the ASSIST-IoT developments can

have its own space to store its Docker images.

• GitLab Runner. ASSIST-IoT will use GitLab Runner is an application that works with GitLab CI/CD

to run jobs in a pipeline.

• SAST tool for analysing known vulnerabilities on the code managed in the repository. This tool directly

tackles the step of Continuous Testing practices outlined previously in the document

As a general guideline for ASSIST-IoT CI/CD, each software component should implement a CI/CD pipeline

in GitLab. Some of the expected tasks for each of the software components developed and integrated into the

CI/CD pipeline will be the following.

• Use and refine use cases in CI/CD pipeline using gitlab-ci.yml

• Provision a test environment (i.e. using docker container, and configuring environment variables)

• Perform a check out of the code using SAST scan

• Configure dependencies needed to test environment.

• Execute a test cases created by the code developers

• Create an environment to provide continuous delivery/continuous deployment using GitLab (i.e. from

GitLab CD provision a docker container containing the software or application developed and deploy

to staging, preproduction or production

Figure 9: GitLab features to be used following DevSecOps practices in ASSIST-IoT

The ecosystem of DevSecOps software tools will be enhanced later in the project (scope of WP6) to cover all

the steps arranged for the ASSIST-IoT DevSecOps methodology described in the present document.

9.2. ASSIST-IoT GitLab WP organization

With respect to the use of GitLab in ASSIST-IoT as a code repository, it has been devised as follows:

• On the top level, is the GitLab itself, dedicated to the ASSIST-IoT project, and accessible under:

https://gitlab.assist-iot.eu/.

https://gitlab.assist-iot.eu/

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 31 of 35

o A thorough descriptive introduction (in the form of a README) will be provided, indicating

all the enablers developed by plane and vertical, and including general guidelines regarding

their deployment (related to infrastructure, e.g., Kubernetes based).

• Individual groups will be created (one per each WP –WP4, WP5, WP6, WP7 initially) within the

ASSIST-IoT GitLab.

o WP4 – Horizontal enablers (belonging to architectural construction)

o WP5 – Vertical enablers (belonging to architectural construction)

o WP7 – Pilot-specific enablers

• Inside the groups, different subgroups will also be created associated to each task, depending on the

nature of the WP:

o WP4 (in the sub-groups below will there only be the enablers associated to a specific plane).

▪ Device and Edge plane enablers (T4.1) – device-edge

▪ Smart and Network Control plane enablers (T4.2) – network

▪ Data Management plane enablers (T4.3) – data-mgmt

▪ Application and Service Plane enablers (T4.4) – device-edge

o WP5 (in the sub-groups below there will be the enablers that fall under the scope of various

planes, classified according to their functionality nature).

▪ Self-* enablers (T5.1) – self

▪ Federated Machine Learning enablers (T5.2) – federated-ml

▪ Cybersecurity enablers (T5.3) – security

▪ Privacy and trust enablers (T5.4) – privacy-trust

▪ Manageability enablers (T5.5) – manageability

▪ Other enablers. If needed, the sub-groups “Interoperability” and “Scalability” might be

created at some point. However, this is not planned at this moment as (according to

D3.5), those verticals will not have specific enabler implementations but rather are

“properties” of the system.

o WP7 (as software components developed for a specific pilot, such as GPS trackers for the port

automation pilot). Although potentially falling under WP5 or WP4 scope, in this sub-group

there will be the software components that are only created with the purpose of fulfilling one

pilot – and not as own enablers of the architecture).

▪ Port Automation Pilot (T7.1)

▪ Smart Safety of Workers Pilot (T7.2)

▪ Cohesive Vehicle Monitoring and Diagnostics Pilot (T7.3)

• Inside each subgroups of WP4, WP5, and WP7, the actual Git repositories will be created, associated

to each software enabler. All the enablers will be accompanied by a description file, or pointing to it,

detailing its requirements (software and hardware), deployment and usage. Examples:

▪ wp4/network/sdn-controller

▪ wp5/privacy-trust/auditing-tool

▪ wp7/port-automation/gps-tracker

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 32 of 35

Figure 10: ASSIST-IoT GitLab internal structure/organisation

The software code provided by ASSIST-IoT in all sub-groups above will be continuously and automatically

checked against any problems (syntactical, semantical, or functional). Additionally, GitLab also allows to issue

quality assurance tests over the repositories. This part fits the step of Continuous Testing practices as part of the

methodology exposed in this document, achieving then a seamless development-environment testing within the

same space.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 33 of 35

10. Conclusions

The deliverable described DevSecOps methodology to be used in the implementation of the ASSIST-IoT

architecture and the work and further activities to be performed mainly on WP6 and WP7 applying continuous

security on all the phases from development to operation that takes part in a SDLC.

The deliverable has analysed DevOps evolution to DevSecOps providing a methodology for implementing a

continuous security framework and identifying target activities and security controls associated to each of the

DevSecOps phases workflow. The methodology based on a continuous security model for DevSecOps is

presented based on the following three supporting pillars: continuous workflow, open-source tools and cloud

deployment technologies for supporting workflow activities.

Software tools are mandatory in automating the DevSecOps methodology. In particular, the proposed

DevSecOps framework for ASSIST-IoT will rely on open-source tools. Target activities, and concrete security

controls for each state of the DevSecOps workflow have been listed and these activities have been associated

with DevSecOps practices from continuous testing to continuous feedback and including CPD, CI, CD, CDP,

CO, where finally identifying open-source tools with related activities.

ASSIS-IoT use case for DevSecOps presents the continuous approach for DevSecOps in ASSIST-IoT, from

development environment to production environment. DevSecOps generic features tools are identified and

highlighted in a use case diagram identified in Section 7. Additional tools will be further detailed during the

next steps of the project within the context of WP6 Integration task.

ASSIST-IoT team has agreed on applying DevSecOps methodology described in this deliverable with the

support of open-source tools identified and selecting GitLab as DevSecOps open platform, identifying and

planning to use the main core features provided to set up WP4 and WP5 software developments and further

WP6 testing integration and support activities.

As a general guideline for ASSIST-IoT CI/CD, each software component should implement a CI/CD pipeline

in GitLab.

The ecosystem of DevSecOps software tools will be enhanced later in the project (scope of WP6) to cover all

the steps arranged for the ASSIST-IoT DevSecOps methodology described in the present document.

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 34 of 35

References

[1] Banica, L., Polychronidou, P., Radulescu, M., Stefan, C., 2018. When IoT meets devops: fostering business

opportunities. KnE Soc. Sci. 3 (10), 250–264.

[2] Donkers, P. , 2019. MYST: Automated DevOps for distributed applications across heterogeneous Cloud, Fog and

Edge infrastructures. University of Amsterdam Ph.D. thesis

[3] Hoque, S., De Brito, M.S., Willner, A., Keil, O., Magedanz, T., 2017. Towards container orchestration in fog

computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applications Conference

(COMPSAC), 2, pp. 294–299.

[4] John, W., Marchetto, G., Nemeth, F., Skoldstrom, P., Steinert, R., Meirosu, C., Papafili, I., Pentikousis, K., 2017.

Service provider devops. IEEE Commun. Mag. 55 (1), 204–211.

[5] Meirosu, C., John, W., Opsenica, M., Mecklin, T., Degirmenci, F., Dinsing, T., 2017. Devops: fueling the

evolution toward 5g networks.https://www.ericsson.com/en/reports-and-papers/ericsson-technology-

review/articles/devops-fueling-the-evolution-toward-5g-networks

[6] Mimidis, A., Ollora, E., Soler, J., Bessem, S., Roullet, L., Van Rossem, S., Pinneterre, S., Paolino, M., Raho, D.,

Du, X., Chesterfield, J., Flouris, M., Mariani, L., Riganelli, O., Mobilio, M., Ramos, A., Labrador, I., Broadbent,

A., Veitch, P., Zembra, M., 2018. The next generation platform as a servicecloudifying service deployments in

telco-operators infrastructure. In: 2018 25th International Conference on Telecommunications (ICT), pp. 399–

404.

[7] Oracle, 2019. A cloud-native journey for

telecommunications.https://www.oracle.com/a/ocom/docs/industries/communications/cloud-native-journey-

telecomm-wp.pdf

[8] Truong, H.-L., Berardinelli, L., 2017. Testing uncertainty of cyber-physical systems in IoT cloud infrastructures:

Combining model-driven engineering and elastic execution. In: Proceedings of the 1st ACM SIGSOFT

International Workshop on Test- ing Embedded and Cyber-Physical Systems. Association for Computing

Machinery, pp. 5–8

[9] Truong, H.-L., Klein, P., 2020. Devops contract for assuring execution of IoT microservices in the edge. Internet

Things 9, 1–17.

[10] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. 2016. DevOps. IEEE Software 33, 3 (2016), 94–100. Code:

A54

[11] The Incredible True Story of How DevOps Gots Its Name. 2014. https://newrelic.com/blog/nerd-life/devops-

name

[12] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, “A survey of DevOps concepts and challenges”, ACM

Computing Surveys, Vol. 52, No. 6, Article 127. Nov. 2019

[13] The Eight Phases of a DevOps Pipeline https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-

fda53ec9bba

[14] Carter, K., 2017. Francois Raynaud on DevSecOps. IEEE Softw. 34 (5), 93–96

[15] A Quick Guide to DevSecOps Pipeline.Nov. 2020. https://www.xenonstack.com/insights/devsecops-pipeline/

[16] DAST, SAST, IAST and SCA: Which security technology is best for me? Feb 2020

https://www.kiuwan.com/blog/application-security-tools-comparison/

[17] OWASP Top 10 Web Application Security Risks https://owasp.org/www-project-top-ten/

[18] Hong, J. K. (2019). Component Analysis of DevOps and DevSecOps. Journal of the Korea Convergence

Society, 10(9), 47-53.

[19] Mayoral-Vilches, V., García-Maestro, N., Towers, M., & Gil-Uriarte, E. (2020). DevSecOps in robotics. arXiv

preprint arXiv:2003.10402.

[20] Björnholm, J. (2020). Performance of DevOps compared to DevSecOps: DevSecOps pipelines benchmarked!.

[21] Department of Defense. DoD Enterprise DevSecOps Reference Design. Aug 2019.

https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design

%20v1.0_Public%20Release.pdf

[22] Apache License, version 2.0 https://www.apache.org/licenses/LICENSE-2.0

[23] V4 of the Periodic Table of DevOps Tools is LIVE!. Jun 2020. https://digital.ai/catalyst-blog/v4-periodic-table-

of-devops-tools-is-live

https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/devops-fueling-the-evolution-toward-5g-networks
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/devops-fueling-the-evolution-toward-5g-networks
https://www.oracle.com/a/ocom/docs/industries/communications/cloud-native-journey-telecomm-wp.pdf
https://www.oracle.com/a/ocom/docs/industries/communications/cloud-native-journey-telecomm-wp.pdf
https://newrelic.com/blog/nerd-life/devops-name
https://newrelic.com/blog/nerd-life/devops-name
https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-fda53ec9bba
https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-fda53ec9bba
https://www.xenonstack.com/insights/devsecops-pipeline/
https://www.kiuwan.com/blog/application-security-tools-comparison/
https://owasp.org/www-project-top-ten/
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://www.apache.org/licenses/LICENSE-2.0
https://digital.ai/catalyst-blog/v4-periodic-table-of-devops-tools-is-live
https://digital.ai/catalyst-blog/v4-periodic-table-of-devops-tools-is-live

D6.1 – DevSecOps Methodology and Tools

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 35 of 35

[24] Morales, J., Turner, R., Miller, S., Capell, P., Place, P., & Shepard, D. J. (2020). Guide to implementing

DevSecOps for a system of systems in highly regulated environments.

[25] Mao, R., Zhang, H., Dai, Q., Huang, H., Rong, G., Shen, H., ... & Lu, K. (2020, December). Preliminary Findings

about DevSecOps from Grey Literature. In 2020 IEEE 20th International Conference on Software Quality,

Reliability and Security (QRS) (pp. 450-457). IEEE.

[26] Rakesh Kumar, Rinkaj Goyal, July 2020 “Modeling continuous security: A conceptual model for automated

DevSecOps using open-source software over cloud ADOC”

[27] Appdynamics, 2015. Keep calm and embrace devops. https://kapost-files-

prod.s3.amazonaws.com/published/555271a4c12539dc18000118/ebook-keep-calm-and-embrace-devops.pdf

[28] Willis, J., 2010. What devops means to me. https://blog.chef.io/2010/07/16/ what- devops- means- to- me/

[29] Willis, J., 2012. Devops culture (part 1). http://itrevolution.com/devops-culture- part-1/

[30] GitLab Self-Managed Feature Comparison https://about.gitlab.com/pricing/self-managed/feature-comparison/

https://kapost-files-prod.s3.amazonaws.com/published/555271a4c12539dc18000118/ebook-keep-calm-and-embrace-devops.pdf
https://kapost-files-prod.s3.amazonaws.com/published/555271a4c12539dc18000118/ebook-keep-calm-and-embrace-devops.pdf
https://blog.chef.io/2010/07/16/%20what-%20devops-%20means-%20to-%20me
http://itrevolution.com/devops-culture-%20part-1/
https://about.gitlab.com/pricing/self-managed/feature-comparison/

	Table of contents
	List of tables
	List of figures
	List of acronyms
	1. About this document
	1.1. Deliverable context
	1.2. The rationale behind the structure

	2. Introduction
	3. DevOps definition
	4. DevOps Phases
	4.1. CI/CD

	5. Evolution from DevOps to DevSecOps
	6. DevSecOps continuous security model
	6.1. DevSecOps Principles
	6.2. DevSecOps Workflow
	6.2.1. Plan
	6.2.2. Code
	6.2.3. Commit
	6.2.4. Build
	6.2.5. Integrate
	6.2.6. Package
	6.2.7. Release
	6.2.8. Configure
	6.2.9. Accept
	6.2.10. Deploy
	6.2.11. Operate
	6.2.12. Adapt

	6.3. DevSecOps Practices

	7. Open-Source Software and tools
	7.1. Tools for collaboration and communication environment
	7.2. Tools for source version control and CPD
	7.3. Tools for build automation
	7.4. Tools for continuous integration
	7.5. Tools for deployment automation, infrastructure automation and configuration management
	7.6. Tools for monitoring

	8. DevSecOps ASSIST-IoT use case
	9. DevSecOps ASSIST-IoT guidelines
	9.1. ASSIST-IoT GitLab
	9.2. ASSIST-IoT GitLab WP organization

	10. Conclusions
	References

