

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D5.2 Transversal Enablers Development –

Preliminary Version
Deliverable No. D5.2 Due Date 31-OCT-2021

Type Other Dissemination Level Public

Version 1.0 WP WP5

Description Technical specification of vertical enablers identified and developed in ASSIST-

IoT.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 2 of 57

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except
where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the
Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information
contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 3 of 57

Authors
Name Partner e-mail

Ignacio Lacalle P01 UPV iglaub@upv.es

Alejandro Fornés P01 UPV alforlea@upv.es

Paco Mahedero P01 UPV framabio@upv.es

Katarzyna Wasielewska-

Michniewska
P03 IBSPAN katarzyna.wasielewska@ibspan.waw.pl

Piotr Lewandowski P03 IBSPAN piotr.lewandowski@ibspan.waw.pl

Wiesław Pawłowski P03 IBSPAN wieslaw.pawlowski@ibspan.waw.pl

Maria Ganzha P03 IBSPAN maria.ganzha@ibspan.waw.pl

Marcin Paprzycki P03 IBSPAN marcin.paprzycki@ibspan.waw.pl

Eduardo Garro P03 PRO egarro@prodevelop.es

Miguel Llacer P03 PRO mllacer@prodevelop.es

Sergio Vivó P03 PRO svivo@prodevelop.es

Georgios Stavropoulos P04 CERTH stavrop@iti.gr

Ron Schram P09 NEWAYS Ron.Schram@newayselectronics.com

Alex van den Heuvel P09 NEWAYS alex.van.den.heuvel@newayselectronics.com

Oscar López Pérez P13 S21SEC olopez@s21sec.com

Jordi Blasi P13 S21 SEC jblasi@s21sec.com

History
Date Version Change

1-Oct-2021 0.1 Table of content

22-Oct-2021 0.8 Version ready for internal review

29-10-2021 1.0 Final version

Key Data
Keywords Enablers, verticals, self-*, interoperability, manageability, scalability, federated

learning, DLT

Lead Editor Katarzyna Wasielewska-Michniewska (P03 IBSPAN)

Internal Reviewer(s) P09 NEWAYS, P06 INFOLYSIS

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 4 of 57

Executive Summary
This deliverable is written in the framework of WP5 – Transversal enablers design and development of ASSIST-

IoT project under Grant Agreement No. 957258. The document gathers the work and outcomes of the five tasks

of the work package, which are devoted to the design and implementation of enablers required identified for the
different verticals of the ASSIST-IoT architecture. Tasks 5.1-5.4 started in M4 whereas task 5.5 started in M9

so respective results presented have different advancement.

This document is included in deliverable D5.2 that is of type Other-software (besides document deliverable
includes the content of code repositories). It provides technical information necessary for the implementation

of WP5 enablers and serving as a guiding information to understand ongoing development. The concepts

presented here advance work summarized in D5.1 Initial Transversal Enablers Specification (submitted in M9).

By M12 of the project (October 2021), a total of 17 enablers have been identified and formalised:

• From Self-*: Self-healing device enabler, Resource provisioning enabler, Monitoring and notifying

enabler, geo (Localization) enabler, Automated configuration enabler.

• From Federated Machine Learning: FL Orchestrator, FL Training Collector, FL Repository, FL Local

Operations.

• From Cybersecurity: Cybersecurity monitoring enabler, Cybersecurity monitoring agent enabler,

Identity manager enabler, Authorization enabler.

• From DLT: Logging and auditing enabler, Data integrity verification enabler, Distributed broker

enabler, DLT-based FL enabler.

Technical information included in this document: updated structure diagrams, outline of enabler functionalities,

communication interfaces specification, use cases for inter-component communication. For each enabler
progress information is included to indicate advancement of work since D5.2 is a preliminary version of the

development.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 5 of 57

Table of contents

Table of contents ... 5

List of tables .. 6

List of figures .. 6

1. About this document .. 9

1.1. Deliverable context ... 9

1.2. The rationale behind the structure.. 9

1.3. Outcomes of the deliverable .. 10

1.4. Deviation and corrective actions.. 10

2. Introduction ... 10

3. Vertical enablers definitions ... 11

3.1. Self-* enablers .. 11

3.1.1. Self-healing device enabler ... 11

3.1.2. Resource provisioning enabler... 13

3.1.3. Monitoring and notifying enabler .. 18

3.1.4. Geo (Localization) enabler .. 20

3.1.5. Automated configuration enabler... 23

3.2. Federated machine learning enablers ... 26

3.2.1. FL Orchestrator ... 26

3.2.2. FL Training Collector ... 28

3.2.3. FL Repository ... 30

3.2.4. FL Local Operations ... 34

3.3. Cybersecurity enablers .. 36

3.3.1. Cybersecurity monitoring enabler .. 36

3.3.2. Cybersecurity monitoring agent enabler .. 39

3.3.3. Identity manager enabler ... 41

3.3.4. Authorization enabler .. 42

3.4. DLT-based enablers .. 44

3.4.1. Logging and auditing enabler .. 44

3.4.2. Data integrity verification enabler ... 45

3.4.3. Distributed broker enabler ... 47

3.4.4. DLT-based FL enabler .. 49

3.5. Manageability ... 51

3.5.1. Enabler for registration and status of enablers .. 51

3.5.2. Enabler for management of services and enablers’ workflow ... 51

3.5.3. Devices management enabler .. 51

4. Future Work... 51

Appendix A - Manageability Enablers templates .. 52

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 6 of 57

A.1 - Enabler for registration and status of enablers... 52

A.2 - Enabler for management of services and enablers’ workflow .. 54

A.3 - Devices management enabler ... 55

List of tables

Table 1. General information of the Enabler for registration and status of enablers 52
Table 2. General information of the Enabler for management of services and enablers’ workflow 54
Table 3. General information of the Devices management enabler .. 55

List of figures

Figure 1. WP5 enablers distribution among verticals. ... 10
Figure 2. Self-healing device enabler structure. .. 11
Figure 3. Self-healing CPU usage monitoring and threshold update UC. .. 12
Figure 4. Self-healing RAM usage monitoring and threshold update UC. ... 13
Figure 5. Resource provisioning enabler structure. ... 14
Figure 6. Resource provisioning enabler UC 1. .. 15
Figure 7. Resource provisioning enabler UC 2. .. 16
Figure 8. Resource provisioning enabler UC 3. .. 16
Figure 9. Resource provisioning enabler UC 4. .. 17
Figure 10. Diagram of the PoC of the Resource provisioning enabler. .. 18
Figure 11. Monitoring & Notifying enabler structure.. 19
Figure 12. Monitoring & Notifying enabler UC. ... 20
Figure 13. Positioning and alert.. 21
Figure 14. Location and event structure UC. .. 22
Figure 15. Automated configuration enabler structure. .. 24
Figure 16. Automated configuration enabler UC. ... 26
Figure 17. FL Orchestrator enabler structure. ... 27
Figure 18. FL Orchestrator configures and requests parties to start FL training. .. 28
Figure 19. Training Collector enabler structure. ... 29
Figure 20. Local results aggregation UC. ... 30
Figure 21. FL Repository enabler structure... 31
Figure 22. FL Repository UC 1. ... 32
Figure 23. FL Repository UC 2. ... 33
Figure 24. FL Repository UC 3. ... 33
Figure 25. FL Local Operations enabler structure. .. 34
Figure 26. FL Local Operations UC. .. 36
Figure 27. High-level structure of Cybersecurity monitoring enabler. ... 37
Figure 28. Cybersecurity monitoring flow process UC. .. 38
Figure 29. Cybersecurity monitoring server agent structure. ... 39
Figure 30. Cybersecurity monitoring agent flow process UC. ... 40
Figure 31. Identity manager enabler structure. .. 41
Figure 32. Identity server flow UC. .. 42
Figure 33. Authorization enabler structure. .. 42
Figure 34. Authorization server UC. .. 43
Figure 35. Logging and auditing enabler structure. . The upper (DLT) block contains the internal components

of the enabler ... 44
Figure 36. Incident logging flow UC. ... 45
Figure 37. Data Integrity Verification enabler. The upper (DLT) block contains the internal components of the

enabler. .. 46

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 7 of 57

Figure 38. XACML Integrity Verification Flow UC. .. 47
Figure 39. Distributed data enabler overview. The upper (DLT) block contains the internal components of the

enabler. .. 48
Figure 40. Data source metadata posting/updating Flow UC. .. 49
Figure 41. DLT-based FL enabler overview. The upper (DLT) block contains the internal components of the
enabler. .. 50
Figure 42. High-level diagram of the Enabler for registration and status of enablers. 53
Figure 43. High-level diagram of the enabler for management of services and enablers’ workflow. 54
Figure 44. High-level diagram of the Devices management enabler. ... 56

List of acronyms

Acronym Explanation

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

CHE Container Handling Equipment

CPU Central Processing Unit

CSV Comma Separated Value

DLT Distributed Ledger Technology

DoS Denial of Service

FAIR Findable, Accessible, Interoperable, Reusable

FML Federated Machine Learning

FL Federated Learning

FLS Federated Learning System

FLTC Federated Learning Training Collector

GPS Global Positioning System

HW Hardware

I/O Input/Output

JSON JavaScript Object Notation

JVM Java Virtual Machine

K8s Kubernetes

LTS Long-Term Storage

LTSE Long-Term Storage Enabler

MANO Management and Orchestration

NGIoT Next Generation Internet of Things

NN Neural Networks

noSQL Not Only Structured Query Language

MITM Man-In-The-Middle

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 8 of 57

ML Machine Learning

MQTT MQ Telemetry Transport

OEM Original Equipment Manufacturer

PAP Policy Administration Point

PCM Powertrain Control Module

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

REST Representational State Transfer

RSSI Received Signal Strength Indicator

RTG Rubber-Tyred Gantry (crane)

SDN Software Defined Network

SoTA State-of-the-Art

SQL Structured Query Language

SMC Secure Multi-Party Computation

SR Semantic Repository

TBD To Be Done/Defined

TRL Technology Readiness Level

TTL/SSL Time To Live/Secure Sockets Layer

UC Use Case

WP Work Package

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 9 of 57

1. About this document

The main goal of this deliverable is to provide the status of development works that are going under the scope

of WP5.

It should be highlighted that this deliverable corresponds to the first out of three, and therefore its content will
be expanded and adapted as the project evolves. This is motivated by different reasons, including the fact that

both the requirements and the architecture produced by the work of WP3 are still evolving (and therefore new

enablers or modifications in the current ones may be needed), and as a result the interactions between enablers

from WP4 and WP5 may require adapting them (in the form of new interfaces, methods, components, etc.).

1.1. Deliverable context

Keywords Lead Editor

Objectives O3 (Definition and implementation of decentralised security and privacy exploiting DLT):

Specification of DLT-based enablers in Security, Privacy and Trust vertical.

O4 (Definition and implementation of smart distributed AI Enablers): Specification of

Federated Machine Learning related enablers.

Work plan D5.2 takes input from:

• T3.1 (state-of-the-art): Novel components and technologies research for further design

choices

• T3.2 & T3.3 (use cases and requirements): To be evaluated and fulfilled with the

proposed enablers

• T3.5 (architecture): Design principles and high-level functionalities to cover

• D5.1 (initial transversal enablers specification) - Design of vertical enablers

D5.2 influences:

• WP7 (pilots and validation): To later on materialize in pilot deployments

• WP8 (evaluation and assessment): To evaluate and assess results from testing within

pilots

D5.2 must be in line with:

• WP4 (core enablers): To define functional boundaries and interactions

• WP6 (testing, integration and support): To develop, test and deploy according to

DevSecOp methodology

Milestones This deliverable contributes to the realisation of MS3 – Enablers defined, that will be
achieved in M12. Although far in time (M24), it is also central part of MS6 – Software

structure finished.

Deliverables This deliverable receives inputs from D3.1 (State-of-the-art and Market Analysis Report),

D3.2 (Use Cases Manual & Requirements and Business Analysis Initial) and D3.5
(ASSIST-IoT Architecture Definition - Initial), D5.1 (Initial Transversal Enablers

Specification). Once enablers are being delivered, they will feed the deliverables of WP6

related to testing, integration, distribution, and documentation, they will be the cornerstone
of pilots’ implementations of WP7, and they will be a key part in the technical evaluation to

be performed under the scope of WP8.

1.2. The rationale behind the structure

The document consists of four sections and one appendix. It starts with an introduction that outlines the context

of the document. Next section includes specifications of enablers divided into tasks that they belong to. For each

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 10 of 57

enabler the description includes: structure and functionalities, communication interfaces, selected technologies,
use cases realized by a given enabler and work progress at M12 of the project (note that WP5 started in M4).

These information advance and/or compliment enablers definitions from the deliverable D5.1. Finally, the last

section of this document concludes with a summary of the future work carried out in the work package that will

be included in the second version of the deliverable. The appendix contains template tables and diagrams for

identified enablers

1.3. Outcomes of the deliverable

The main outcome of this deliverable is a preliminary development of WP5 enablers. Depending on the enabler,

the advancement of work differs and is summarized in the work progress subsections. Additionally, in the
deliverable additional technical information was given that compliments specifications in D5.1 and provides

context to better understand the ongoing development. Included specifications may be modified and/or extended

in the following versions of this deliverable due to the fact that the work in WP3, WP4 and WP7 is in progress.

1.4. Deviation and corrective actions
In Federated Learning, FL Privacy enabler’s functionality has been moved to Privacy component in FL Local

Operations enabler. The two initial enablers would have had a strong dependency on each other and FL Privacy

provided functionality that did not require a separate encapsulated enabler. As a result, it was decided that a

better architectural decision would be to replace this enabler with a component of the latter.

2. Introduction

As it was stated in D3.5, the ASSIST-IoT architecture is structured following a multidimensional approach
composed of horizontal Planes and Verticals. The planes represent a classification of logical functions that fall

under the scope of a particular domain, whereas verticals target NGIoT properties that exist on different planes,

either independently or requiring cooperation of elements from different planes. Verticals in INTER-IoT

include: interoperability, self-*, security, privacy and trust, manageability, and scalability.

The main building block in ASSIST-IoT architecture is an enabler - an abstraction term that represents a

collection of components, running on nodes, that work together for delivering a particular functionality to the
system. D5.1 focused on providing initial specification of transversal (vertical) enablers that belong to specific

verticals. D5.2 focuses on providing the status of development and advancing technical specifications of the

enablers. What is specific to WP5 is that enablers besides being distributed between verticals, are also designed

and implemented within tasks (indicating problem/application areas) that do not correspond directly to the

verticals. The following sections contain descriptions of enablers following a task division.

Figure 1. WP5 enablers distribution among verticals.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 11 of 57

3. Vertical enablers definitions

3.1. Self-* enablers

3.1.1. Self-healing device enabler

 Structure and functionalities

This enabler aims at providing the IoT devices with the capabilities of actively attempting to recover themselves
from abnormal states, based on a pre-established routines schedule. Hence, it should not require high

computation capabilities in order to be deployed on any customizable device.

Figure 2. Self-healing device enabler structure.

As described in D5.1, the self-healing device enabler is divided in three components:

• Self-detector: The goal of this component is to collect information from the IoT device.

• Self-monitor: The Self monitor component is responsible for assessing the device’s state of health. It

collects and analyses data from multiple sources of information received from the self-detector, such as

memory usage, memory access, network connection metrics (RSSI levels), or CPU usage, providing a

health score. The health score metrics are fed to a predefined set of rules (or to an anomaly-detection
model) that determines whether the device is in a healthy state or not. The output of this component is

used to determine if the remediation has been successful.

• Self-remediator: When the device presents with symptoms of malfunctioning or intrusion, this

component’s job is to determine from a set of remediation processes, which should be used for a proper

treatment. If after the remediation, the device is not back to its normal state, the self-remediator is

triggered to select another remediation process from the list.

 Communication interfaces

The enabler is being developed by means of NODE-Red libraries. Therefore, there are no writable

communications within their internal components. Regarding external APIs for the enabler, the following two

has been already developed, although new ones are subject to be added in the following releases of the enabler.

External APIs for the enabler

Method Endpoint Description

POST /cpuusage?threshold=XX Let’s user change the maximum threshold of CPU usage

POST /ramusage?threshold=XX Let’s user change the maximum threshold of RAM usage

 Technologies

Technology Justification Component(s)

Node-RED

Is a low-code programming tool for wiring together hardware devices,

APIs and online services. Provides all it is needed to implement self-

healing devices (hardware and software access)

 All of them

Unix commands Used to access device hardware & software All of them

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 12 of 57

Javascript
Main language for developing custom functions over all components of

the enabler. Selected for its familiarity
All of them

Gaps

Since the self-healing device needs to have access to the host OS resources (CPU, RAM, network, etc), there is
a limitation about its encapsulation. Due to its characteristics, if the enabler that is based on Node-Red directives

would be running within a Docker container, it would not be possible to access to carry out manage UNIX

sentences properly (stop, restart, kill…).

 Use cases

There are two use cases detected to take into account. The first one is related to change the CPU usage

threshold via API.

STEP 1: The user interacts via API with the enabler to change the CPU usage threshold.

STEP 2: When finished, the API must response with some result.

Figure 3. Self-healing CPU usage monitoring and threshold update UC.

The second use case is related to change the RAM usage threshold via API.

STEP 1: The user interacts via API with the enabler to change the RAM usage threshold.

STEP 2: When finished, the API must response with some result.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 13 of 57

Figure 4. Self-healing RAM usage monitoring and threshold update UC.

 Work progress

For the time being, CPU and RAM usage are the only two metrics that are monitored with the enabler. In

addition, only the Kill PID remediation action is supported. In next releases, additional metrics (e.g., network
status) will be included, and other remediation rules such isolate the device, shut down network ports, or reboot

will be added. Furthermore, it is expected that by encapsulating the self-healing device enabler within a K8s

cluster, self-healing functionalities will be possible in a containerized environment.

3.1.2. Resource provisioning enabler

 Structure and functionalities

Working on edge deployments, where resources are not as large as in the Cloud, the auto-scaling thresholds

cannot be set as trivially. This enabler aims at modifying the scaling response of nodes and clusters into a more

dynamic fashion, by:

• Ensuring high QoS and availability of key, selected enablers, considering current state of the system.

• Monitoring historic trends of these enablers, to preventively act upon its scaling requirements

(thresholds of resources/usage to instantiate replicas).

• Applying ML techniques and intelligent services to modify the predetermined scaling-related values.

The updated diagram of the component can be seen in Figure 5. It is composed by 5 main components and 3

supporting databases.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 14 of 57

Figure 5. Resource provisioning enabler structure.

 Communication interfaces

Internal APIs for communication between enablers

Communication between API component and the rest is not included (essentially, the API forwards the calls

specified in the second table).

Component Method Endpoint Description

Training

module
POST /train

Starts a process to train/update the model, aiming at

scheduling potential up-/down-scaling of its managed

components

Inferring

module
POST /inference

Starts an inference process to evaluate the necessity of

preventively modify the values of horizontal autoscaling

Pod resources

controller
POST /initiate

Starts a process of inference and optimization. This should

only occur when new enablers are added to be monitored

Pod resources

controller
POST /optimize

Receives the results of an inference process, communicates to

the k8s nodes/masters and modifies the desired state database

Metrics

gatherer and

processor

GET /metrics/historic
Returns historic, aggregated/processed metrics of the system

and selected enablers

Metrics

gatherer and
processor

GET /metrics/current
Returns current, aggregated/processed metrics of the system

and selected enablers

External APIs for the enabler

Method Endpoint Description

POST /enablers

Updates the list of enablers to monitor (i.e., receives a JSON object, with

data related to the addition of a new enabler to the list or modifying the

whole current list of monitored enablers). Returns the list of currently

GET /enablers Returns a JSON object with the list of enablers that must ensure high QoS

POST /enablers/interval
To specify interval between scaling evaluation processes (i.e., inference

and appliance of results)

POST /metrics
Obtains metrics from the enablers devoted to metrics gathering for the

specified enablers, and send them to the metrics gatherer and processor

POST /metrics/interval To specify interval between metrics gathering processes

POST /metrics/span
To specify the span of days of information to store in the custom metric

database. Older information is deleted

POST /training/interval To specify interval between metrics gathering processes

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 15 of 57

GET /desired-state

Returns information related to a cluster, including available and used

resources of its managed nodes, and deployed components of ASSIST-

IoT enablers

 Technologies

Technology Justification Component(s)

kubectl

Alongside with ServiceAccount, RoleBinding/ClusterRoleBinding

objects, allows pods to make calls to the k8s API. Alternative:

Daemon object

Pod Resources Controller

MongoDB

Since there is no need of strict relational data, implementation of

both custom metrics database and desired database will be

performed and MongoDB collections

Custom metrics database &

desired state database

Python
Main language for developing custom functions over all

components of the enabler. Selected for its familiarity.

Metrics gatherer and

processor, custom functions

scikit-learn/

Tensorflow

Main libraries for inference construction. One will be selected once

the model is chosen (e.g., Tensorflow is better for Deep Learning
models)

Inference &
training module

Flask
The APIs will be developed considering Flask as the main
technology for its ease of construction. For the main API, Node.js

will be explored

All APIs

Gaps
The limits of the horizontal autoscaller (HPA) of k8s are static, per object (i.e., deployments, StatefulSets, etc.),
and defined in a specific manifest file. The aim of the project is to make it more dynamic, managed by an

external enabler that communicates with the corresponding nodes (via kubectl).

Risks
The technologies selected are mature and dedicated to fulfilling the components’ functionalities, so they should

not pose any risk by themselves. Still, testing its functionality will rely on the existence of other enablers to get
realistic data, and the presence of a monitoring stack to retrieve data from them and from the system, as without

them the enabler cannot be fully developed.

 Use cases

There are 4 main use cases that apply in this enabler. The first one is related to an administrator user that

specifies those enablers, or specific components of them, that must guarantee high levels of QoS or high

availability. The diagram is the following:

Figure 6. Resource provisioning enabler UC 1.

STEP 1: The user interacts via the enablers’ API, which in turn communicates to the Metrics Gatherer from

which enablers it has to obtain historic data.

STEP 2: When finished, the API must response with some response code and the list of currently-managed

enablers.

Other use cases, in which the previous use case is repeated in a similar fashion, are the following ones: (i) when

a user specifies the frequency for gathering current usage/resources data from the monitored enablers; (ii) when

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 16 of 57

a user indicates the time between training processes (e.g., once per day, once per week, etc.). In this case, the
API interacts internally with the training module; and (iii) when the user indicates the granularity in which

changes over the scaling should be applied (e.g., each 10 minutes, each hour, etc.), in this case, internally

communicating with the Pod resources controller.

The second use case is related to the gathering of metrics. Since a component must access to data from other

enablers, it requires that the API components perform this action on his behalf, as it is shown in the diagram:

Figure 7. Resource provisioning enabler UC 2.

STEP 1: The Metrics Gatherer starts the process according to the frequency specified by an administrator

user or the first time that a new enabler has been added to be monitored. It communicates with the API to ask

data from other enablers.

STEP 2: The API obtains the data and passes them back to the Metrics Gatherer.

STEP 3: The Metrics Gatherer processes the data from the different sources and stores them in a valid format

for the latter training phase.

The third use case responds to the necessity of training. Its diagram is the following:

Figure 8. Resource provisioning enabler UC 3.

STEP 1: The Training Module starts a process according to the frequency specified by an administrator user or

the first time that a new enabler has been added to be monitored. It communicates with the Metrics Gatherer to

retrieve the historic data of the monitored enablers.

STEP 2: The Metrics Gatherer sends the data back to the training module.

STEP 3: Then, the training module starts the training with the data received from the Metrics gatherer, and once

it is finished, stores the outcomes in its own internal database.

The last use case is related to the actual up-/down-scaling of the components of the enablers. This is
controlled by the pod resources controller, which, in the end, will apply the actions over the system. The diagram

and involved steps are depicted below:

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 17 of 57

Figure 9. Resource provisioning enabler UC 4.

STEP 1: The Pod Resources Controller starts a process according to the frequency specified by an administrator
user or the first time that a new enabler has been added to be monitored. It communicates with the Inference

Module, which will obtain the optimal values for the modifying the scaling of the components of the enablers

or not.

STEP 2: The Inference Module retrieves the data info from the Metrics Gatherer, which obtain current data

regarding system status and resources from other enablers* (the Metrics Gatherer retrieves these data from them

similarly to the second use case, via the API, although not indicated in the figure).

STEP 3: The Inference Module retrieves the trained model and performs the inference with current data.

STEP 4: The Pod Resources Controller obtains the results and applies the necessary actions over the involved

k8s horizontal autoscalerers, if needed. Current status is stored in the desired status database.

 Work progress

Work performed so far includes a Proof of Concept (PoC) of the enabler, and an initial version of some of the

needed components. The resource provisioning PoC is composed of three components:

• Python server: Developed with flask, it exposes the required custom.metrics.k8s.io API paths. Here is

where the metric calculations are made to up-scale and down-scale a set of k8s pods, and returned in
the desired response format. Essentially, it serves as (i) a very initial Pod resources controller, and (ii)

a server for providing a set of (dummy) metrics to the HPA (k8s’ Horizontal Pod Autoscaler).

• APIService: This service registers the custom.metric.k8s.io API, so k8s HPA can access it, which

allows it to extend his functionality. The metrics registered are dummy, and provided by the Python

server.

The HPA will now use the API exposed from the server and check if the custom metric reaches the target value

to scale the pods of the deployment chosen for the testing purposes (the deployment chosen in the POC is a php-

apache server). Currently, the enabler has a hardcoded range time where the target metrics reach the target value,
that is how the pods autoscale. Passed this time the pods return to their initial state. Current status is depicted in

the following figure:

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 18 of 57

Figure 10. Diagram of the PoC of the Resource provisioning enabler.

Before deploying the PoC, once the git repository has been cloned in a computer with a k8s distribution (e.g.,
k3s, microk8s, k8s, etc.), the docker image of the server has to be built. To that end, the following command

has to be run inside the folder /Server:

$ docker image build -t server .

To deploy the k8s objects related to the enabler and the testing service (i.e., the php-apache server), the following

command has to be executed from the root folder, where the manifests files (i.e., .yaml) files are located:

$ kubectl apply -f .

Then, the user can observe that replicas are increased in the specific time range and downscaled outside of that

range. This PoC shows how to set and apply custom metrics to control the behaviour of the replicas of a
deployment. The general idea of this enabler will be to also modify the directives of the HPA for specific

enablers. This is done by modifying thresholds of the metrics monitored to control when to increase or decrease

current number of replicas, based on ML techniques.

3.1.3. Monitoring and notifying enabler

 Structure and functionalities

This is an enabler responsible for monitoring the uninterrupted functionality of devices and notifying in case of
malfunction incidents. Specifically, it has to ensure the departure of data, the arrival, the validity and its own

self-monitoring functionality.

• Device Monitoring: Another functionality of the enabler is the device monitoring. The enabler ensures

that the IoT device reads the required data in fixed time intervals, in order to control data flooding or

data interruption. If not, a notification will be created.

• Edge Monitoring: Furthermore, the enabler is to guarantee the edge monitoring. In more details, the

enabler ensure communication with connected IoT devices. If communication between the linked

components is lost, a notification will be created. Additionally, it will check for attacks (i.e. sybil

attack).

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 19 of 57

Figure 11. Monitoring & Notifying enabler structure.

 Communication interfaces

The standard API between the enabler’s components is already being developed. Any additional API with

external components will be submitted in the upcoming releases of the enabler.

Method Endpoint Description

POST /notifications Create notification

GET /notifications/rolling_data Get input data before the notification occurrence

GET /notifications Get notification

GET /devices Get a list of connected devices

 Technologies

The candidate technologies for the enabler’s completion are the following:

Technology Justification Component(s)

MySQL
It is the standard and most popular relational database management

system based on SQL.
 Database

Kafka
Kafka provides a unified, high-throughput, low-latency platform for

handling real-time data pipelines.

Database, Message queue,

Registry

Scala
Scala is one of the best high-level programming languages which

provides static types to avoid bugs in complex applications.
Registry

Java
Low complexity programming language serving the same purpose

as Scala, to use as an alternative.
Registry

Python
Main language for developing custom functions over all

components of the enabler. Selected for its familiarity.

Database, Message queue,

Registry

Gaps

It is still unclear whether a data gathering and processing unit is necessary for the imported data.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 20 of 57

 Use cases

Figure 12. Monitoring & Notifying enabler UC.

The first use case involves an IoT device which stops receiving data from its integrated sensor.

STEP 1: The communcation interface stops receiving data from the IoT device.

STEP 2: Data stops being logged into the database.

STEP 3: The monitoring module stops receiving data.

STEP 4: Since the monitoring module stops receiving data, it is clrear that the sensor is malfunctioning and

creates a notification.

STEP 5: The notification is transmitted to the API, in order to be sent to the message queue

STEP 6: The latest data before the notification occurence is also transmitted to the API to help the operator

diagnose the problem.

STEP 7: The notification along with the recent data are transmitted to the message queue.

STEP 8: Operator receives the notification and the information (data) before its occurence and has to act

accordingly.

 Work progress

The software development of the enabler is currently under way and an initial version of the components has

already been set, including the database and the API. A preliminary version will be presented in less than a

month.

3.1.4. Geo (Localization) enabler

 Structure and functionalities

This enabler is responsible for determining worker tag positions, mapping the tag positions, and issuing

warnings to the tags.

• Positioning & Alert: The purpose of the localisation positioning and alert is to; 1) collect information

about (geo)location coordinates of the IoT device; 2) to give an alert to both the smart IoT device and

the OSH (Occupational Safety & Health) manager in case the smart IoT device is located in an

unauthorized zone or danger zone, or if an unsafe situation is created due to an incident.

• Localisation Monitor: The purpose of the localisation monitor is to collect the location coordinates

and alarms of all connected smart IoT devices, to determine if the IoT device is within an authorized
area and if there is a possible unsafe situation. The MAP component serves as 3) input to gain insight

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 21 of 57

into the latest map details and location status. If an IoT device is in an unauthorized zone or danger
zone, or if an unsafe situation is created due to an incident, an alert is issued to both the smart IoT device

and the OSH manager, and an incident log is generated saved, and the map updated.

• Map: The purpose of MAP is to provide the latest building, floors and environment information,
including geofencing, border enforcement, danger zones and escape and security routes. The incident

log on the map is updated for the OSH management system.

Figure 13. Positioning and alert.

 Technologies

There is a lot to consider when designing (indoor) location systems, such as choosing the location technology
that is best and meets the needs of each application. The available technologies differ in range, accuracy,

reliability, secure ranging, localization service latency, scalability, infrastructure costs and other aspects. Based

on the requirements of the pilot use cases for all these criteria, Ultra Wideband (UWB) localization was chosen.
The main rationale: accuracy <10cm, immunity to multi-path and interference, Range/ coverage typically 50 to

70 meters, very secure, location service latency less than 1 millisecond, scalability more than thousands of tags

and a relative low infrastructure cost.

Key components of this Real Time Localisation System (RTLS) are Tags, Anchors, a Gateway / Server, RTLS

software and BIM maps. The system consists of:

• Powerful multiple UWB anchors with both a wired Power over Ethernet (PoE) and wireless Wi-Fi

connectivity.

• Tags, rechargeable battery powered.

• Gateway/Edge node (central processing engine) calculated based on self-learning algorithms the real-
time location of the tags.

• RTLS Manager for easy set-up and visualisation.

• OSH management system with BIM maps.

Technology Justification Component(s)

UWB

Ultra Wideband (UWB) localization was chosen. The main

rationale: accuracy <10cm, immunity to multi-path and

interference, Range/ coverage typically 50 to 70 meters, very

secure, location service latency less than 1 millisecond, scalability

more than thousands of tags and a relative low infrastructure cost.

UWB Chipsets and FW

Ethernet

If the infrastructure allows the communication between the UWB

Anchors and the Edge node / Gateway shall make use of a wired

Ethernet or Power over Ethernet (PoE), and between the Edge

node/gateway and OSH management system shall be Ethernet.

Hardware and FW

WiFi

The communication between the UWB Anchors and the Edge

node/Gateway shall make use of a wireless Wi-Fi connectivity is tis

is required

WiFi Chipset and FW

4/5G

The communication between the Edge node/Gateway and shall

make use of a wireless 4/5G connectivity is this is required to
communicate with the OSYH Management system

4/5G chipset and FW

Positioning &

Arlert
MAP

Localisation

Monitor

1) Coordinates
3) Map
details

2) Alert

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 22 of 57

Yocto

Yocto1 operating system (OS) an open-source collaboration project

based on Linux that helps developers creating custom Linux-based

systems regardless of the hardware architecture.

Operating System

HAL
Hardware Abstraction Layer (HAL), consists of device driver

needed as interface between the electronics and the OS
FW

Embedded

Configuration and initialisation of the standard interfaces (Ethernet,

Serial, etc.), SSH and a default user will be preconfigured on the

Edge node, making the node fully functional and ready to run

enablers on.

FW

Risks

• It is currently unclear who will take responsibility for the data processor and necessary software to map

the position of each mobile tag device on a BIM map layer(s) as part of the OSH management system.

• We miss the availability of application software from an RTLS Manager for easy installation and
visualization of the localisation infrastructure.

• The use of Wi-Fi connected anchors will reduce the infrastructure cost against a wired infrastructure.

The drawback of a wireless clock synchronisation is that it impacts the tag device position accuracy. A

literature survey showed that the clock synchronisation for UWB most suitable localisation positioning

requires that all anchors should be synchronised at a nano second level accuracy. In case of a Wireless
Clock synchronisation for UWB positioning this could be hard to reach. Based on Clock skew and drift

compensation and by averaging over multiple anchor measurements, the position error good be reduced

to 51 cm. This could mean that a mixture of wired and wireless anchors will be used.

 Use cases

The figure below shows a communication flow diagram of the mobile tag localisation data flow and

messages in the smart safety of workers use case.

Figure 14. Location and event structure UC.

STEP 1: Tag devices send (broadcast) periodically messages toward the anchors.

STEP 2: Multiple anchors (reference points) are deployed at fixed and known locations and are accurately

time synchronized. When an anchor receives the periodically send messages of a tag device, the anchor will
time-stamped this tag beacon message signal related to the common synchronized time base, record the Tag

receive time and send it to the master anchor. The timestamps from multiple anchors are then forwarded to

a central master anchor engine. The gateway fulfill the master functionality in this case.

1 https://www.yoctoproject.org/

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 23 of 57

STEP 3: The purpose of the master is to synchronize all anchors with accurate time, this can be done over
a wired or wireless link and send the record mobile Tag device arrival time to the Gateway localisation

engine.

STEP 4: The gateway, a location engine, performs multi-lateration algorithms based on the time difference

of the tag devices' beacon signal coming from each anchor. The result will be a 2D or 3D location of mobile

tag device. The gateway and master are in many cases combined into one device.

STEP 5: The location of each of the mobile tag devices is real-time logged by the event logger inside the

OSH manager.

STEP 6: The BIM represents the construction map, for example of a construction site or container area and

shows the position of the anchors and gateway(s) on it.

STEP 7: The Operator updates the BIM database, including an accurate (geo)localisation position of each

of the anchors and gateway(s).

STEP 8: The data processor of the OSH Manager shall calculate position and map each of the mobile tag
devices on a BIM map layer(s). It shall also monitor and warning in case of conflicts within area restrictions,

collisions, dangerous situation messages, fall accidents and emergency notifications. In case OSH data

processor detects a conflict within area restrictions, collision or a hazardous situation a messages or

emergency notifications will be send to individual mobile tag device or to a group of mobile tag devices.

STEP 9: The Safety Manager received status overview about mobile tag device positions, Warning,
conflicts within an area restriction, collisions, dangerous situation messages, emergency notifications and

accidents.

STEP 10: The Safety Manager is capable to send Warning to an individual mobile tag device or group of

mobile tag device.

 Work progress

The work includes a Proof of Concept (PoC) of the enabler and the development of a HW/FW version of some

of the required components. The resource provisioning PoC consists of the following components:

• Edge Node/Gateway (electronics and enclosure)

• Anchors (electronics and enclosure)

• Worker location tracking tag (electronics and enclosure)

• Worker Smart fall arrest tag (electronics and enclosure)

• Embedded FW for Edger node/gateway, Anchors, Worker tag, and Fall Arrest Tag

• Hardware Abstraction Layer for Edger node/gateway, Anchors, Worker tag, and Fall Arrest Tag

• Pre-Install software on gateway/ edge node: Python, Software update support, Docker

3.1.5. Automated configuration enabler

 Structure and functionalities

This enabler aims at keeping heterogeneous devices and services synchronised with their configurations. User

can update configuration and define its alternative versions in case of errors. Self-* component will detect if a
fallback configuration should be used and will apply it in reaction to changes in the environment as

necessary/required.

For each of the devices and services under its control, the enabler requires a flexible representation of the
available configurations. Additionally, to adequately react to errors and other events/conditions, it needs an

intelligent mechanism for changing/applying the “fallback” configurations. To achieve its goals the enabler will

utilise the following components:

• Database: A place to store details about configuration, configuration rules and information about

whether all connected devices received configuration (updates).

• Configuration applier: Component responsible for checking and applying configuration updates via

Device/Service Connector as well as reacting to failure conditions

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 24 of 57

• Message Queue: Infrastructure for transporting messages internally between components and

connectors

• Registry: Component responsible for registering devices/connector types and providing list of devices

for defined connector types.

• Intelligence: Module responsible for deciding which configuration and configuration parameters

should be applied. This could be realised in one of two ways:

• User chooses/defines the desired state of the system and intelligence component performs the

required changes

• User defines rules and in case of specific events configuration gets updated.

Figure 15. Automated configuration enabler structure.

 Communication interfaces

Method Endpoint Description

POST /config/{config_id}/schema Define configuration schema

PUT /config/{config_id} Update configuration

DELETE /config/{config_id} Remove configuration

POST /thing/{device_type}/{id} Register device (or service)

POST /thing/{device_type}/{device_id} Define connector for device of a given type

POST /thing/provider/{provider_id} Register service for retrieving list of devices

GET /thing/{device_type}/{device_id} Get device details

GET /config/{config_id} Get config details

GET /thing/{device_type}/ Get config details

 Technologies

Technology Justification Component(s)

Scala2

Scala is a modern, mature, statically-typed programming language,

providing support for both functional and imperative, object-

oriented style. Those features, together with the library-level

compatibility with Java, and familiarity with the language within

Configuration applier,

Registry, Intelligence

2 https://www.scala-lang.org/

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 25 of 57

the SRIPAS group are arguments for choosing Scala as the

programming environment for implementing the enabler.

Akka3

Akka is a highly-regarded Scala framework supporting the Actor

concurrency model. This library is a de facto standard for creating

concurrent and/or distributed systems in Scala. Additionally, Akka

provides connectors for REST4, MQTT5, Kafka6, gRPC7, and other

contemporary technologies, which makes it a natural fit for
heterogenous and distributed environment of IoT.

Configuration applier,

Registry, Intelligence

Kafka8

Kafka is an open-source, distributed event streaming platform used
by thousands of companies for high-performance data pipelines,

streaming analytics, data integration, and mission-critical

applications. Kafka’s high reliability seems like a good fit for

internal component communication. Its large number of available

connectors will also help with various analytical needs we might

have.

All of them

MQTT9

MQTT is an OASIS10 standard messaging protocol for the IoT. It is

designed to provide an extremely lightweight publish/subscribe

messaging transport that is ideal for connecting remote devices with

a small code footprint and minimal network bandwidth. Today,

MQTT is used in a wide variety of industries, such as automotive,

manufacturing, telecommunications, oil and gas, etc.

MQTT provides IoT specific features like Last Will and

Testament11. PAHO12 provides a broad range of MQTT clients.

Configuration applier

Gaps

• Configuration: Overall trend is currently to use declarative configuration (sometimes exposing an API

to execute imperative configuration). How this mechanism should be executed in heterogeneous, smart

solution is not clear yet.

• Self-*: The concept of the enabler and its high-level design seem clear. The details of the abstract model

underpinning the design are still under consideration. Additionally, what remains to be investigated and

decided are the lower-level implementation details and methods.

• Scala 3: Not all of the required libraries/tools directly support Scala 3 yet. This problem can be

temporarily mitigated but eventually it is expected that Scala 3 will be the language of choice for the

implementation of the enabler and its components.

 Use cases

Although there are multiple use cases, right now we are focusing our work on the most basic one – updating
configuration. In following months additional use cases will be described, but first the configuration

representation problem has to be solved – at least partially (see Work Progress below).

3 https://akka.io/
4 https://doc.akka.io/docs/akka-http/current/introduction.html
5 https://doc.akka.io/docs/alpakka/current/mqtt.html
6 https://doc.akka.io/docs/alpakka-kafka/current/home.html
7 https://doc.akka.io/docs/akka-grpc/current/index.html
8 https://kafka.apache.org/
9 https://mqtt.org/
10 https://en.wikipedia.org/wiki/OASIS_(organization)
11 https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/
12 https://www.eclipse.org/paho/

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 26 of 57

Figure 16. Automated configuration enabler UC.

STEP 1: User sends request containing target configuration that they would like the system to achieve. This

might be done, for example, by defining post condition that system needs to adhere to.

STEP 2: Intelligence component communicates with Registry component to check the current status of the

devices.

STEP 3: Intelligence component checks how to achieve target configuration using available devices. This

requires understanding actions a particular device can perform and what are the results of those actions. Based

on that, Intelligence component will be able to create series of device updates. The hard part is to understand

how to model that capability in a flexible and user-friendly way.

STEP 4: Intelligence component sends request to Configuration Applier.

STEP 5: Configuration Applier updates all devices.

STEP 6: Configuration Applier sends results to both Registry and Intelligence component.

STEP 7: Intelligence component returns result status to User via Enabler API.

 Work progress

In the project code repository, there is a scaffolding of the multi-module sbt project. The project uses Scala 3,

but it cross compiles to Scala 2.

Currently, most work is done in configuration representation. This is a non-trivial and highly impactful problem,

but after it will be solved, the tempo of actual software development will increase substantially. Non-triviality

of the representation problem comes from the fact that the configuration has to reflect the dynamic nature of
IoT system and includes “levers” that will allow to control or endow Self-* aspects. The high impact follows

from the fact that the automated configuration enabler will be a part of every non-trivial ASSIST-IoT

deployment.

3.2. Federated machine learning enablers

3.2.1. FL Orchestrator

 Structure and functionalities

The FL orchestrator is responsible of specifying details of FL workflow(s)/pipeline(s). This includes FL job

scheduling, managing the FL life cycle, selecting and delivering initial version(s) of the shared algorithm, as

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 27 of 57

well as modules used in various stages of the process, such as training stopping criteria . Finally, it can specify

ways of handling different “error conditions” that may occur during the FL process.

Figure 17. FL Orchestrator enabler structure.

There is a client and a server master files, which include the defined configurable parameters. When a request

is made, with the value of the configurable parameters, the FL orchestrator returns the files already prepared for
deployment and use. One the one hand, master files will be stored in master folder and modified files in mod

folder. Subsequently, a compressed zip file is generated, which returns the compressed files to the receiver.

Currently, the sample from the Flower documentation is included

(https://flower.dev/docs/quickstart_tensorflow.html).

 Communication interfaces

External APIs for the enabler

Method Endpoint Description

GET /params
JSON received is retrived from request that will allow to modify

the master configuration files

POST /params JSON configuration file is sent to the FL Local Operations

 Technologies

The FL orchestrator has been conceived as an API in Flask, which from an input request with a predefined set
of requirements, it is capable of generating the necessary files to set up the federated training process. The

framework used is Flower, which allows the use of TensorFlow, PyTorch and MXNet models.

The use cases with the client / server part must be defined before introducing them into the procedure, as well

as all their possible configurations.

The FL orchestrator is formed by:

• A master subdirectory, that includes templates with client / server training files

• A mod subdirectory, with Client / server training files already modified

• fl_main.py: Flask API in charge of carrying out all the described procedure

• request.py: Request example

• params.json: Json sample with the request parameters

 Use cases

First use case show flow of action when a user configures the training process and requests the

configuration files to the FL Orchestrator.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 28 of 57

Figure 18. FL Orchestrator configures and requests parties to start FL training.

STEP 1: User configures the number of clients needed to start the FL training, as well as the number of rounds,

the epochs and the steps by epoch FL.

STEP 2: User requests the FL Orchestrator the generation of the FL master and FL client configuration files.

STEP 3: FL Orchestrator generates both files

STEP 3a: FL Orchestrator saves within its environment the FL master configuration file

STEP 3b: FL Orchestrator sends to the involved parties the FL client configuration files.

STEP 4: FL Local Operations acknowledges its reception.

STEP 5: FL Orchestrator mandates connected parties to start the FL training.

 Work progress

For the time being, these are the configurable parameters foreseen in the FL orchestrator: Number of clients

needed to start the training, Number of training rounds, Epochs, and Steps by epoch. Additional parameters

such as Stopping FL Training criteria, Privacy mechanism will be analysed for the next release of the enabler,

as well as additional API calls with the FL Training Collector and the FL repository. In addition, the
configuration within the different aggregation strategies available is also considered. While Flower already

allows use its implemented strategies like Federated Average, new implementations are also considered through

the use of callback functions.

3.2.2. FL Training Collector

 Structure and functionalities

The FL training process involves several independent parties that commonly collaborate in order to provide an

enhanced ML model. In this process, the different local updates suggestions shall be aggregated accordingly.

This duty within ASSIST-IoT will be tackled by the FL Training Collector, which will also be in charge of

delivering back the updated model.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 29 of 57

Figure 19. Training Collector enabler structure.

Functionalities:

• Aggregate local updates of the ML model prepared by independent parties as part of a model

enhancement process. Responsible components: FLTC Combiner, FLTC I/O.

• Delivering back to the parties the updated model. Responsible component: FLTC I/O.

 Communication interfaces

External APIs for the enabler

Method Endpoint Description

PUT /model/update/{id}/{version}
Receive request with updated parameters for model with identifier

id and a given version (as part of federated training).

POST /job/config/{id}
Receive configuration of FL Training Collector components for

job with identifier id.

GET /job/status/{id} Retrieve status of the training process with identifier id.

 Technologies

Technology Justification Component(s)

Python

Python is an interpreted high-level general-purpose programming

language with a set of libraries. Very popular for data analysis and

ML applications.

FLTC I/O, FLTC Combiner

FedML
Research library and benchmark for Federated ML containing

federated algorithms and optimizers.
FLTC Combiner

FastAPI

A popular web microframework written in Python, FastAPI is

known for being both robust and high performing. It is based on

OpenAPI (previously Swagger) standards.

FLTC I/O

Flower

A federated learning framework designed to work with a large

number of clients. It is both compatible with a variety of ML

frameworks and supports a wide range of devices.

FLTC Combiner

 Use cases

The first use case is about what happens after instantiation of FL Trainings Collector i.e. configuration of

approporate modules (here diagram is not used because componets are to be instantiated):

STEP 1: Receive configuration information from FL orchestator.

STEP 2: Establish topology to use e.g master-slave, with mediatior.

STEP 3: Retrieve from FL Repository approporiate FL Collector (averaging algorithms).

STEP 4: Initialize averaging algorithm e.g. single step, sequential.

The second use case is combaning local updates to the model to obtained new final model to be shared

with involved parties.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 30 of 57

Figure 20. Local results aggregation UC.

STEP 1: FL Local Operations enabler sends local results (parameter updates proposals) of model training to FL

Local Operations enabler.

STEP 2: FLTC I/O handles the request. If it is correct the proposed update is forwarded to FLTC Combiner

component.

STEP 3: FLTC Combiner combines local results to deliver new shared model version. Averaging can be

completed in one step or can be applied sequentially in a specific order.

STEP 4, 5: FLTC Combiner sends the received local update and aggregated model (after application of the

update; intermediate results) to FLTC I/O which sends in to the FL Repository enabler to be stored.

STEP 6: FLTC Combiner verifies if model training procedure has been finished or it should still wait for local

updates.

STEP 7, 8: If the training process is finished FLTC Combiner sends final model to FLTC I/O which forwards

in to FL Repository enabler to be stored and distributes it to FL Local enablers.

STEP 9, 10: Send updated shared model to involved local parties.

 Work progress

An outline of the project has been created, with a basic working implementation of a FastAPI server with

endpoints as defined in the documentation. An appropriately triggered endpoint also starts a Flower server,

which works to train the model according to a provided configuration. The endpoint can be tested using a built-

in FastAPI tool in localhost /docs.

3.2.3. FL Repository

 Structure and functionalities

The FL repository will be a set of different databases, including initial ML algorithms, already trained ML

models suitable for specific data sets and formats, averaging approaches, and auxiliary repositories for other

additional functionalities that may be needed, and are not specifically identified yet.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 31 of 57

Figure 21. FL Repository enabler structure.

Functionalities:

• Provide storage for FL related data like: initial ML algorithms, already trained ML models suitable for
specific data sets and formats, averaging approaches, and auxiliary repositories for other additional

functionalities that may be needed, and are not specifically identified yet.

• Provide interfaces to put and retrieve data from different components of the enabler.

• Communication with other FL enablers. Responsible component: Local communication.

 Communication interfaces

External APIs for the enabler

At this moment endpoints for access to auxiliary data are not defined. They will be added when specific needs

are encountered during the project.

Method Endpoint Description

POST /model Adds new ML model to the library

PUT /model/update/{id}/{version}
Update model that is already in the repository under identifier id

and version

GET /model Retrieve list of all models stored in the repository

GET /model/{id}/{version} Retrieve model with a specific identifier and version

DELETE /model/{id}/{version} Delete a model with a specific identifier and version

POST /algorithm Add new ML algorithm to the repository

PUT /algorithm/{name}/{version}
Update algorithm that is already in the repository with a given

name and version

GET /algorithm Retrieve lis of all ML algorithms stored in the repository

GET /algorithm/{name}/{version} Retrieve a ML algorithm identified with a given name and version

DELETE /algorithm/{name}/{version} Delete a ML algorithm with a specific name and version

POST /collector Add new ML training collector algorithm to the repository

PUT /collector/{name}/{version}
Update ML training collector algorithm that is already in the

repository with a given name and version

GET /collector
Retrieve lis of all ML training collector algorithms stored in the

repository

GET /collector/{name}/{version}
Retrieve a ML training collector algorithm identified with a given

name and version

DELETE /collector/{name}/{version}
Delete a ML training collector algorithm with a specific name and

version

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 32 of 57

 Technologies

Technology Justification Component(s)

RDF

W3C Resource Description Framework Description (RDF) is a

standard for representing information on the Web designed as a

data model for metadata. It is one of the foundations for semantic

technologies. It will provide flexible and adaptable model for ML

algorithms metadata or any auxiliary data.

ML Algorithms library,

Auxiliary

FedML
Research library and benchmark for Federated ML containing

federated algorithms and optimizers.
FL Collectors, Auxiliary

Python

Python is an interpreted high-level general-purpose programming

language with a set of libraries. Very popular for data analysis and

ML applications.

Local communication

FastAPI

A popular web microframework written in Python, FastAPI is

known for being both robust and high performing. It is based on

OpenAPI (previously Swagger) standards.

Local communication

MongoDB
MongoDB is a source-available cross-platform document-oriented

database program. Classified as a NoSQL database program.

ML Models Libraries,

Auxiliary

 Use cases

The first use case show flow of action when FL Orchestrator retrieves ML algorithm that is available in the

library. Assumption is that the requester knows the name and version of the algorithm to retrieve.

Figure 22. FL Repository UC 1.

STEP 1: FL Orchestrator sends request to Local Communication component that is responsible for enabler’s

communication with external entites.

STEP 2: If request is correct it is forwarded to ML Algorithms Libraries component.

STEP 3: ML Algorithms Libraries searches for an algorithm with a given name and version.

STEP 4: If algorithm was found it is returned (possibly with any required metadata) to the Local
Communication. If algorithm was not found then respective information is returned to Local Communication

component.

STEP 5: Local Communication forwards response to the requester.

The second use case shows flow of action when FL Training Collector retrieves ML collector algorithm that

is available in the library. Assumption is that the requester knows the name and version of the algorithm to

retrieve.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 33 of 57

Figure 23. FL Repository UC 2.

STEP 1: FL Training Collector sends request to Local Communication component that is responsible for

enabler’s communication with external entities.

STEP 2: If request is correct it is forwarded to FL Collectors component.

STEP 3: FL Collectors searches for an algorithm with a given name and version.

STEP 4: If algorithm was found it is returned (possibly with any required metadata) to the Local

Communication. If algorithm was not found, then respective information is returned to Local Communication

component.

STEP 5: Local Communication forwards response to the requester.

The third use case shows flow of action when FL Training Collector sends updated model (final or

intermediate) to be stored in a repository.

Figure 24. FL Repository UC 3.

STEP 1: FL Training Collector sends request to Local Communication component that is responsible for

enabler’s communication with external entities.

STEP 2: If request is correct it is forwarded to ML Models Libraries component.

STEP 3: ML Models Libraries saves a model with a given name and a new version.

STEP 4: If operation is successful confirmation is returned (possibly with any required metadata) to the Local

Communication. If any problem occurs, then respective information is returned to Local Communication

component.

STEP 5: Local Communication forwards response to the requester.

The list of use cases is not exhaustive however others operate in the same manner when it comes to putting and

retrieving data from the repository.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 34 of 57

 Work progress

An outline of the project has been created, with a basic working implementation of a FastAPI server with
endpoints as defined in the documentation. The endpoints will allow to upload and retrieve information about

and data stored in the repository (right now no storage is deployed). Information exchanged can include binary

data and metadata (key-value pairs) that described them. The endpoints can be tested using a built-in FastAPI

tool in localhost /docs. In progress is work on specification of formats of data and metadata information that

will be stored in the repository.

3.2.4. FL Local Operations

 Structure and functionalities

FL Local Operations enabler is an embedded enabler within each FL involved party/device of the FL systems.

Figure 25. FL Local Operations enabler structure.

Functionalities:

• Enabler embedded in each FL involved party performing local training.

• Verification of local data formats compatibility with data formats required by FL. Responsible

component: Data transformer.

• Transformation of local data formats to format required by the ML system (possibly using predefined

transformers). Responsible component: Data transformer.

• Local model training. The local results will be sent to the FL training collector in order to carry out the

appropriate aggregation methodology over the common shared model.

• Inference with the final shared ML model. Responsible component: Local Model Inferencer.

• Communication of model updates via encryption mechanisms. A homomorphic encryptor will not
permit outsiders to see the output model of each device/party (MITM attacks), whereas methods for

creating differentially private noise will guarantee that Malicious Aggregator cannot be allowed to infer

which records are actual models and which not. Responsible components: Privacy, Local

communication.

 Communication interfaces

 External APIs for the enabler

Method Endpoint Description

POST /job/config/{id} Receive configuration for training job

POST /model Receive new shared model

POST /job/transformer/{id} Receive any required data transformer for job with identifier id

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 35 of 57

Internal APIs for the enabler

Component Method Endpoint Description

Data

transformer
POST /data/status Check if local data is correctly formated for FL.

Data

transformer
POST /data/transform

Transform data to required format if appropriate transformer

was provided.

Data

transformer
POST /data/transform/config

Receive transformation to be applied to transform data if they

are not in a required format.

Local model

training
POST /training/model Locally train model

Local model

training
POST /training/model Receive model

Local training

model
POST /training/config Receive configuration for the training process

Local model

inferencer
POST /predict/model Inference with model

Local model

training
POST /predict/model Receive model

Privacy POST /encrypt Encrypt data

Privacy POST /config Receive configuration for Privacy component

Local communication component’s API is equivalent to external enabler’s API.

 Technologies

Technology Justification Component(s)

scikit-learn

A popular machine learning library often used for data

preprocessing and transformation, for example encoding labels. It is

open source and widely used in the industry.

Data Transformer

Flower

A federated learning framework designed to work with a large

number of clients. It is both compatible with a variety of ML

frameworks and supports a wide range of devices.

Local Model Trainer

OpenVINO
A free toolkit facilitating the optimization of a deep learning model.

It is cross-platform and free to use.
Local Model Inferencer

OpenCV
A real-time computer vision library providing already optimized

models. It is cross-platform and open-source.
Local Model Inferencer

Python

Python is an interpreted high-level general-purpose programming

language with a set of libraries. Very popular for data analysis and

ML applications.

Data Transformer, Local

Communication

Pailier

Encryption,

Affine

Homomorphic

Encryption

Two homomorphic encryption algorithms that will be used to

preserve the privacy of the data without affecting the performance

of the model.

Privacy

FastAPI

A popular web microframework written in Python, FastAPI is

known for being both robust and high performing. It is based on

OpenAPI (previously Swagger) standards.

Local Communication

 Use cases

The basic use case shows a flow of actions when FL Local Operations enabler performs a new training job.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 36 of 57

Figure 26. FL Local Operations UC.

STEP 1: FL Orchestrator send a new job configuration to FL Local Operations.

STEP 2, 3: Configuration is propagated to Local model trainer and Data transformer components.

STEP 4, 5: Components update their setup to correspond to a received configuration/

STEP 6, 7: Component confirm configuration updates to Local communications.

STEP 8: Local communication confirms to FL Orchestrator that FL Local Operations has been configured.

STEP 9: FL Orchestrator requests to start the training process.

STEP 10: Start training command is propagated to Local model trainer component.

STEP 11: Local model trainer checks with Data transformation component if local data are in correct format

for the algorithm.

STEP 12: Data transformation component responds.

STEP 13: Local model trainer trains using an algorithm specified in configuration and local data.

STEP 14: Updated parameters are sent to Local communication.

STEP 15: Local communication sends updated parameters to FL Training Collector. Here, Privacy component

will be utilized to protect the message send. For brevity, it was omitted on the current diagram.

 Work progress

A working FastAPI server with external endpoints as defined in documentation has been added. An appropriate
message sent to a specific endpoint can now trigger a Flower client with a specific configuration. The Flower

client begins sample model training.

3.3. Cybersecurity enablers

3.3.1. Cybersecurity monitoring enabler

 Structure and functionalities

Cybersecurity monitoring enabler will consolidate the necessary information for cyber threat detection and

incident response over the deployed architecture and pilots.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 37 of 57

Figure 27. High-level structure of Cybersecurity monitoring enabler.

Functionalities:

• Cybersecurity enabler will receive logs and information from the agents deployed.

• Cybersecurity enabler will decode the log, identify the type of log and extract some useful fields.

• Cybersecurity enabler will have a ruleset to be applied to the received logs.

• Cybersecurity enabler will apply the active rules to the received log, and if there is a match, it will

generate an alert.

• Cybersecurity enabler will normalize the alert event and correlate until determine if it is only a simple

alert or a real incident.

• Cybersecurity enabler will enrich the incident with useful information, to facilitate the assignment of

the risk level of the incident and the response actions to be done.

• Cybersecurity enabler can do predefined actions for incident mitigation depending on the incident, such

as communicate with the agent so that it performs an action, send an email or send the incident to a

ticketing system.

Cybersecurity enabler will update information on a GUI so that the admin user can see the status of the agents

and the alert/incident information.

 Communication interfaces

Cybersecurity monitoring server will implement a restful API to manage monitoring server basic configuration

and cybersecurity agents connected.

Method Endpoint Description

GET /manager/status Return the status of the monitoring server

GET
/manager/info

Return basic information such as version, compilation date,

installation path

GET /manager/configuration Return enabler configuration used.

PUT /manager/configuration Replace configuration with the data contained in the API request

GET /manager/stats Return statistical information for the current or specified date

PUT /manager/restart Restart the manager

GET /agents Obtain a list with information of the available agents

DELETE /agents Delete all agents or a list of them based on optional criteria

POST /agents Add a new agent with basic info

POST /agents/insert Add an agent specifying its name, ID and IP. If an agent with the

same ID already exists, replace it using 'force' parameter

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 38 of 57

PUT /agents/{agent_id}/restart Restart the specified agent

PUT /agents/restart Restart all agents or a list of them

PUT /active-response Run an Active Response command on all agents or a list of them

 Technologies

Although the definitive system to be deployed is still pending decision, the design requires the following:

Technology Justification Component(s)

Wazuh server Analysis Decoder, rule engine, correlator
Elasticsearch, Filebeat,

Logstash and Kibana
Data gathering, storage and visualization

Associated to visualization, and

data storage

The Hive Security orchestration and response Incident Response

Cortex and MISP
Threat intelligence and threat sharing platforms for

digital forensics and incident response
External enrichment

Cybersecurity monitoring enabler can also adapt input from different interfaces such as syslog, rsyslog, or inputs

from message brokers like MQTT.

 Use cases

Figure 28. Cybersecurity monitoring flow process UC.

The general use case behind the cybersecurity monitoring server is described in the following flow:

STEP 1: Agent detected event associated to system log monitoring running in the agent side.

STEP 2: Decoder at server component side extract the relevant data and forward to the rule engine component.

STEP 3: Rule engine process and apply rules accordingly and forward to the Assessment.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 39 of 57

STEP 4: Response components will automate and orchestrate cybersecurity response, gathering and enriching

the information on the cybersecurity incident using external enrichment services if needed.

STEP 5: External interaction component will be triggered from the Response component to arise any action

using the agent or any other external interaction.

Use cases and additional user stories associated to cybersecurity monitoring server are:

• Agent detect events associated to identification, authentication, and authorization.

• Agent detects installation of new and non-permitted software, on the system under monitoring and

report to the server.

• Agent detects abuse of authorization on the system under monitoring and report to the server.

• Agent detects unauthorised changed of configuration files and report to the server.

 Work progress

Docker file specification to build a docker image with a preconfigured installation of a cybersecurity monitoring

server.

The progress has been done focusing to provide to package in a docker image for cybersecurity monitoring

server as long as a default security policy.

3.3.2. Cybersecurity monitoring agent enabler

 Structure and functionalities

Cybersecurity monitoring agent will report to cybersecurity monitoring server. Cybersecurity monitoring agent

will collect information from target system to provide relevant information if a cybersecurity breach is produced.

Figure 29. Cybersecurity monitoring server agent structure.

Functionalities:

• Cybersecurity agent enabler will collect and process the system events and system log messages.

• Cybersecurity agent enabler will monitor file integrity of critical files and audit data of the system.

• Cybersecurity agent enabler will monitor the security of the docker engine API and the container at

runtime.

• Cybersecurity agent enabler will be able to perform some actions such as blocking network connection

or stopping running processes if the Cybersecurity monitoring enabler requests it.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 40 of 57

 Communication interfaces

Agent communication with server communication using wazuh implementation will use 1514 TCP/UDP port.

Other implementations using rsyslog will use standard rsyslog 514 port.

 Technologies

Although the definitive system to be deployed is still pending decision, the design requires the following:

Technology Justification Component(s)

Wazuh agent Collection Agent

rsyslog Collection Agent

Other agent-based technologies that also can be applied are based on unified logging layer like fluentd, that are

also researched.

 Use cases

Figure 30. Cybersecurity monitoring agent flow process UC.

The general use case behind the cybersecurity monitoring agent is described in the following flow:

STEP 1: Agent detected event associated to system log monitoring running in the agent side and collected by

the agent daemon

STEP 2: Cybersecurity monitoring server receives agent information and process the relevant data using the

components described in the and forward to components described in the cybersecurity monitoring enabler.

Use cases and additional user stories associated to cybersecurity monitoring server are

• Agent detect events associated to identification, authentication, and authorization

• Agent detects installation of new and non-permitted software, on the system under monitoring and

report to the server

• Agent detects abuse of authorization on the system under monitoring and report to the server

• Agent detects unauthorised changed of configuration files and report to the server

 Work progress

Docker file specification to build a docker image with a preconfigured installation of a cybersecurity monitoring

agent based on wazuh and also on rsyslog.

The progress has been done focusing to provide to package in a docker image for cybersecurity monitoring

agent installed with a linux version of cybersecurity monitoring agent.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 41 of 57

3.3.3. Identity manager enabler

Identity manager enabler will be responsible for managing identities on the access control process.

 Structure and functionalities

Figure 31. Identity manager enabler structure.

Functionalities:

• IdM will provide a central user database and management console.

• IdM will be able to work federated with remote user databases, unifying remote user stores.

• IdM will provide Single-Sign-On capabilities through OAuth2 protocol.

• IdM will integrate with the Authorization enabler in order to offer a common authorization and

authentication process.

 Technologies

Although the definitive system to be deployed is still pending decision, the design requires the following:

Technology Justification Component(s)

Oauth2 Standard web federated identity IdM Authentication

LDAP connector External user store IdM Authentication

Web interface Manage user database IdM Admin

 Use case

The main use case behind the identity server is described in the following flow:

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 42 of 57

Figure 32. Identity server flow UC.

STEP 1: An administrator populates user database

STEP 2. A user requests a service from an APP.

STEP 2.1: If the user has no previous identification active, it is redirected to the Authentication server STEP

1.2.

STEP: 2.3: User identifies himself in the IdM and obtains a session token STEP 2.4. If local user store has no

identity for credentials, request may be federated to a remote user DB.

STEP 2.5: User presents the token to the application server.

STEP 2.5.1: Token is validated against the IdM.

STEP 2.6: If the token is valid, the client can access the server.

 Work progress

Multiple alternatives are being evaluated to identify the most adequate identity server that fits the requirements

of the use cases. No definitive decision has been achieved yet.

3.3.4. Authorization enabler

 Structure and functionalities

Authorization enabler will be responsible for the authorization phase in the access control process.

Authorization enabler will be based on XACML standard security policies, results on obligations actions to be

deployed after the evaluation process.

Figure 33. Authorization enabler structure.

Figure 33 above describes two different modes of deploying the same enabler. They can function as federated

server, autonomous edge service or interact between both.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 43 of 57

Functionalities:

• PAP will provide a Web administrator to create and deploy the security policy to the different devices.

• A service that wants to use the authorization service will have a PEP, enforcement point to make request

to the authorization server, this is ask whether the access should be granted or not.

• PDP provides a REST interface available to the PEP to receive the request and orchestrate the process.

• PIP will be responsible of generating the context for the request and obtaining any data that external

provider can offer to be incorporated to the request.

• The Policy repository will store locally to the PDP the policy to be applied.

• PDP will evaluate the request against the policy and will respond with the response.

Obligation server will launch external request to perform the derived actions (obligations) obtained as a result

of the policy decision. This will have the form of REST requests.

 Technologies

Technology Justification Component(s)

XACML Policy definition and evaluation PAP, PDP, PEP, PIP

REST interfaces Inter module comunications PAP, PDP

MQTT Trace publication PDP

 Use case

The main use case behind the Authorization server is described in the following flow:

Figure 34. Authorization server UC.

STEP 1: An Administrator defines the data elements to be used in the validation process (conditions, pre shared

keys, context data…) and exports it to the policy storage STEP 1.1.

STEP 2: A user requests the access to the service provided in the device. After identification, the PEP will

generate an access request STEP 2.1 and send it to the PDP STEP 2.1.1.

STEP 2.1.1.1: PDP will request the PIP to gather the context required for the decision STEP 2.1.1.1.1.

STEP 2.1.1.2: PDP will complete the request, get the policy from the storage STEP 2.1.1.3 and obtain a decision

STEP 2.1.2.

STEP 2.1.2.1: PDP will launch the external obligations STEP 2.1.2.1.1.

STEP 2.2: PEP will redirect the decision to the App.

STEP 3: Service will be provided.

 Work progress

Server core has been developed and dockerized. Current work is focused on separation of functionalities in

order to federate policy generation and use.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 44 of 57

3.4. DLT-based enablers

3.4.1. Logging and auditing enabler

 Structure and functionalities

This enabler will log critical actions that happen during the data exchange between ASSIST-IoT stakeholders

to allow for transparency, auditing, non-repudiation and accountability of actions during the data exchange. It
will also log resource requests and identified security events to help to provide digital evidence and resolve

conflicts between stakeholders, when applicable. If any requirement of filtering prior to logging, a filtering

module will be considered to be deployed. The DLT API is the candidate component for performing any

filtering.

Figure 35. Logging and auditing enabler structure. . The upper (DLT) block contains the internal components of the

enabler

 Communication interfaces

Method Endpoint Description

POST /logs Create a new log

GET /logs/{id} Get log with specific ID

GET /logs Get all logs

 Technologies

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart

Contracts)

The Hyperledger is a fitting choice for building a
private network to support the creation of a

consortium blockchain. The technology provides

permissions to handle the network along with a

good scalability. Hyperledger Fabric can have its

value augmented by deploying smart contracts to

automate functions.

Logging and Auditing business
logic

Hyperledger Fabric

peers, orderers

Hyperledger Fabric peers and
orderers

Hypeledger Fabric

Certificate Authority

(CA)

Certification Authorities (CAs)

REST (Enabler's API)
Currently it is decided as project-wide standard.

REST is overall a web standard.
DLT API

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 45 of 57

 Use cases

The main use cases where this enabler is planned to be used are the immutable logging of the configurations,
the logging of security incidents and the logging of the resources access. A sequence diagram depicting the

main flow of the UC for logging security incidents is depicted in Figure 36 below.

Figure 36. Incident logging flow UC.

The steps of the flow are described below:

STEP 1: The interacting enabler (either security Monitoring and Threat detection enabler or Monitoring and

Notifying enabler) detects internally an incident.

STEP 2: The interacting enabler (either security Monitoring and Threat detection enabler or Monitoring and

Notifying enabler) posts the log containing the incident information to the DLT API.

STEP 3: The DLT API signs and submits to the Blockchain/DLT a transaction containing the log information.

 Work progress

The software development of the enabler is currently under way and an initial version of the componets has

already been set, including the Hyperledger Fabric network, Smart contracts, and the DLT API. A preliminary

version will be presented in less than a month.

3.4.2. Data integrity verification enabler

This is an enabler responsible for providing DLT-based data integrity verification mechanisms that allow data
consumers to verify the integrity of any data at question. Network peers host smart contracts (chaincode) which

includes the data integrity business logic. It stores hashed data in a data structure and it compares it with the

hashed data of the queries made by clients in order to verify their integrity.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 46 of 57

Figure 37. Data Integrity Verification enabler. The upper (DLT) block contains the internal components of the

enabler.

 Communication interfaces

Method Endpoint Description

POST /data/{Hash} Stores hashed data

GET /data/{Hash} Returns if the hashes data exist in the ledger or not

 Technologies

The technologies that are to be implemented for the execution of the enabler’s components are the following:

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart

Contracts)

The Hyperledger is a fitting choice for building a

private network to support the creation of a

consortium blockchain. The technology provides

permissions to handle the network along with a

good scalability. Hyperledger Fabric can have its

value augmented by deploying smart contracts to

automate functions.

Data Integrity Verification
business logic

Hyperledger Fabric

peers, orderers

Hyperledger Fabric peers and
orderers

Hypeledger Fabric

Certificate Authority

(CA)

Certification Authorities (CAs)

REST (Enabler's API)
Currently it is decided as project-wide standard.

REST is overall a web standard.
DLT API

 Use cases

The potential use cases where this enabler is planned to be used are the integrity verification of the XACML

policies and the defined thresholds of the fleet emissions to avoid their alteration. A sequence diagram depicting

the main flow of the UC for the integrity verification of the XACML policies is depicted in Figure 38 below.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 47 of 57

Figure 38. XACML Integrity Verification Flow UC.

The steps of the flow are described below:

STEP 1: The interacting enabler (e.g. the Authorisation enabler) prepares internally the hash of the XACML

policy.

STEP 2: The interacting enabler (e.g. the Authorisation enabler) posts the hash of the XACML policy to the

DLT API.

STEP 3: The DLT API signs and submits to the Blockchain/DLT a transaction containing the the hash of the

XACML policy.

 Work progress

The software development of the enabler is currently under way and an initial version of the components has
already been set, including the Hyperledger Fabric network, Smart contracts, and the DLT API. A preliminary

version will be presented in less than a month.

3.4.3. Distributed broker enabler

 Structure and functionalities

This enabler will provide a mechanism that will facilitate data sharing between different heterogeneous IoT

devices belonging to various edge domains and/or between different enablers of the architecture. In coordination
with other enablers that will ensure trust between data sources (i.e. Identity and Authorisation providers), it will

deal with data source metadata management and provide trustable, findable, and retrievable metadata for the

data sources.

Another functionality for the distributed broker enabler is the data source registration. The enabler will serve as

a trusted registry of all the IoT domains/devices and/or ASSIST-IoT enablers that act as data producers. Indexing

and querying services will facilitate the efficient retrievability of the stored metadata of the registered producers

by consumers in compliance with the FAIR principles.

The last enabler’s functionality is about the semantic interoperability facilitation. This enabler can act as a

facilitator to the enablers that will provide semantic interoperability (e.g. the semantic repository) by providing

searchable metadata of the interoperable IoT domains (e.g. references to the semantic repository locations of
the data, data model references, data models/schemata, data characteristics and data descriptions, data usage

constraints, etc).

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 48 of 57

Figure 39. Distributed data enabler overview. The upper (DLT) block contains the internal components of the

enabler.

 Communication interfaces

Method Endpoint Description

POST /metadata/{sourceID}
Post data source metadata to the Data Consumer given the data

source id

GET /metadata/{sourceID} Get data source metadata from Data Provider (source)

 Technologies

The technologies that are to be implemented for the execution of the enabler’s components are the following:

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart

Contracts)

The Hyperledger is a fitting choice for building a

private network to support the creation of a

consortium blockchain. The technology provides
permissions to handle the network along with a

good scalability. Hyperledger Fabric can have its

value augmented by deploying smart contracts to

automate functions.

Distributed Broker service (data
sources registry) business logic

Hyperledger Fabric

peers, orderers

Hyperledger Fabric peers and
orderers

Hypeledger Fabric

Certificate Authority

(CA)

Certification Authorities (CAs)

REST (Enabler's API)
Currently it is decided as project-wide standard.

REST is overall a web standard.
DLT API

 Use cases

The main use cases where this enabler is planned to be used is the data sources registration that will facilitate

the semantic interoperability among different IoT domain pertaining heterogeneous data sources. A sequence

diagram depicting the main flow of the UC for data source registration is depicted in Figure 40 below.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 49 of 57

Figure 40. Data source metadata posting/updating Flow UC.

The steps of the flow are described below:

STEP 1: The interacting enabler (the Data Provider / the Semantic Repository enabler) posts the data source

metadata (e.g. data source URLs and access points) to the DLT API.

STEP 2: The DLT API signs and submits to the Blockchain/DLT a transaction containing the data source

metadata.

 Work progress

The software development of the enabler is currently under way and an initial version of the components has

already been set, including the Hyperledger Fabric network, Smart contracts, and the DLT API. A preliminary

version will be presented in less than a month.

3.4.4. DLT-based FL enabler

 Structure and functionalities

This enabler will foster the use of DLT-related components to exchange the local, on-device models (or model
gradients) in a decentralised way. The DLT can act as a component to manage AI contextual information and

prevent any alteration to the data. The alteration of data is a threat to the Federated Learning approach and the

DLT can help in mitigating the threat. Moreover, the enabler will allow mitigating single-point of failures.
Finally, the enabler can be charged with validating the individually trained models to rule out malicious updates

that can harm the global model.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 50 of 57

Figure 41. DLT-based FL enabler overview. The upper (DLT) block contains the internal components of the enabler.

 Communication interfaces

Method Endpoint Description

POST /model Post the aggregated model (or the global model)

GET /model
Get the updated models from FL Local operations (FL privacy

should take place prior to the data transmission)

 Technologies

The technologies that are to be implemented for the execution of the enabler’s components are the following:

Technology Justification Component(s)

Hyperledger Fabric

Chaincode (Smart

Contracts) / Swarm

Learning

The Hyperledger is a fitting choice for building a

private network to support the creation of a

consortium blockchain. The technology provides

permissions to handle the network along with a

good scalability. Hyperledger Fabric can have its

value augmented by deploying smart contracts to

automate functions.

Models distribution business
logic

Hyperledger Fabric

peers, orderers

Hyperledger Fabric peers and
orderers

Hypeledger Fabric

Certificate Authority

(CA)

Certification Authorities (CAs)

REST (Enabler's API)
Currently it is decided as project-wide standard.

REST is overall a web standard.
DLT API

 Use cases

The main use case for which this enabler is planned to be used is the model verification and

exchange/distribution. The idea is that after securing the models using Privacy Enhancing Techniques (PETs),

the models will be forwarded to the nodes of the DLT for model verification and exchange/distribution.

 Work progress

The software development of the enabler is currently under way and an initial version of the components has

already been set, including the Hyperledger Fabric network, Smart contracts, and the DLT API. A preliminary

version will be presented in less than a month.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 51 of 57

3.5. Manageability

This last section differs from the ones provided for the rest of the verticals. The reason lies in the fact that the

task started later in time, and thus its maturity is in a lower level. Hence, this subsection will follow the structure
of D5.1, in which the identified enablers are presented and later on expanded in a dedicated Appendix A - ,

where their respective templates are presented. The following enablers aim at allowing the system owner to

handle an ASSIST-IoT deployment, from registering and managing devices and enablers, to compositing flows

of services.

3.5.1. Enabler for registration and status of enablers

This enabler will serve as a registry of enablers and, in case they are deployed, a means of retrieving their status.

In particular, it will: (i) allow the registration of an enabler (this is, from an ASSIST-IoT repository). Essential

enablers will be pre-registered; (ii) retrieve a list of currently-running enablers; (iii) depict the status and the

specific logs of an enabler (the latter only if the enabler with log collection capabilities is in place); and (iv)
facilitate the deployment of standalone enablers (mostly for those that have to be present at any deployment).

3.5.2. Enabler for management of services and enablers’

workflow

This enabler will present a graphical environment where ASSIST-IoT administrators can instantiate the enablers

required to work, and also to connect them to compose a chain, or service workflow, making use of a Directed
Acyclic Graph (DAG) interface. Having information about the physical topology and available k8s

nodes/clusters, it will allow the user to decide whether to select the proper node or cluster for deploying an

enabler, or let the system decide based on pre-defined architectural rules.

3.5.3. Devices management enabler

The main functionalities of this enabler will be to register: (i) a k8s node in an ASSIST-IoT k8s cluster, (ii) a

smart IoT device in a deployment, and (iii) a cluster in an ASSIST-IoT deployment, including in the latter case
all the necessary messages to notify it to the smart orchestrator. It will also execute all the required actions

related to networking for enabling connectivity among isolated/independent clusters, including those that have

been added via VPN/SD-WAN technology. Besides, it will allow monitoring any registered node and device in
the deployment, including its status (i.e., available and used resources) and current instantiated enablers’

components.

4. Future Work

This document is part of the second deliverable for WP5 along with preliminary software version (status as of

M12). Since this deliverable will have a second and third iterations, the specifications included here may be

extended or updated as the project evolves.

The finalization of this deliverable will speed up the development of related software, therefore next tasks will

be to:

• Continue the development along with technical description provided here,

• Extend or fill in missing information such as endpoint/API specification for each enabler and

component,

• Verify issues listed in gaps sections and propose how to mitigate identified risks,

• Any adjustments necessary (e.g., slight modification in provided functionalities, change in enabler

structure, change in selected technologies),

• Management of the backlog of tasks, distribution of work and progress in implementation activities.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 52 of 57

Appendix A - Manageability Enablers

templates

A.1 - Enabler for registration and status of enablers
Table 1. General information of the Enabler for registration and status of enablers

Enabler Enabler for registration and status of enablers

id T55E1

Owner and support UPV, SRIPAS, CERTH

Description and main

functionalities

This enabler will serve as a registry of enablers and, in case they are deployed, the

retrieval of their status. In particular, it will:
• Allow the registration of an enabler (this is, from an ASSIST-IoT

repository). Essential enablers will be pre-registered
• Retrieve a list of currently-running enablers
• Depict the status and the specific logs of an enabler (the latter only if

the enabler with log collection capabilities is in place).
• Facilitate the deployment of standalone enablers (mostly for those that

have to be present at any deployment)

Plane/s involved Smart network and control, Data management, and Application and Services planes

Vertical, related

capabilities and features
Manageability

Relation with other

enablers

This enabler will guide the deployment of the essential enablers of an ASSIST-IoT

deployment. The smart orchestrator will be deployed with the aid of this one, and the rest

will be managed by it.
• T44E1: Tactile dashboard enabler
• T42E1: Smart Orchestrator
• T42E3: Performance and usage diagnosis enabler
• T43E8: LTSE
• T55E4: Monitoring and notifying enabler

Requirements mapping • RC7: Edge-oriented deployment

Use case mapping This enabler will be present at all use cases, for administration purposes.

Required components Enablers management server, Enablers management UI, Enablers registry

TRL information
Current: TBD
Target: TRL6

Identified by UPV

Modification date 11-10-21

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 53 of 57

Figure 42. High-level diagram of the Enabler for registration and status of enablers.

Endpoints

Method URL Description

POST /enablers
Registers an enabler from an ASSIST-IoT repository, and adds it to the

orchestrator

GET /enablers Returns a list of all the enablers registered in a deployment

POST /deploy
Deploy a standalone enabler (i.e., not part of a flow, but that could be later

on used by one or many)

GET /deploy Returns the status of all the deployed enablers

GET /deploy/${id} Returns the status of a deployed enabler and its components

GET /deploy/logs/${id} Return the logs of a particular enabler

PUT /deploy/${id} Modifies the configuration parameters of an enabler, and updates it.

DELETE /deploy/${id} Deletes an enabler. It can affect any flow that consumes it.

Components

Enabler component Enablers management server

id T53E1_enablers

Description and main

functionality

This server will allow to: (i) register/remove enablers from an ASSIST-IoT enablers

repository, or any repository with enablers compatible with an ASSIST-IoT ecosystem;

(ii) instantiate/modify/remove a standalone enabler, this is, not part of a flow (but that

can be later on connected to one, or many); and (iii) access the logs of any deployed

enabler and its components.

Target node/s High-level node, or Cloud

Candidate technologies Python custom functions, Node.js

Enabler component Enablers management UI

id T53E1_enablersUI

Description and main

functionality
Set of interfaces to allow end-users to execute the functions provided by the server.

Target node/s High-level node, or Cloud

Candidate technologies PUI9, Vue

Enabler component Enablers registry

id T53E1_registry

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 54 of 57

Description and main

functionality

This registry will keep track of all the enablers that can be part of a particular

deployment, and well as a registry of currently-deployed enablers and components.

Target node/s High-level node, or Cloud

Candidate technologies Docker, Helm

A.2 - Enabler for management of services and enablers’

workflow
Table 2. General information of the Enabler for management of services and enablers’ workflow

Enabler Enabler for management of services and enablers’ workflow

id T55E3

Owner and support UPV, PRO, SRIPAS

Description and main

functionalities

This enabler will present a graphical environment where ASSIST-IoT administrators

can instantiate the enablers required to work, and also to connect them to compose a

composite service (i.e., a workflow). Having information about the physical topology

and available k8s nodes/clusters, it will allow the user to decide whether to select the

proper node or cluster for deploying an enabler, or let the system decide based on pre-

defined architectural rules.

Plane/s involved Smart network and control, Data management, and Application and Services planes

Vertical, related

capabilities and features
Manageability

Relation with other

enablers

All the enablers should be deployable with this one. This list only refers to those enablers

that will take part on the orchestration process.

• T42E1: Smart Orchestrator

• T55E1: Management of enablers existence

• T55E4: Management of devices in an ASSIST-IoT deployment

Requirements mapping • RC7: Edge-oriented deployment

Use case mapping All use cases will require of this enabler to be fulfilled

Required components Workflow management UI, Workflow management API, Workflow registry

TRL information
Current: TBD

Target: TRL6

Identified by UPV

Modification date 11-10-21

Figure 43. High-level diagram of the enabler for management of services and enablers’ workflow.

Endpoints

Method URL Description

POST /workflow/deploy Starts the deployment of a service workflow

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 55 of 57

GET /workflow/deploy Returns a list of currently deployed service workflows

GET /workflow/deploy/${id}
Get current status of a particular service workflow and its

managed enablers

DELETE /workflow/deploy/${id}

Deletes a deployed workflow and its related enablers (it does

not remove any enabler which has been deployed in other

workflows or in a standalone way)

Components

Enabler component Workflow management UI

id T53E3_UI

Description and main

functionality

It will provide a high-level dashboard to declare, in a flow-based/DAG fashion, an end-

to-end service workflow consisted of a set of enablers. To that end, it will retrieve info

related to available (implementable) enablers, deployed enablers, cluster/s topology,

etc. In addition, pop-ups to declare pre-deploying configuration for the enablers will be

present in this interface.

Target node/s High-level node, or Cloud

Candidate technologies Custom/Open source DAG generator, Vue

Enabler component Workflow registry

id T53E3_registry

Description and main

functionality

It will register all the workflows (instantiated, running, terminated) and their current

status. It will also contain policies for completing information of manifests before being

sent to the orchestrator.

Target node/s High-level node, or Cloud

Candidate technologies SQLite, MongoDB

Enabler component Workflow management server

id T53E3_API

Description and main

functionality

This API will be primarily in charge of receiving a workflow command (with workflow

manifest file and configuration parameters) and distribute the necessary actions to

instantiate (or reuse existing) and connect enablers to compose an end-to-end service.

Target node/s High-level node, or Cloud

Candidate technologies Express, Flask, Python

A.3 - Devices management enabler
Table 3. General information of the Devices management enabler

Enabler Devices management enabler

id T55E4

Owner and support UPV, NEWAYS

Description and main

functionalities

The main functionality of this enabler will be to register: (i) a k8s node in an ASSIST-IoT

k8s cluster, (ii) a smart IoT device in a deployment, and (iii) a cluster in an ASSIST-IoT

deployment, including in the latter case all the necessary messages to notify it to the smart

orchestrator. It will also execute all the required actions related to networking for

enabling connectivity among isolated/independent clusters, including those that have

been added via VPN/SD-WAN technology.

Besides, it will allow monitoring any registered node and device in the deployment,

including its status (i.e., available and used resources) and current instantiated enablers’

components.

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 56 of 57

Plane/s involved Device and Edge plane, Smart network and control

Vertical, related

capabilities and features
Manageability

Relation with other

enablers

All the enablers should be deployable with this one. This list only refers to those enablers

that will take part on the orchestration process.

• T42E1: Smart Orchestrator

• T44E3: Performance and Usage diagnosis enabler

• T51E3: Geolocation

• T51E4: Monitoring and Notifying

Requirements mapping • RC7: Edge-oriented deployment

Use case mapping This enabler will be present at all use cases, for administration purposes.

Required components Devices management UI, Devices management server, Devices registry

TRL information
Current: TBD

Target: TRL6

Identified by UPV

Modification date 11-10-21

Figure 44. High-level diagram of the Devices management enabler.

Endpoints

Method URL Description

POST /clusters Registers a k8s cluster to an ASSIST-IoT deployment, and notifies it to the orchestrator

GET /clusters Returns the list of clusters registered in an ASSIST-IoT deployment

GET /clusters/${id}
Return information related to a cluster, including available and used resources of its

managed nodes, and deployed components of ASSIST-IoT enablers

DELETE /clusters/${id}
Deletes a cluster from an ASSIST-IoT deployment and unsubscribes it from the

orchestrator. It can be done only if any ASSIST-IoT enabler is running

POST /devices/ Registers a device to an ASSIST-IoT deployment

GET /devices/ Returns the list of devices registered in an ASSIST-IoT deployment

DELETE /devices/${id} Unregisters a smart IoT device from the deployment

POST /nodes Adds a k8s node to a k8s cluster

GET /nodes
Retrieves all the information related to a cluster, including available and used resources

of its managed nodes, and deployed components of ASSIST-IoT enablers

Components

Enabler component Devices management server

id T53E4_devices

Description and main

functionality

This server will allow to: (i) register/remove existing k8s nodes and clusters to ASSIST-

IoT ecosystem (and to subscribe clusters to the orchestrator); (ii) register/removing smart

Deliverable D5.2 – Traversal Enablers Development - Preliminary Version

Version 1.0 – 31-OCT-2021 - ASSIST-IoT© - Page 57 of 57

IoT devices to the ecosystem; and (iii) retrieve a list of components and metrics related

hardware usage and availability in the different nodes.

Target node/s High-level node, or Cloud

Candidate technologies Python custom functions, Node.js

Enabler component Devices management UI

id T53E4_devicesUI

Description and main

functionality
Set of interfaces to allow end-users to execute the functions provided by the server.

Target node/s High-level node, or Cloud

Candidate technologies PUI9, Vue

Enabler component Devices registry

id T53E4_API

Description and main

functionality

This registry will keep track of all the clusters, nodes and devices that are part of a

particular deployment

Target node/s High-level node, or Cloud

Candidate technologies SQLite, MongoDB

