

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D5.1 Software Structure and Preliminary

Design
Deliverable No. D5.1 Due Date 31-JUL-2021

Type Report Dissemination Level Public

Version 1.0 WP WP5

Description Initial specification of vertical enablers identified and developed in ASSIST-IoT.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 2 of 58

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 3 of 58

Authors
Name Partner e-mail

Ignacio Lacalle P01 UPV iglaub@upv.es

Alejandro Fornés P01 UPV alforlea@upv.es

Katarzyna Wasielewska-

Michniewska

P03 IBSPAN katarzyna.wasielewska@ibspan.waw.pl

Piotr Lewandowski P03 IBSPAN piotr.lewandowski@ibspan.waw.pl

Maria Ganzha P03 IBSPAN Maria.ganzha@ibspan.waw.pl

Marcin Paprzycki P03 IBSPAN marcin.paprzycki@ibspan.waw.pl

Eduardo Garro P03 PRO egarro@prodevelop.es

Georgios Stavropoulos P04 CERTH stavrop@iti.gr

Ron Schram P09 NEWAYS Ron.Schram@newayselectronics.com

Alex van den Heuvel P09 NEWAYS alex.van.den.heuvel@newayselectronics.com

Oscar López Pérez P13 S21SEC olopez@s21sec.com

Jordi Blasi P13 S21 SEC jblasi@s21sec.com

History
Date Version Change

3-Jun-2021 0.1 Table of content

8-Jun-2021 0.2 First round of contributions (partially filled enablers templates)

12-Jun-2021 0.4 Second round of contributions – version ready for internal review

30-Jul-2021 1.0 Final version submitted to EC

Key Data
Keywords Enablers, verticals, self-*, interoperability, manageability, scalability, federated

learning, DLT

Lead Editor Katarzyna Wasielewska-Michniewska (P03 IBSPAN)

Internal Reviewer(s) Lambis Tassakos (P14 TwoTronic), Zbigniew Kopertowski (P15 OPL)

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 4 of 58

Executive Summary
This deliverable is written in the framework of WP5 – Transversal Enablers Design and Development of

ASSIST-IoT project under Grant Agreement No. 957258. The document gathers the work and outcomes of the

four tasks of the work package, which are devoted to the design and implementation of enablers required to

implement the different verticals of the ASSIST-IoT architecture. Task 5.5 started in M9 so its results are not

included in this deliverable.

The realisation of ASSIST-IoT architecture (outlined in deliverable D3.5 ASSIST-IoT Architecture Definition

– Initial) requires the design and development of elements that support core functionalities. The ASSIST-IoT

approach uses the abstraction term “enablers”. Enabler will consist of a group of micro-services, each of them

served over a container, acting towards a single goal (i.e., to provide a specific functionality) in the architecture.

Enablers can be assigned to architectural layers (planes: Device and Edge, Smart Network and Control, Data

Management, Application and Services) or verticals (Self-*, Interoperability, Security, Privacy and Trust,

Scalability, Manageability) that intersect them. Plane (horizontal) enablers are addressed in D4.1 Initial Core

Enablers Specification, whereas this deliverable addresses transversal (vertical) enablers. Note that, verticals

represent functions targeting NGIoT properties that exist either independently on different planes or require the

cooperation of elements from multiple planes.

By M9 of the project (July 2021), a total of 18 enablers have been identified and formalised:

• From Self-*: Self-healing device enabler, Resource provisioning enabler, Monitoring and notifying

enabler, geo(Localisation) enabler, Automated configuration enabler.

• From Federated Machine Learning: FL Orchestrator, FL Training Collector, FL Repository, FL Local

Operations, FL Privacy.

• From Cybersecurity: Cybersecurity monitoring enabler, Cybersecurity monitoring agent enabler,

Identity manager enabler, Authorisation enabler.

• From DLT: Logging and auditing enabler, Data integrity verification enabler, Distributed broker

enabler, DLT-based FL enabler.

These enablers have been identified responding to requirements presented in D3.2 Use Cases Manual &

Requirements and Business Analysis Initial, as well from architecture specifications. This deliverable is the first

out of two iterations (D5.4 by M24), so the content will be updated and expanded as the project evolves, and it

will serve as the basis for the technical provision of the whole WP. Additionally, three iterations of Transversal

Enabler Development deliverable (Preliminary D5.2 by M9, Intermediate D5.3 by M18, Final D5.5 by M30)

will be prepared that will base on the content of this deliverable and its updates in time. Here, core information

extracted from enabler templates are included. This information will be further detailed to provided full

technical specifications of enablers that are to be provided.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 5 of 58

Table of contents

Table of contents ... 5

List of tables .. 7

List of figures .. 7

1. About this document .. 10

1.1. Deliverable context .. 10

1.2. The rationale behind the structure .. 10

1.3. Outcomes of the deliverable... 11

1.4. Lessons learnt ... 11

1.5. Deviation and corrective actions .. 12

2. Introduction ... 13

2.1. Self-* .. 14

2.2. Interoperability ... 14

2.3. Scalability... 14

2.4. Security, Privacy and Trust .. 15

2.5. Manageability ... 15

3. Initial vertical enablers specification ... 17

3.1. Self-* enablers .. 18

3.1.1. Self-healing device enabler .. 18

3.1.2. Resource provisioning enabler ... 18

3.1.3. Monitoring and notifying enabler .. 18

3.1.4. Geo(Localisation) enabler .. 18

3.1.5. Automated configuration enabler .. 19

3.2. Federated machine learning enablers ... 19

3.2.1. Introduction .. 19

3.2.2. FL Orchestrator .. 20

3.2.3. FL Training Collector .. 20

3.2.4. FL Repository .. 20

3.2.5. FL Local Operations .. 20

3.2.6. FL Privacy ... 21

3.3. Cybersecurity enablers ... 21

3.3.1. Cybersecurity monitoring enabler.. 21

3.3.2. Cybersecurity monitoring agent enabler .. 22

3.3.3. Identity manager enabler ... 22

3.3.4. Authorisation enabler ... 22

3.4. DLT-based enablers ... 23

3.4.1. Logging and auditing enabler .. 23

3.4.2. Data integrity verification enabler ... 23

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 6 of 58

3.4.3. Distributed broker enabler ... 23

3.4.4. DLT-based FL enabler ... 23

4. Future Work... 24

Annex A - Federated Learning taxonomy ... 25

Annex B - Enabler templates ... 29

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 7 of 58

List of tables

Table 1. General information of the enabler .. 17
Table 2. Specific information of an enabler component.. 18
Table 3. Federated Learning aspects of ASSIST-IoT Use Cases .. 28
Table 4 General information for Self-healing device enabler ... 29
Table 5. General information for Resource provisioning enabler ... 30
Table 6 General information for geo (Localization) enabler ... 32
Table 7. General information for Monitoring and notifying enabler ... 34
Table 8. General information for Automated configuration enabler ... 36
Table 9. General information for FL Orchestrator .. 38
Table 10. General information for FL Training Collector ... 40
Table 11. General information for FL Repository ... 41
Table 12. General information for FL Local Operations ... 43
Table 13. General information for FL Privacy enabler ... 45
Table 14. General information for Cybersecurity monitoring enabler .. 46
Table 15. General information for Cybersecurity monitoring agent enabler .. 48
Table 16. General information for Identity Manager enabler .. 49
Table 17. General information for Authorisation enabler ... 51
Table 18. General information for Logging and auditing enabler ... 53
Table 19. General information for Data integrity verification enabler .. 55
Table 20. General information for Distributed broker enabler .. 56
Table 21. General information for DLT-based FL enabler ... 57

List of figures

Figure 1. Enablers distribution among verticals .. 13
Figure 2. High-level diagram of an enabler ... 17
Figure 3. ASSIST-IoT FL system formed by five enablers... 19
Figure 4. Security monitoring components ... 21
Figure 5. Cybersecurity monitoring server agent .. 21
Figure 6. Authorisation enabler – cloud and edge ... 23
Figure 7. Communication Architecture options for FL (left: centralised, right: decentralised) 25
Figure 8. High-level structure for Self-healing device enabler ... 29
Figure 9. High-level structure for Resource provisioning enabler .. 31
Figure 10. High-level structure of geo(Localisation) enabler ... 33
Figure 11. High-level structure of Monitoring and notifying enabler ... 35
Figure 12. High-level structure for Automated configuration enabler .. 37
Figure 13. High-level structure of FL Orchestrator ... 39
Figure 14. High-level structure for FL Training Collector .. 40
Figure 15. High-level structure for FL Repository .. 42
Figure 16. High-level structure for FL Local Operations .. 44
Figure 17. High-level structure for FL Privacy enabler .. 46
Figure 18. High-level structure of Cybersecurity monitoring enabler... 47
Figure 19. Cybersecurity monitoring with monitoring agent .. 49
Figure 20. High-level structure of Identity Manager enabler .. 50
Figure 21. High-level structure of Authorisation enabler .. 52
Figure 22. Authorisation enabler – cloud and edge ... 52
Figure 23. High-level structure of DLT Logging and Auditing enabler ... 54
Figure 24. High-level structure of Data integrity verification enabler .. 55
Figure 25. High-level structure of Distributed broker service enabler .. 56
Figure 26. High-level structure of DLT-based FL enabler .. 58

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 8 of 58

List of acronyms

Acronym Explanation

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

CHE Container Handling Equipment

CPU Central Processing Unit

CSV Comma Separated Value

DLT Distributed Ledger Technology

DoS Denial of Service

FAIR Findable, Accessible, Interoperable, Reusable

FML Federated Machine Learning

FL Federated Learning

FLS Federated Learning System

FLTC Federated Learning Training Collector

GPS Global Positioning System

HW Hardware

I/O Input/Output

JSON JavaScript Object Notation

JVM Java Virtual Machine

K8s Kubernetes

LTS Long-Term Storage

LTSE Long-Term Storage Enabler

MANO Management and Orchestration

NGIoT Next Generation Internet of Things

NN Neural Networks

noSQL Not Only Structured Query Language

MITM Man-In-The-Middle

ML Machine Learning

MQTT MQ Telemetry Transport

OEM Original Equipment Manufacturer

PAP Policy Administration Point

PCM Powertrain Control Module

PDP Policy Decision Point

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 9 of 58

PEP Policy Enforcement Point

PIP Policy Information Point

REST Representational State Transfer

RSSI Received Signal Strength Indicator

RTG Rubber-Tyred Gantry (crane)

SDN Software Defined Network

SoTA State-of-the-Art

SQL Structured Query Language

SMC Secure Multi-Party Computation

SR Semantic Repository

TBD To Be Done/Defined

TRL Technology Readiness Level

TTL/SSL Time To Live/Secure Sockets Layer

UC Use Case

WP Work Package

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 10 of 58

1. About this document

The main goal of this deliverable is to provide the specifications of the vertical enablers that are going to be

developed under the scope of WP5. These enablers along with horizontal enablers proposed in WP4, are the

technological backbone of the project, since they will enable the deployment of an ASSIST-IoT architecture.

It should be highlighted that this deliverable corresponds to the first out of two documents, and therefore its

content will be expanded and adapted as the project evolves. This is motivated by different reasons, including

the fact that both the requirements and the architecture produced by the work of WP3 are still evolving (and

therefore new enablers or modifications in the current ones may be needed), and as a result the interactions

between enablers from WP4 and WP5 may require adapting them (in the form of new interfaces, methods,

components, etc.).

1.1. Deliverable context

Keywords Lead Editor

Objectives O3 (Definition and implementation of decentralised security and privacy exploiting DLT):

Specification of DLT-based enablers in Security, Privacy and Trust vertical.

O4 (Definition and implementation of smart distributed AI Enablers): Specification of

Federated Machine Learning related enablers.

Work plan D5.1 takes input from:

• T3.1 (state-of-the-art): Novel components and technologies research for further design

choices

• T3.2 & T3.3 (use cases and requirements): To be evaluated and fulfilled with the

proposed enablers

• T3.5 (architecture): Design principles and high-level functionalities to cover

D5.1 influences:

• WP7 (pilots and validation): To later on materialise in pilot deployments

• WP8 (evaluation and assessment): To evaluate and assess results from testing within

pilots

D5.1 must be in line with:

• WP4 (core enablers): To define functional boundaries and interactions

• WP6 (testing, integration and support): To develop, test and deploy according to

DevSecOps methodology

Milestones This deliverable does not mark any specific milestone; still, it contributes to the realisation

of MS3 – Enablers defined, that will be achieved in M12. Although far in time (M24), it is

also central part of MS6 – Software structure finished.

Deliverables This deliverable receives inputs from D3.1 (State-of-the-art and Market Analysis Report),

D3.2 (Use Cases Manual & Requirements and Business Analysis Initial) and D3.5

(ASSIST-IoT Architecture Definition - Initial). Once enablers are being delivered, they will

feed the deliverables of WP6 related to testing, integration, distribution and documentation,

they will be the cornerstone of pilots’ implementations of WP7, and they will be a key part

in the technical evaluation to be performed under the scope of WP8.

1.2. The rationale behind the structure
This deliverable consists of 4 sections and two annexes. It starts with an introduction that outlines vertical

enablers and their relation to task-specific division. Next section includes specification of enablers divided into

tasks that they belong to. To facilitate the readers’ comprehension, the corresponding templates with their initial

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 11 of 58

specification (composed of a set of tables and diagrams) have been moved to an annex at the end of the

document, leaving in this section just the description and main functionalities provided by the identified

enablers. Finally, the last section of this document concludes with a summary of the future work carried out in

the work package that will be included in the second version of the deliverable. The first annex contains

extended information on Federated Learning taxonomy that was used during the analysis of FL-related

requirements and design of corresponding enablers. The second annex contains template tables and diagrams

for identified enablers.

1.3. Outcomes of the deliverable
A set of enablers have been formalised in this deliverable (structured information is mostly provided in the

annex for readers’ convenience). Formalisation includes: functionality provided, relations to plane enablers and

other vertical enablers, requirements and use cases mappings, and components that conform each enabler.

Enablers are described with respect to two categorisations. Firstly, verticals from the architecture and enablers

positioned inside are outlined (for more details on verticals description see D3.5). Secondly, enablers are

summarised with respect to tasks in WP5 that correspond to “application areas” that do not map directly onto

verticals, e.g., federated learning enablers belong to different verticals.

With respect to Self-* task, 5 enablers have been specified: (1) Self-healing device enabler (will be responsible

for ensuring that devices will automatically heal-up when environment causes some disturbance), (2) Resource

provisioning enabler (will horizontally scale (up or down) the resources devoted to a specific enabler (inside a

node) in a dynamic fashion), (3) Monitoring and notifying enabler, (4) Geo(Localisation) enabler (will be

directly used in pilots varying from coordinating heavy machinery in port to locating workers on construction

site), and (5) Automated configuration enabler (will keep heterogeneous devices and services synchronised with

their configurations).

Federated Machine Learning is an approach to train ML models that do not require sharing datasets with a

central entity. Enablers identified here include: (1) FL Orchestrator (will be responsible for coordinating the

overall Federated Learning process), (2) FL Training Collection (will be responsible for delivering back the

updated model), (3) FL Repository (a set of different databases, including initial ML algorithms, already trained

ML models, and auxiliary repositories for other additional functionalities), (4) FL Local Operations (will be

embedded within each FL involved party/device of the FL systems to assure local data processing), and (5) FL

Privacy (will guarantee that different parties are not able to derive insights about each other's training data).

Cybersecurity will provide protection against threats associated to ASSIST-IoT infrastructure. Cybersecurity

related enablers are: (1) Cybersecurity monitoring enabler (will provide security awareness, visibility and

infrastructure monitoring), (2) Cybersecurity monitoring agent enabler (will perform functions of an endpoint

detection and response system), (3) Identity manager enabler (will be responsible for identifying and

authenticating to have access to the resources by associating user rights with established identities), and (4)

Authorisation enabler (will be responsible for the authorisation phase in the access control process).

In ASSIST-IoT, privacy and trust per design will be addressed by the introduction of DLT-related enablers.

DLT-based enablers include: (1) Logging and auditing enabler (will allow the documentation of data usage),

(2) Data integrity verification enabler (will provide DLT-based data integrity verification mechanisms that allow

data consumers to verify the integrity of the exchanged data), (3) Distributed broker enabler (will support

immutability and non-repudiation of selected aspects of connections between enablers), and (4) DLT-based FL

enabler (will facilitates exchanges of parameters of on-device local data models in an immutable and

decentralised way).

Work on manageability and control enablers has started in M9 so they will be included in the second iteration

of this deliverable (D5.4 Software Structure and Final Design).

1.4. Lessons learnt
During the past months, the partners of the Consortium have focused their effort in developing the design

specifications of the enablers that will facilitate the realisation of the ASSIST-IoT architecture. From all this

work, the following insights have been extracted:

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 12 of 58

• MAPE-K1 (Monitor, Analyse, Plan, Execute, Knowledge) proposed by IBM as reference model for

autonomic control loops is a powerful tool to express most of the functionalities related to self-*. It

inspired the design of enablers assigned to Self-* vertical.

• Federated Machine Learning is still in a research phase in AI/ML domain (low TRL) with no industrial

developments. As a result, ASSIST-IoT aims at developing a stand-alone FL system, as several use

cases of the project are candidates for its use.

• ASSIST-IoT Federated Learning related use cases require centralised structure and horizontal data

partition (with respect to taxonomy discussed in the following sections).

• Principles of Federated Learning and DLT do not got together too well even though these areas initially

seemed to be aligned. Specifically, all parties that belong to a DLT infrastructure can access data that

is stored in DLT. On the other hand, FL imposes some restrictions on what should be accessed, e.g.

from information about consecutive model updates one may probably detect the nature of the data. As

a result, one should be very careful to decide what FL related information to store in DLT to protect

privacy of information. Eventually, some additional data protection mechanisms may be needed.

• Most of the enablers designed are generic and loosely-coupled to the use cases. As a result, they can be

easily leveraged in different environments but greater integration effort is needed to provide this

flexibility.

• Identification of vertical enablers was a daunting task because of their transversal nature.

• Identifying and specifying all the interactions needed between enablers is a demanding task. It requires

analysis in the context of specific endpoints, possible code modifications, addition or modification of a

component, etc. It may happen that some interactions may not be discovered until actual

developments/implementation starts. However, this analysis has to be pushed forward to avoid work

duplicities and prepare a clean and consistent architecture.

1.5. Deviation and corrective actions
The Consortium has made a great effort to envision and formalise the enablers that will be needed for the

realisation of the ASSIST-IoT architecture to address specific use cases. However, there are some deviations

with respect to the initial plan that have to be tackled during the next phase:

• The following enablers, even though initially proposed, have been removed from Security, Privacy and

Trust vertical: Collector enabler, Log management enabler, Storage and search analytics enabler,

Visualisation enabler. They were proposed for collecting data and performing analysis in the context of

cybersecurity, however their functionalities were not transversal, and could be covered by enablers

provided on horizontal planes. Hence, these enablers have been removed from this vertical, and proper

configurations will be applied when deploying them to offer the functions expected initially. Note, that

this deviation has already been corrected.

• In both WP4 and WP5 enablers data is collected from different sources. A set of unified mechanisms

should be proposed to avoid duplication of functionality and development effort.

Finally, all enablers were expected to reach the same level of maturity (in its definition and design) by M9. In

order to have the same level of readiness before starting technical deployment, it was planned to have a clear

description of each enabler functionalities, structure with listed components, including a selection of candidate

technologies to be verified during their implementation, etc. However, differences in advancement of work for

different enablers can be noticed. Importantly, this should not be considered a deviation on the execution but

the usual progress of the WP. There is the commitment to reach a steady state on the descriptions and the

development status of the enablers by M12, where the first Open Call of ASSIST-IoT will be launched.

1 An Architectural Blueprint for Autonomic Computing. IBM, eds. , IBM (2005). Online: https://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 13 of 58

2. Introduction

As it was stated in D3.5, the ASSIST-IoT architecture is structured following a multidimensional approach

composed of horizontal Planes and Verticals. The planes represent a classification of logical functions that fall

under the scope of a particular domain, whereas verticals target NGIoT properties that exist on different planes,

either independently or requiring cooperation of elements from different planes.

In D3.2 a study of requirements coming from stakeholders representing three industries (pilot-specific) was

presented. Architectural approach proposed in ASSIST-IoT should fulfil not only these requirements but also

be adoptable to other industry sectors providing solutions that will fill the gap between high-level design and

actual implementation of NGIoT solutions.

The main building block in ASSIST-IoT architecture is an enabler - an abstraction term that represents a

collection of components, running on nodes, that work together for delivering a particular functionality to the

system. They can be fully independent or may require of the cooperation of other enablers to deliver its intended

functionality. As explained in D3.5, software components will be containerised, following an encapsulation

paradigm in which enablers can communicate among them only through dedicated exposed interfaces, avoiding

the possibility of having direct communication between components of different enablers.

The enablers have been identified and designed based on requirements (D3.2) and SoTA analysis (D3.1). The

document focuses on providing initial specification of transversal (vertical) enablers. Each enabler from this

group is assigned to one or more vertical as outlined in the following subsections and described in detail in

D3.5. This section outlines how proposed enablers are positioned with respect to verticals. Note that, features

offered by verticals are also provided by designed choices guiding the ASSIST-IoT architecture (for details see

D3.5).

Figure 1. Enablers distribution among verticals

What is specific to WP5 is that enablers besides being distributed between verticals, are also designed and

implemented within tasks that do not correspond directly to the verticals. Tasks indicate problem/application

areas in which we may propose enablers that additionally can be classified within verticals. For example,

Federated Machine Learning has a dedicated task that should propose solutions in this field that are not vertical-

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 14 of 58

specific but rather application-specific. On the other hand, scalability has no dedicated task but is addressed by

various enablers and their components as a feature that the proposed architecture should provide by design.

Following subsections outline verticals and enablers (from different tasks) that were assigned to them. Next

section contains short descriptions of enablers following task division.

2.1. Self-*
Self-* enablers will realise autonomous nature of an ASSIST-IoT deployment. Enablers will realise one of the

Self-* capabilities (self-diagnosis, self-healing, self-awareness, self-organisation, self-configuration) fully or be

a fundamental building block allowing developers to implement features that rely on Self-*.

Enablers included in this vertical:

• Self-healing device (see 3.1.1)

• Resource provisioning (see 3.1.2)

• Monitoring and notifying (see 3.1.3)

• Geo (Localisation) (see 3.1.4)

• Automated configuration (see 3.1.5)

Additionally, one enabler related to Federated Machine Learning has also been assigned to this vertical:

• FL Privacy (see 3.2.6)

2.2. Interoperability
Interoperability can be considered on several levels, among them: technical (the ability of two or more

information and communication technology applications, to accept data from each other and perform a given

task), syntactic (allows two or more systems to communicate and exchange data in case that the interface and

programming languages are different) and semantic (the ability of different applications/artefacts/systems/… to

understand exchanged data in a similar way, implying a precise and unambiguous meaning of the exchanged

information).

Interoperability is provided by ASSIST-IoT architecture by design where approaches selected support this

feature even without providing dedicated enablers. In ASSIST-IoT, as it was stated in D3.5, interoperability

will be addressed in terms of scalability, security, privacy and heterogeneity of data sources.

Self-* enabler included also in this vertical (supporting interoperability):

• Automated configuration (see 3.1.5)

2.3. Scalability
The scalability principle of ASSIST-IoT, as it was stated in D3.5, aims at enabling elastic scaling deployments

ranging from modest barely local operations up to large heterogeneous deployments based on demand features

and functionalities. This scalability is essential in order to adapt to the different projects’ workloads,

performance, costs, and other business needs. Hence, the ASSIST-IoT will become a 3D-scalability approach:

software, hardware and communication capabilities. For more details, please refer to D3.5.

Federated Machine Learning related enablers that have been assigned to this vertical:

• FL Orchestrator (see 3.2.3)

• FL Repository (see 3.2.4)

• FL Local Operations (see 3.2.5)

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 15 of 58

2.4. Security, Privacy and Trust
Cybersecurity objective is to provide protection against threats associated to ASSIST-IoT infrastructure that

may conclude on an alteration of its characteristics to carry out activities not intended by owners, designers, or

users.

Broadly accepted Cybersecurity objectives associated to Information Assets are: Confidentiality, Integrity,

Availability, Authentication, Authorisation and Auditability. To provide effective threat mitigation initiatives

to accomplish with the aforementioned cybersecurity objectives, the most extended method includes

frameworks such as STRIDE or MITRE ATT&CK among others.

Enablers included in this vertical will provide response to cybersecurity objectives to mitigate cyber threats:

• Cybersecurity monitoring enabler (see 3.3.1)

• Cybersecurity monitoring agent enabler (see 3.3.2)

• Identity manager enabler (see 3.3.3)

• Authorisation enabler (see 3.3.4)

In ASSIST-IoT, privacy and trust per design will be addressed by the introduction of DLT-related enablers.

DLT is known for the opportunity to decentralise procedures, resilience to changes, anonymity, and

immutability to data. Enablers included in this vertical offering DLT-based functionalities include:

• Logging and auditing (see 3.4.1)

• Data integrity verification (see 3.4.2)

• Distributed broker (see 3.4.3)

• DLT-based FL (see 3.4.4)

Additional enabler in this vertical constitutes part of the Federated Machine Learning:

• FL Privacy (see 3.2.6)

2.5. Manageability
Manageability is one of the traits that ASSIST-IoT, as a next-generation IoT deployment, will need to have.

This property is considered one of the building pillars (vertical) of the architecture, applying transversally to all

four horizontal planes. The actual meaning of this vertical is the capacity of the system to be managed (i.e.,

changed, configured, interacted with) from a central point for the different type of users.

In practical terms, this vertical is aimed at allowing the system owner to handle the ASSIST-IoT deployment.

Not only it means to be able to see what is implemented (enablers, devices, etc.) but to install new enablers,

manipulate (e.g., create) new services and enablers and create overall workflows. The final objective is to

achieve an all-encompassing management of the system by the user to provide a grasp of control over the

deployment.

Regarding specific enablers, the manageability vertical will be composed of:

• Orchestration of enablers deployment and Workflow between enablers based on events, messaging

exchange: This enabler will be the most important provision of this vertical. It will consist of a

workflow-like (e.g., Node-Red) tool that will allow the user to deploy enablers at different locations of

the network (provided that it is physically possible). This enabler will be in charge of receiving

“instructions” from the user (administrator) on when, where and under which characteristics must an

enabler/set of enablers be deployed and will trigger enough backend queries to enablers’ interfaces (e.g.,

to the Smart Orchestrator) to make it happen.

• Enablers output management: This enabler will consist of a list of the enablers that are installed in the

deployment, the results that they generate and some actions associated to those outputs. This enabler

will as well include some backend interaction.

• Workflow between enablers based on events, messaging exchange, or other.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 16 of 58

• Devices management: Enabler for monitoring devices and nodes in a deployment, allowing to monitor

status and current work (in terms of enabler components).

Manageability tools will be incorporated to the solution once the rest of enablers of planes and verticals are

advanced. The task that manages the creation of manageability enablers has started some months later than the

others due to its cross-dependency nature, and therefore their interaction with the rest of the enablers of ASSIST-

IoT in the form that will be related in detail later in the project.

Specifically, more information on manageability enablers will be provided in deliverable D5.2.

Finally, it is worth mentioning that the FL Orchestrator (see 3.2.2), FL Repository (see 3.2.4) and FL Local

Operations (see 3.2.5) enablers would fit under this vertical as their mission is to provide the framework to

facilitate federated learning. Although it is detailed in other parts of the document, FL is not considered as a

“standalone” vertical in ASSIST-IoT, therefore it is reported and framed under the “manageability” distinction.

However, it must be noticed that it does not fall under the work of task T5.5 (manageability enablers) neither it

will be delivered at the same time or pace.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 17 of 58

3. Initial vertical enablers specification

The specification of all the identified enablers is formalised in the ASSIST-IoT enabler template. The original

template as provided in D3.5 is composed of four sections: (1) a table with general information about enabler,

including its description; (2) a basic diagram depicting the high-level enabler’s structure and communication

among its components; (3) a table summarising all the functionalities provided by its endpoints (APIs, or other

type of interfaces); and (4) a set of tables, one for each component, with information related to their rationale

and implementation aspects.

Providing all the information required in the template is a work in progress and some design choices have not

been taken yet. As a result, template used in this deliverable is a simplified version, e.g., the list of endpoints

(third section) and some implementation aspects of components in the fourth section of the templates (e.g.,

hardware and software requirements) are not included. Finally, for facilitating the reading of the section,

templates will be provided in Annex B, leaving just the description of the provided functionalities in the core

document. All provided templates will include the next elements:

Table 1. General information of the enabler

Enabler Name of the enabler (follow glossary guidelines to name it)

Id Short unique identifier/acronym

Owner and support Lead and supporting beneficiaries
Description and main

functionalities
Functional description of the enabler (description paragraph and bullet points for

describing its functionalities)

Vertical, related

capabilities and features

Vertical to which this enabler belongs. Vertical groups together logically connected

features and functionalities of a system, regardless of the plane on which they may be

implemented. ASSIST-IoT defines 5 verticals:

• Manageability

• Scalability

• Security, privacy and trust

• Interoperability

• Self-* (autonomy)

Every vertical involves capabilities, a concretisation of a capability is called a feature.

Plane/s involved Horizontal plane or planes on which the enabler's features are delivered

Relation with other

enablers
List of enablers (core or vertical) that interact with this one

Requirements mapping List of the IDs of the requirements addressed or considered

Use case mapping List of the IDs of the use cases related to this enabler

Required components List of the IDs of components required by this enabler

Figure 2. High-level diagram of an enabler

As aforementioned, any information related to endpoint will be provided in this iteration of the deliverable,

since just a few of enablers have part of this information at this moment.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 18 of 58

Table 2. Specific information of an enabler component

Enabler component Name of the enabler component

id Short unique identifier

Description and main

functionality
Functional description of the component (description paragraph and bullet points for

describing its functionalities that are required by enabler/s)

Target node/s
Physical device in which it can be installed (edge node, smart IoT device, cloud…). If not

decided just “to be decided”

Candidate technologies
Candidate technologies to implement it. In some cases, it might be more “final choices”

than in others, but at least we must present implementation options (can be something like

“custom component in Python using Flask”)

In the following sections each vertical enabler identified has been described in terms of the main functionalities

it provides. For more detailed descriptions including structure see Annex B - Enabler templates.

It is necessary to callout that enabler definition might change during iterative development process.

3.1. Self-* enablers

3.1.1. Self-healing device enabler

The Self-healing device enabler is responsible for ensuring that devices will automatically heal-up when enabler

will detect that device is unhealthy. The monitoring component is responsible for assessing the device’s state

of health. It collects and analyses data from multiple sources of information, such as memory usage, memory

access, network connection metrics (RSSI levels), or CPU usage, providing a health score. The health score

metrics are fed to a predefined set of rules (or to an anomaly-detection model) that determines whether the

device is in a healthy state or not. The output of this component is used to determine if the remediation has been

successful. When the device presents with symptoms of malfunctioning or intrusion, this enabler will determine

from a user-defined set of remediation processes, which should be used for a proper treatment. If after the

remediation, the device is not back to its normal state, the self-remediator is triggered to select another

remediation process from the list.

3.1.2. Resource provisioning enabler

This enabler will be able to horizontally scale (up or down) the resources devoted to a specific enabler (inside

a node) in a dynamic fashion. ASSIST-IoT aims at working on changing environments where resource

availability must be used for the sake of the system as a whole. The objective of the enabler is to allow such

scaling (per enabler and per node = K8s service in a topologically co-located cluster) so that software instances

will be assigned more or less resources according to the pressure put on the system. The “pressure put on the

system” will be represented through a series of indicators (metrics) that might be a combination of internal

performance (of the enabler) and the status of other enablers within the ASSIST-IoT deployment. Finally, this

enabler will be able to dynamically adapt (SELF-*) the provided resources to the enablers based on past data,

historic trends, ML models.

3.1.3. Monitoring and notifying enabler

This enabler could be viewed as a general purpose by representing it as a combination of high-level monitoring

module (which would allow to monitor devices, logs, etc.) and notifying module that could send custom

messages to predefined system components. By being endowed with Self-* capabilities this enabler will be able

to provide metrics predictions and smart notifications where applicable.

3.1.4. Geo(Localisation) enabler

To solve challenges of pilots we need to localise physical objects (containers in ports, workers on construction

sites), some devices should be aware of their position in relation to each other (aligning cranes and tractors).

This enabler will provide that functionality and will be directly used in pilot usages varying from coordinating

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 19 of 58

heavy machinery in port to locating workers on construction site. This enabler will be a basic building block

providing Self-awareness (about location of devices) to the ASSIST-IoT deployment.

3.1.5. Automated configuration enabler

Automated configuration enabler keeps heterogeneous devices and services synchronised with their

configurations. User can update configuration and define fall back configurations in case of errors. Self-*

component will be responsible for reacting to changing environment and updating configuration as necessary.

This enabler will realise self-configuration and will be a part of every non-trivial deployment.

3.2. Federated machine learning enablers

3.2.1. Introduction

The success of using Machine Learning (ML) to solve NGIoT problem will depend on the quality and quantity

of available training data. Therefore, ML approaches typically rely on the central management of training data.

However, centralising data for training is often not feasible or practical, for reasons of data privacy, regulatory

compliance, and the huge amount of data involved.

Federated learning (FL) is an approach to train ML models that do not require sharing datasets with a central

entity. In FL, a model is trained collaboratively among multiple parties, which keep with themselves their

training dataset, but they collaboratively participate in a shared FL process. The notion of parties might refer to

entities as different as data centres of an enterprise in different countries, mobile phones, cars, or different

companies and organisations.

ASSIST-IoT aims at developing a stand-alone FL system, as several use cases of the project are candidates for

its use. Due to still the infancy of FL approach into the AI/ML research ecosystem, it should be noticed that the

FL system to be developed in the project is considered more like a research-oriented platform than the rest of

the enablers of ASSIST-IoT platform. Hence, except only one FL enabler, it is expected that ASSIST-IoT

platform will not rely on the contemplated enablers of FL for working appropriately in the different industrial

environments of the project. In order to successfully design the appropriate ASSIST-IoT FL System, we have

followed the FL taxonomy (proposed by Li et. al.2). A detailed explanation of them is included in Annex A.

Following that taxonomy, the project partners ended with the below block diagram and flow chart for the

ASSIST-IoT Federated Learning process, including its associated FL enablers.

Figure 3. ASSIST-IoT FL system formed by five enablers

2 Q. Li et. al., “A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection”

arXiv:1907.09693v5

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 20 of 58

A brief description of the five different FL enablers is provided next, although a more detailed definition is as

usual, included in the Annex B.

3.2.2. FL Orchestrator

This enabler will be the responsible for coordinating the overall Federated Learning process. Hence, it will be

in charge of specifying details of FL workflow(s)/pipeline(s), such as job scheduling, FL life-cycle management,

or defining stopping criteria for the training. Whereas all these functionalities will be included within the FLS

Workflow manager component, the associated directives for the FL orchestration will be sent and received via

a FLS REST API server.

3.2.3. FL Training Collector

As explained before, as well as in the Annex A, the FL training process involves that several independent parties

commonly collaborate in order to provide an enhanced ML model. In this process, the different local updates

suggestions shall be aggregated accordingly. This duty within ASSIST-IoT will be tackled by the FL Training

Collector, which will also be in charge of delivering back the updated model. The enabler will, therefore, form

by two main components: the FLTC Combiner, and the FLTC I/O. On the one hand, the FLTC combiner will

be mainly in charge of carrying out the aggregation/combination of local updates. It will include both

homogeneous and heterogeneous FedAvg solutions for e.g., Logistic Regression Models, Decision-tree Models,

or even Neural Network Models. FLTC I/O will provide a REST API to allow the input and output

communication to and from the FL training collector enabler, being responsible of receiving and FL local

updates that are sent to the FLC Combiner component, and communicating updates of the new FL model

obtained in the FLC Component to involved training parties or to the FL repository.

3.2.4. FL Repository

The FL repository will be a set of different databases, including initial ML algorithms, already trained ML

models suitable for specific data sets and formats, averaging approaches, and auxiliary repositories for other

additional functionalities that may be needed, and are not specifically identified yet. ML libraries will provide

a collection of ML models that can be either original ML models that can be adapted for FL (and, possibly,

other modules necessary to set up FML such as optimisers, pre-processors, etc.), or already FL-off-the-shelf

models. Among the FL Averaging modules, at this moment, FedAvg, and SecFed are expected to be supported.

All these libraries are planned to provide multiple implementations of the same functionality, optimised for

different computer hardware, or implemented in different programming framework languages. Each

library/database will be demarcated with metadata, specifying all necessary aspects of its functionality.

3.2.5. FL Local Operations

One of key goals of FL is to assure protection of privacy of data, owned by individual stakeholders. Therefore,

data is expected to be trained and used only locally. Therefore, an embedded enabler within each FL involved

party/device of the FL systems is needed. It has been defined as FL Local Operations enabler. The different

components and their rationale is explained next.

In IoT ecosystems each partner is likely to store data in its own format. Additionally, to apply a specific FL

approach (e.g., Neural Networks) data must have format that will allow use of specific ML models and will

allow joining locally trained models into the shared common model. Hence, one of the biggest problems with

application of FL into IoT ecosystems comes from statistical properties of data stored in different nodes, as the

use of FL should not depend on individual data formats. This can be achieved by transforming local data into

format used by the ML approach within the FL Local Operations enabler, which by the Data transformer

component, will perform transformations from local data formats to data formats required by the FL system.

Once the data has been properly formatted, it will be use as data ground for FL training locally via the embedded

ML trainer. The local results (i.e., the ML algorithm updates recommendations) will be sent to the FL training

collector in order to carry out the appropriate aggregation methodology over the common shared model. To do

so, both inputs and outputs updates will be sent through the Local Communications component, which it is

foreseen to be developed as a REST API server. Finally, when the FL training process has concluded, the final

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 21 of 58

shared ML model will be also used to deliver specific functionality by means of the Local Inference Engine of

the FL Local Operations enabler.

3.2.6. FL Privacy

The privacy of each party data is paramount in the FL process. Although the data will not be directly exposed

and will not go out of the involved parties’ premises, threatening models should be foresee over the

communication of model updates via encryption mechanisms. These mechanisms will be carried out within

ASSIST-IoT by means of the FL Privacy enabler, who will guarantee that different parties are not able to derive

insights about each other's training data. To do so, the enabler will be formed by three components. On the one

hand, a homomorphic encryptor will not permit outsiders to see the output model of each device/party (MITM

attacks). On the other hand, methods of creating differentially private noise will guarantee that Malicious

Aggregator cannot be allowed to infer which records are actual models and which not. Finally, the key protocol

exchanger will ensure that the communication during the training process is not compromised via TTL/SSL

certificates.

3.3. Cybersecurity enablers

3.3.1. Cybersecurity monitoring enabler

Cybersecurity monitoring enabler will consolidate the necessary information for cyber threat detection over the

deployed architecture and pilots. Cybersecurity monitoring enabler provides cyber security awareness and

visibility on cybersecurity objectives and will provide infrastructure cybersecurity monitoring.

The cybersecurity monitoring server will be responsible of collecting, processing, and analysing the incoming

information from the infrastructure under study and will consolidate an output that will provide cybersecurity

monitoring information related to different events. Figure 4 illustrates cybersecurity monitoring components

and how cybersecurity monitoring output produce the alerts based on processing rules of security events.

Figure 4. Security monitoring components

Monitoring server can rely on agents running on monitored endpoints that will forward collected data to the

monitoring server, as detailed in Figure 5. Monitoring server can also collect data coming from agentless devices

to consolidate log data via syslog among others possible methods.

Figure 5. Cybersecurity monitoring server agent

Cybersecurity monitoring server will present information on T43E8 Long Term Storage Enabler.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 22 of 58

3.3.2. Cybersecurity monitoring agent enabler

Cybersecurity monitoring agent enabler will report to security monitoring server. Security monitoring agent

enables execution of processes on the system target under study to provide relevant information if a

cybersecurity breach is produced. Security monitoring agent enabler will perform functions of an endpoint

detection and response system, monitoring and collecting activity from end points that could indicate a

cybersecurity threat.

3.3.3. Identity manager enabler

Identity manager enabler will be responsible for managing identities on the access control process.

Authentication is a process by which the credentials provided by an identified entity (computer, application, or

person) are compared with those memorised/created in the system to ensure that said entity is effectively who

or what it claims to be.

The main goal of the identity management is to ensure that only authenticated entities are granted access to the

specific resource (applications, systems, or IT environments) for which they are authorised. This includes

control over entities (i.e. user provisioning, or entities provisioning) and the process of onboarding new entities

(i.e. users, systems, etc).

Identity manager enabler will perform authentication phase of access control process. Identity manager will

process and validate the identity for later control the access to the resources by the authorisation enabler. Identity

Manager enabler will rely on OAuth2 protocol. OAuth2 model allows the delegation of the authentication

process to a remote server, granting a communication that keeps entity (user or system) authentication data

secure. Identity manager enabler using OAuth2 will communicate with Authorisation enabler implementing

XACML policy.

3.3.4. Authorisation enabler

Authorisation enabler will be responsible for the authorisation phase in the access control

process. Authorisation is a process of granting, or automatically verifying, permission to an entity (computer,

application, or person) to access requested information after the entity has been authenticated.

Authorisation enabler will be based on XACML standard security policies, results on obligations actions to be

deployed after the evaluation process. It will be composed with different components as described below:

• PAP. Policy Administration Point. Point which manages access authorisation policies.

• PDP. Policy Decision Point. Point which evaluates access requests against authorisation policies before

issuing access decisions.

• PEP. Policy Enforcement Point. The PEP component responds to where enforcement is going to take

place.

• PIP. Policy Information Point. The role played by PIP is to provide attribute values upon request from

the PDP context.

In ASSIST-IoT a federated authorisation enabler will distribute a security policy from cloud to the edge to be

locally evaluated by the PDP and enforced locally by the PEP. Federated PAP policy will be controlled by an

admin team and replicated locally in a local Access Control Policy.

Authorisation enabler on the edge will rely on T54E2 Data integrity verification enabler. The DLT Data integrity

verification enabler will be used to provide resistance to unauthorised changes to policies.

Figure 6 describes the decoupled cloud-edge approach for the Authorisation enablers components

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 23 of 58

Figure 6. Authorisation enabler – cloud and edge

3.4. DLT-based enablers

3.4.1. Logging and auditing enabler

This enabler will log critical actions that happen during the data exchange between ASSIST-IoT stakeholders

to allow for transparency, auditing, non-repudiation and accountability of actions during the data exchange. It

will also log resource requests to help providing digital evidence and resolve conflicts between stakeholders,

when applicable.

Billing mechanisms based on the logged actions may be developed if this is deemed necessary depending on

the requirements of each use case, i.e. if the consumption of specific data can be regarded as billable.

3.4.2. Data integrity verification enabler

This enabler will provide DLT-based data integrity verification mechanisms that allow data consumers to verify

the integrity of the exchanged data. The data integrity is possible due to the characteristics of the DLT

itself. Ledgers in DLT allow only the data addition as they are append-only. Moreover, in permissioned

Blockchain networks, only authorised users can issue transactions and only authorised nodes can validate the

transactions that are added to blocks. Finally, the consensus algorithms used by Blockchain networks are

implementing guarantees that attackers have to compromise the majority of the network to be in place to make

malicious changes on the chain.

3.4.3. Distributed broker enabler

This enabler will provide secured data sharing mechanisms as regards the data exchange between different

heterogeneous IoT devices belonging to various edge domains and/or between different enablers of the

architecture.

The mechanism will focus on providing a distributed broker service that will serve as a registry of all the

domains and/or ASSIST-IoT enablers that act as data producers and/or data consumers. Indexing and querying

services will facilitate the efficient retrievability of the stored (meta)data.

This enabler may also act as a facilitator to the enablers that will provide semantic interoperability by providing

searchable metadata of the interoperable domains complying with the FAIR principles.

3.4.4. DLT-based FL enabler

This enabler will foster the use of DLT-related components to exchange the local, on-device models (or model

gradients) in a decentralised way allowing for decentralised verification of local model updates, avoiding single

point of failures and acting as a component to manage AI contextual information in an immutable form, also

avoiding alteration to the model data.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 24 of 58

4. Future Work

This document is a first deliverable for WP5 and presents work done so far. Since this deliverable will have a

second iteration, the specifications included here may be extended or updated as the project evolves. Enablers

identified were classified according to verticals and tasks described using a template. It includes a table with

main functionality and general information, a high-level diagram of its components, and a dedicated table for

each of its components, in which rationale and candidate technologies for their implementation are highlighted.

Next version of the deliverable will include enabler template extended with additional information such as

endpoints specification.

The finalisation of this deliverable will initiate development of related software, therefore next tasks will be to:

• Fill in missing information such as endpoint/API specification for each enabler and component,

• Establish details of interactions between WP5 and WP4/5 enablers (so far relations have been identified

but nature and protocols for the interactions need to be formalised),

• Make any adjustments necessary (e.g., slight modification in provided functionalities, change in enabler

structure, change in selected technologies),

• Prepare the backlog of tasks, distribution of work and kick-off of implementation activities,

• Deliver first results - ready and available by M18 (however, the degree of development will not be

homogeneous for all the enablers).

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 25 of 58

Annex A - Federated Learning

taxonomy
A.1 - Introduction

In order to successfully design the appropriate ASSIST-IoT FL System, we have followed the FL taxonomy

identified in Li et. al.3 that relies on six main aspects: (i) communication architecture, (ii) scale of federation,

(iii) data partitioning, (iv) ML model, (v) privacy mechanism, and (vi) motivation of federation. A detailed

explanation of them is presented next.

A.1.1 - Communication architecture

There are two major ways of communications in FL Systems: centralised and decentralised design. Both

options are illustrated in Figure 7, and described next.

Figure 7. Communication Architecture options for FL (left: centralised, right: decentralised)

• In the centralised design, the manager aggregates the local ML models obtained from the involved

parties and send back the updated model for new training iterations. Therefore, the parameter updates

on the global model are always done in this manager, sometimes also called Aggregator or Collector.

The most commonly known example of Centralised FL architecture is the Google Keyboard – Gboard.

In this system, the server collects local model updates from users’ devices and train a global model. The

global model is next sent back to the users for either new training rounds or for inferencing.

• In a decentralised design, there is not a single point of truth, i.e., there is not a manager. In this design,

the communications are performed among the parties, who are able to update the global parameters

iteratively. While the centralised design has been regularly used in existing research studies, the

decentralised design may be preferred on those scenarios in which concentrating the averaging process

on a single server may bring potential risks or bias. However, the design of a decentralised FL system

is far more challenging as all involved parties in the training have to be computational capable to support

the Federated averaging during the learning process. Additionally, another major challenge is that it is

hard to design a protocol that can treat every party almost fairly with a reasonable communication

overhead. An example of a FL decentralised architecture can be a decentralised cancer diagnosis system

3 Q. Li et. al., “A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection”

arXiv:1907.09693v5

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 26 of 58

among hospitals, who do not want to rely on a single manager for the aggregation, and they agree on

carrying out with the averaging in a distributed fashion.

A.1.2 - Scale of Federation

The FL Systems can be categorised into two typical types by the scale of federation: cross-silo and cross-device.

The differences between them lie on the number of parties and the amount of data stored in each party.

• In cross-silo, the parties can be either independent organisations or independent data centres of a single

organisation. The scale is usually assign for a relatively small number of parties, and each of them has

a relatively large amount of data to be used for training as well as high computational power. For

example, Amazon wants to recommend items for users by training the shopping data collected from

hundreds of data centres around the world. Each data centre possesses a huge amount of data as well as

sufficient computational resources.

• In cross-device, on the contrary, the number of parties is relatively large and each party has a relatively

small amount of data as well as computational power. The parties are usually IoT devices. The previous

example of Gboard is a cross-device FL System. Under this scenario, the FL system should be therefore

powerful enough to manage a large number of parties involved in the training, and deal with possible

issues such as the unstable connection between the devices and the server. Another big challenge comes

from the energy consumption concern, so that IoT devices cannot be asked to conduct complex training

tasks, and restrict the ML model to be trained and inferenced.

A.1.3 - Data partitioning

FL Systems are also categorised in horizontal, or vertical data partitioning based on how data are distributed

over the sample and feature spaces.

• In horizontal data partitioning, the datasets of different parties have the same feature space but little

intersection on the sample space. This is the natural data partitioning on cross-device setting (which

will be the main structure of ASSIST-IoT FL use cases), where different parties try to improve their

model. Since the local data are with the same feature space, the parties can train the local models using

their local data with the same model architecture. The global model can simply be updated by averaging

all the local models. It is most commonly data partitioning on the majority of FL studies up to date, and

the most popular framework of horizontal FL is FedAvg. Apple’s ‘Hey Siri’ or Google’s ‘OK Google’

wake-word recognition are typical application of horizontal data partitioning (each user says same

sentence but different voice).

• In vertical FL, the datasets of different parties have the same sample space but differ in the feature

space. An example can be These two departments share the same sample space (i.e., all the residents in

the country) but each of them only has one part of features (e.g. housing or tax related personal data).

Entity alignment techniques to collect the overlapped samples of the parties are usually adopted in novel

FL systems. Then, the overlapped data are used to train the shared model using encryption methods.

Cooperation among government agencies can be treated as a situation of vertical partition. Suppose the

department of taxation requires the housing data of residents, which are stored in the department of

housing, to formulate tax policies. Meanwhile, the department of housing also needs the tax information

of residents, which is kept by the department of taxation, to adapt their housing policies.

A.1.4 - ML models

Since FL is used to solve ML problems, the parties usually want to train state-of-the-art ML models, as described

next:

• The most popular ML models are neural networks (NN), which achieve state-of-the-art results in many

AI tasks, like image classification and word prediction. From FL perspective, there are many studies

based on stochastic gradient descent (SGD), which can be used to train NNs, and many FL frameworks

are proposed based on this approach. However, not all IoT devices are hardware-capable to exploit this

type of ML models.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 27 of 58

• Other widely used ML models are decision trees, which re highly efficient to train and easy to interpret

compared with NNs. A tree-based FL System is designed for the training for a single or multiple

decision trees (e.g., gradient boosting decision trees (GBDTs) and random forests). Due to its lower

complexity, GBDTs are especially popular recently in FL, and they have a very good performance in

many classification and regression tasks.

• Besides NNs and trees, linear models (e.g., linear regression, logistic regression, support vector

machines) are classic and easy-to-use models. These linear models are basically easy to learn compared

with other complex models (e.g., NNs), but they have lower accuracy performance.

A.1.5 - Privacy mechanisms

Although, ideally, the local data is expected not to be exposed in FL, the exchanged model parameters may still

leak sensitive information about the data. Since there may be many potential attacks against ML models such

as model inversion attack and membership inference attack, privacy mechanisms should be adopted in the FL

training process:

• Cryptographic methods such as homomorphic encryption, and secure multi-party computation (SMC)

are widely used in privacy-preserving ML algorithms. Basically, the parties have to encrypt their

messages before sending, operate on the encrypted messages, and decrypt the encrypted output to get

the final result. By applying these methods, the user’s privacy can be well protected. However, due to

the additional encryption and decryption operations, cryptographic methods increases high

computational overheads.

• Differential privacy guarantees that one single record does not influence much on the output of a

function. Many studies adopt differential privacy for data privacy protection in order to guarantee that

the parties cannot know whether an individual record contributes to the learning or not. By injecting

random noises to the data or the ML model parameters, differential privacy provides statistical privacy

as well as protection against the inference attacks. Nevertheless, the noise additions in the training

process produce less accurate models.

A.1.6 - Motivation of Federation

In real-world applications of FL, individual parties need the motivation to get involved. The motivation can be

regulations or incentives. FL inside a company or an organisation is usually motivated by regulations (e.g., FL

across different departments of a company). But in many cases, parties cannot be forced to provide their data

by regulations. Taking Google’s Gboard as an example, the company cannot prevent users who do not provide

data from using it. However, those who agree to upload input data may enjoy a higher accuracy of word

prediction. This kind of incentives can encourage every user providing their data to improve the performance

of the overall model. However, how to design such a reasonable protocol remains challenging. Incentive

mechanism design can be very important for the success of an FL System. There have been some successful

cases for incentive designs in Blockchain. The parties inside the system can be collaborators as well as

competitors. Other incentive designs are proposed to attract participants with high-quality data for FL.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 28 of 58

A.2 - ASSIST-IoT business scenarios and FL needs matrix

The following table aims at gathering in a single and comprehensive form the requirements and needs expressed by pilot owners with respect to the most suitable

development of FL in the project:

Table 3. Federated Learning aspects of ASSIST-IoT Use Cases

Pilot Business

Scenario

Potential FL

adoption

Communication

architecture

Scale of

Federation

Data

Partitioning

ML Model

implementation

Privacy

mechanism

Motivation

of

Federation

Port

Automation

RTG remote

control with AR

support

UC-P1-7 Target

visualisation

during RTG

operation

Centralised Cross-silo Horizontal TBD TBD Incentives

Smart safety

of workers

Occupation

safety and

health

monitoring

UC-P2-1

Worker’s health

and safety

assurance

Centralised Cross-

device

Horizontal TBD TBD Regulation

Cohesive

vehicle

monitoring

and

diagnostics

Vehicle

diagnostics

UC-P3A-2

Vehicles non-

conformance

causes

identification

Centralised Cross-

device

Horizontal TBD TBD Regulation

Vehicle exterior

condition

inspection and

documentation

UC-P3B-1

Vehicle’s

exterior

condition

documentation

UC-P3B-2

Exterior defects

detection support

Centralised Cross-silo Horizontal TBD TBD Regulation

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 29 of 58

Annex B - Enabler templates
B.1 - Self-*: Self-healing device enabler

Table 4 General information for Self-healing device enabler

Enabler Self-healing device enabler

Id SELF11

Owner and support PRODEVELOP, SRIPAS, UPV

Description and main

functionalities

This enabler aims at providing to IoT devices with the capabilities of actively

attempting to recover themselves from abnormal states, mainly divided in three

categories: security (jamming, DoS), dependability (data corruption, network

protocol violation), and long-term (HW’s end-of-life, HW unsupported capabilities),

based on a pre-established routines schedule.

Vertical, related

capabilities and features

Self-*, Federated Learning, Security, Privacy and Trust, Manageability - as self-

healing is an universal capability, it actions might affect all other enablers and/or

functionalities across all verticals.

Plane/s involved
• Device and Edge Plane

• Smart Network and Control Plane

Relation with other

enablers

• T42E2: SDN controller

• T42E3: Auto-configurable Network enabler

• SELF15: Automated device connection and configuration

• SELF14: Monitoring and Notifying

• T44E3: Performance and usage diagnoses enabler

Requirements mapping

• R-C-5: Local processing capabilities

• R-P1-2: CHE location availability

• R-P1-21: Remote reliability capabilities

• R-P2-3: Smart wristband for construction workers

• R-P2-18: Temporary storage

• R-P2-4: Continuous authentication for wristband

• R-P2-16: Device reliability and durability

• R-P3A-9: Edge Intelligence

• R-P3A-11: Connectivity between OEM and fleet

Use cases mapping

• UC-P1-2: CHE location tracking

• UC-P1-5: RTG-Truck alignment

• UC-P1-6: Wireless remote RTG operation

• UC-P2-1: Worker’s health and safety assurance

• UC-P2-5: Near-miss fall from height detection

• UC-P3A-2: Vehicle non-conformance causes identification

Figure 8. High-level structure for Self-healing device enabler

Components

Enabler component Self Detector

Id SELF11_DETECTOR

Description and main

functionality

The goal of this component is to collect information from the IoT device, and to

determine whether the IoT device is being compromised. In principle is foreseen to be

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 30 of 58

implemented as a lightweight Host-based Intrusion Detection System. If the device is

found to be compromised, the component issues an alert that is used by the Self

Monitor component

Target node/s Edge Node, IoT Gateway

Candidate technologies A Host-Based Instruction Detection System such as InfluxData Telegraf, CIoTA

Enabler component Self Monitor

Id SELF11_MONITOR

Description and main

functionality

The Self monitor component is responsible for assessing the device’s state of health.

It collects and analyses data from multiple sources of information, such as memory

usage, memory access, network connection metrics (RSSI levels), or CPU usage,

providing a health score. The health score metrics are fed to a predefined set of rules

(or to an anomaly-detection model) that determines whether the device is in a healthy

state or not. The output of this component is used to determine if the remediation has

been successful.

Target node/s Edge Node, IoT Gateway

Candidate technologies Node-Red, a custom based JavaScript framework; Thingsboard Community Edition

Enabler component Self Remediator

Id SELF11_REMEDIATOR

Description and main

functionality

When the device presents with symptoms of malfunctioning or intrusion, this

component’s job is to determine from a set of remediation processes, which should be

used for a proper treatment. The self-monitor component will assign a health score to

the remediation process in order to reflect the effectiveness in threating the device. If

after the remediation, the device is not back to its normal state, the self-remediator is

triggered to select another remediation process from the list

Target node/s Edge Node, IoT Gateway

Candidate technologies Custom-based Node-Red, Thingsboard Community Edition

B.2 - Self-*: Resource provisioning enabler
Table 5. General information for Resource provisioning enabler

Enabler Resource provisioning

Id SELF12

Owner and support SRIPAS, UPV

Description and main

functionalities

This enabler will be able to horizontally scale (up or down) the resources devoted to

a specific enabler (inside a node) in a dynamic fashion. ASSIST-IoT aims at working

on changing environments where resource availability must be used for the sake of

the system as a whole.

The objective of the enabler is to allow such scaling (per enabler and per node = K8s

service in a topologically co-located cluster) so that software instances will be

assigned more or less resources according to the pressure put on the system.

The “pressure put on the system” will be represented through a series of indicators

(metrics) that might be a combination of internal performance (of the enabler) and

the global status of the deployment (involving other enablers’ information).

Finally, this enabler will be able to dynamically adapt (SELF-*) the provided

resources to the enablers based on past data, historic trends, ML models.

Vertical, related

capabilities and features • Self-*

Plane/s involved
• Data Management Plane

• Device and Edge Plane

Relation with other

enablers

• T55E1: Devices Management - to check the status of the rest of devices, this

enabler must know which other devices do exist and how to reach them

• T55E3: Workflow between enablers - the relation with this enabler might be

complementary/substitutive to the previous; the objective is to realise the

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 31 of 58

“world” around the particular node where this enabler will run in order to get

“performance parameters/indicators”

• T44E2: Performance and usage diagnosis - to gather information - if needed- of

the global performance of the system

• T43E4: LTSE - to store metrics for further training of the ML model

incorporated

Requirements mapping

• RC-7: Edge-oriented deployment

• R-P3A-9: Edge intelligence

• R-P3B- 20: Information Pre-fetching

Use cases mapping

First, let’s note that this enabler will be present -as aforementioned- in any non-

trivial deployment of ASSIST-IoT. Therefore, the following bullet points do not

showcase an exclusive list of presence of the enabler but rather highlights those cases

in which the use of the functionality is explicitly mentioned to meet the objectives of

the pilot.

UC-P3A-1: Fleet in-service emissions verification

UC-P3B-1: Vehicle’s exterior condition documentation

Figure 9. High-level structure for Resource provisioning enabler

Components

Enabler component Pod Resources controller
Id T51E2_controller

Description and main

functionality

When the device presents with symptoms of malfunctioning or intrusion, this

component’s job is to determine from a set of remediation processes, which should be

used for a proper treatment. The self-monitor component will assign a health score to

the remediation process in order to reflect the effectiveness in threating the device. If

after the remediation, the device is not back to its normal state, the self remediator is

triggered to select another remediation process from the list.
Target node/s Edge node, IoT Gateway
Candidate technologies Custom component in Python, K8s HPA

Enabler component Inferring module
Id T51E2_inferring

Description and main

functionality

A module that will use a trained ML model (e.g., a time series forecasting method

trained with historic of that very enabler and/or others) to infer how many resources

will be needed to run it at a specific moment.

Target node/s Any ASSIST-IoT node
Candidate technologies Custom component in Python

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 32 of 58

Enabler component Desired state database
Id T51E2_state

Description and main

functionality

A database (lightweight, structured) just to manage and the store the current desired

state (in terms of pods replicas of the components) of each enabler. NOTE: This tiny

database could be substituted by one Collection inside the MongoDB of the enabler.

It has been left here for the sake of clarity and conceptual separation.

Target node/s Any ASSIST-IoT node
Candidate technologies SQLite

Enabler component Metrics Gatherer and Processor
Id T51E2_metrics

Description and main

functionality

A module that retrieves information from other enablers, other edge nodes and the

global system of the ASSIST-IoT deployment in order to build a custom metrics

database which the Pod Resources Controller will act upon.

Target node/s Any ASSIST-IoT node
Candidate technologies Custom component in Python

Enabler component Custom Metrics Database
Id T51E2_database
Description and main

functionality
A database for storing combined metrics per enabler, so ML models can be trained

with these data.

Target node/s Any ASSIST-IoT node
Candidate technologies MongoDB

B.3 - Self-*: geo (Localisation) enabler
Table 6 General information for geo (Localisation) enabler

Enabler (geo) Localisation

Id SELF13

Owner and support SRIPAS, NEWAYS

Description and main

functionalities

To solve challenges of pilots we need to localise physical objects (containers in ports,

workers on construction sites), some devices should be aware of their position in

relation to each other (aligning cranes and tractors). We might need to realize

localisation using absolute coordinates (GPS) or relative (coordinates in a port).

Vertical, related

capabilities and features

• Self-* (autonomy)

• Self-* - system will react to the incoming events (detecting devices, devices

joining, configuration changing, etc.) and taking informed decision on what

action should be taken

• Interoperability - this enabler will work with heterogeneous devices, hence

interoperability must be taken into consideration

Plane/s involved

• Smart IoT Device - this enabler will connect and configured devices

• Edge Plane - self-explanatory, this enabler will connect and configured devices

• Smart Network and Control Plane - devices will be using various network

mediums (wireless, 5G, physical connection)

• Data Management Plane - this enabler will need to ensure interoperability

between heterogeneous devices

• Application and Services Plane - this enabler must ensure that there is an

interface with which an end user can communicate between the different

heterogeneous devices. The device location is track and traceable, be monitored,

be analysed, made visible, and if necessary, notifications can be received and

sent.

Relation with other

enablers

Vertical:

• T53E3: Identity Manager - devices that will be connecting must be properly

identified

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 33 of 58

• T53E1: Authorisation - devices that will be connecting must be properly

authorised

• SELF15: Automated Configuration enabler - devices that will be connecting

must be properly configurated

Requirements mapping

• R-C-7: Edge-oriented deployment

• R-P1-1: CHE location services

• R-P1-2: CHE location availability

• R-P1-3: CHE positioning accuracy

• R-P1-5: Container ID tracking system

• R-P2-1: Personal location tracking

• R-P2-2: Construction plant location tracking

• R-P2-11: Geofencing

• R-P2-14: Evacuation Instructions

Use cases mapping

• UC-P1-1: Asset location management - for location management assets must

know where they are

• UC-P1-2: CHE location tracking - for location tracking ASSIST-IoT needs to

know where it is

• UC-P1-5: RTG-Truck alignment - to align both device types, we need to

understand where they are

• UC-P1-6: Wireless remote RTG operation - system needs to understand where

it is

• UC-P2-1: Workers’ health and safety assurance

• UC-P2-2: Geofencing boundaries enforcement - need for localisation is self-

explanatory, of course within the buildings GPS cannot be used

• UC-P2-3: Danger zone restrictions enforcement - need for localisation is self-

explanatory, of course within the buildings GPS cannot be used

• UC-P2-4: Construction site access control - might be a stretch, but if site access

control could be location based

• UC-P2-5: Near-miss fall from height detection; Height fall accident detection -

if the fall occurs, we need to know the exact place of the accident including the

location data

• UC-P2-6: Safe navigation instructions - navigation requires localisation

Figure 10. High-level structure of geo(Localisation) enabler

Components

Enabler component Self-localisation Positioning & Alert

Id SELF13_Positioning & Alert

Description and main

functionality

The purpose of the localisation positioning and alert is to; 1) collect information about

(geo)location coordinates of the IoT device; 2) to give an alert to both the smart IoT

device and the OSH (Occupational Safety & Health) manager in case the smart IoT

device is located in an unauthorised zone or danger zone, or if an unsafe situation is

created due to an incident.
Target node/s Gateway/Edge node
Candidate technologies A custom based framework; REST, MQTT

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 34 of 58

Enabler component Self-localisation MAP

Id SELF13_MAP

Description and main

functionality

The purpose of MAP is to provide the latest information on indoor and outdoor

buildings, floors, and its surroundings, including information on geofencing, border

enforcement, danger zones, and escape and security routes. The incident log within

the map will be updated for the OSH management system..

Target node/s Edge Node, IoT Gateway
Candidate technologies A custom based framework; REST, MQTT

Enabler component Self-localisation Monitor

Id SELF13_LOCALISATION MONITOR

Description and main

functionality

The purpose of the localisation monitor is to collect the (geo)location coordinates and

alarms of all connected smart IoT devices, to determine if the IoT device is within an

authorised area and if there is a possible unsafe situation. The MAP component serves

as 3) input to gain insight into the latest map details and (geo)location status.
If an IoT device is in an unauthorised zone or danger zone, or if an unsafe situation is

created due to an incident, an alert is issued to both the smart IoT device and the OSH

manager, and an incident log is generated saved and the map updated.
Target node/s Edge Node, IoT Gateway
Candidate technologies A custom based framework; REST, MQTT

B.4 - Self-*: Monitoring and notifying enabler
Table 7. General information for Monitoring and notifying enabler

Enabler Monitoring and Notifying

Id SELF14

Owner and support SRIPAS, CERTH

Description and main

functionalities

This enabler could be viewed as a general purpose by representing it as a

combination of high-level monitoring module (which would allow to monitor devices,

logs, etc.) and notifying module that could send custom messages to predefined

system components.

For example, on construction sites we will monitor health signals of workers. Those

signals should be monitored and in case of breaching some threshold notification

should be sent and action might be taken.

Vertical, related

capabilities and features
• Self-*

Plane/s involved

• Device and Edge Plane – devices (smart, IoT) are part of the use cases for

various actions (e.g., monitor data)

• Application and Services Plane – monitoring will have to include an interface

for an end user to interact. Notification is similar to the monitoring

• Data Management Plane – monitoring and notification is based on data (real-

time with streaming, historical as reports). Depending on the case, the need for

streaming or historical data may arise.

• Smart Network and Control Plane (Network with SDN)

Relation with other

enablers

Vertical:

• A relation with T54E1 Logging and auditing enabler may exist. The enabler is

included in the Security, Privacy and Trust vertical.

Requirements mapping

• R-P1-1: CHE location services

• R-P1-2: CHE location availability

• R-P1-10: CHE identification

• R-P2-1: Personal location tracking

• R-P2-3: Smart wristband for construction workers

• R-P2-2: Construction plant location tracking

• R-P2-4: Continuous authentication for wristband

• R-P2-7: Monitoring the weather conditions at the construction site

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 35 of 58

• R-P2-10: Motion Pattern Monitoring and Analysis

• R-P2-12: Alerts and notifications minimisation

• R-P2-14: Evacuation Instructions

• R-P3A-10: Vehicle Dashboard Notifications

• R-P3A-7: Active monitoring mode initiation by the Aftersales service technician

capability

• R-P3B-19: Critical Damage Identification Time

Use cases mapping

• UC-P1-1: Asset location management

• UC-P1-2: CHE location tracking

• UC-P1-4: RTG-truck identification and authentication

• UC-P1-3: Container handling operations reporting - this might be a little bit of

stretch, but CHE needs to notify its operations to other components

• UC-P1-5: RTG-Truck alignment - RTGs and Trucks needs to notify each other

about their positions

• UC-P2-1: Workers’ health and safety assurance - tt is required in this UC that

after breaching some threshold values we need to send notifications across

various components of the system (for example notifying OSH manager or to

some components that takes action when unauthorised access was detected)

• UC-P2-2: Geofencing boundaries enforcement - when you breach fence the

notification will be sent

• UC-P2-3: Danger zone restrictions enforcement - similar to the above

• UC-P2-4: Construction site access control

• UC-P2-5: Near-miss fall from height detection

• UC-P2-6: Safe navigation instructions

• UC-P2-7: Health and safety inspection support

• UC-P3A-1: Fleet in-service emissions verification

• UC-P3A-2: Vehicle’s non-conformance causes identification

• UC-P3B-1: Vehicle’s exterior condition documentation

Figure 11. High-level structure of Monitoring and notifying enabler

Components

Enabler component Edge Devices and Sensors
Id SELF14-01

Description and main

functionality

The edge devices have to capture data from the real world in order to kick off the

process. The edge devices and the measurements to provide are dependent on the use

case. The port automation has the need to capture the location and operational status

for CHE and the containers’ location. Work safety requires a wider range of data like

weather, personal health data, and location.
Target node/s TBD
Candidate technologies TBD

Enabler component IoT Gateway
Id SELF14-02

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 36 of 58

Description and main

functionality

The IoT Gateways, their capabilities, and their usage can have an impact on the

enabler. For instance, the gateway can perform an action and share that there is a

critical situation.
Target node/s TBD
Candidate technologies TBD

Enabler component Repository (Database)

Id SELF14-03
Description and main

functionality
The enabler has to handle data for monitoring and notification. An open issue to

research/ determine the type of the database (SQL or NoSQL).
Target node/s TBD
Candidate technologies TBD

Enabler component Communication Interface
Id SELF14-04
Description and main

functionality
A communication interface that will handle the message flow in the enablers’

components.
Target node/s TBD
Candidate technologies Kafka

B.5 - Self-*: Automated configuration enabler
Table 8. General information for Automated configuration enabler

Enabler Automated Configuration Enabler

Id SELF15

Owner and support SRIPAS

Description and main

functionalities

Automated Configuration Enabler keeps heterogenous devices and services

synchronised with their configurations. User can update configuration and define

fallback configurations in case of errors. Self-* component will be responsible for

reacting to changing environment and updating configuration as necessary.

Vertical, related

capabilities and features

• Self-* - system will react to the incoming events (detecting devices, devices

joining, configuration changing, etc.) and taking informed decision on what

action should be taken

• Interoperability - this enabler will work with heterogenous devices, hence

interoperability must be taken into consideration

Plane/s involved

• Device and Edge Plane – self-explanatory, this Enabler will connect and

configured devices.

• Smart Network and Control Plane – devices will be using various network

mediums (wireless, 5G, physical connection)

• Data Management Plane – this enabler will need to ensure interoperability

between heterogeneous devices

Relation with other

enablers

Horizontal:

• T43E1: Semantic repository - Semantic Repository will allow to retrieve data

model from the SR enabler and easily communicate with already connected

device and send the required configuration

• T43E3: Semantic annotation - it would be great if we could have

configuration in some independent form and then use SA to annotate that

configuration and send it to the device

Vertical:

• T53E3: Identity Manager - devices that will be connecting must be properly

identified

• T53E1: Authorisation - devices that will be connecting must be properly

authorised

• T53E4: Monitoring Agent - required for threat detection

• T53E4: Cybersecurity monitoring - required for threat detection

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 37 of 58

Enabler Automated Configuration Enabler

• T54E1: Logging and auditing - configure device events should be securely

stored, so a user can easily retrace everything that happened

Requirements mapping

• R-C-1: Data sovereignty, R-C-2: Data governance, R-C-3: Compliance with

legal requirements on data protection, R-C-5: Local processing capabilites,

R-C-6: Data persistence and trust - we will be storing configuration data,

which might include sensitive data, so all data related requirements apply

• R-C-7: Edge-oriented deployment - this enabler should be easily deployed on

the edge

• R-P1-6, R-P1-16 or R-P1-24 - as a means of sending the configuration data

• R-P2-11: Geofencing - updating geofencing area (TBD)

• R-P2-14: Evacuation instructions - updating evacuation instruction (TBD)

• R-P3A-5: Data Storage

• R-C-5: Local processing capabilities

• R-P1-21: Remote reliability capabilities

• R-P3A-7: Active monitoring mode initiation by the Aftersales service

technician capability

• R-P3B-19: Critical Damage Identification Time

Use case mapping

• UC-P1-1: Asset location management - when new assets are joining - they

need to automatically download config, environmental data, etc.

• UC-P2-1: Workers’ health and safety assurance - all workers’ wearables

need to be automatically be able to connect and be configured. Manual

configuration would involve too much human operation

• UC-P2-6: Safe navigation instructions - configuration for navigation (maps,

updated danger zones, etc.) need to be keep updated automatically.

• UC-P3A-3: Sending new configuration to PCM

Figure 12. High-level structure for Automated configuration enabler

Components

Enabler component Configuration Repository

Id SELF15-Db

Description and main

functionality

A place to store details about configuration, configuration rules and information

about whether all connected devices received configuration.

Target node/s Node powerful enough to host database

Candidate technologies Postgres

Enabler component Configuration Applier

Id SELF15-Cfgr

Description and main

functionality

Component responsible for checking and applying configuration updates via

Device/Service Connector as well as reacting to failure events.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 38 of 58

Enabler component Configuration Applier

Target node/s Edge node powerful enough to host JVM

Candidate technologies Akka Typed, Scala

Enabler component Message Queue

Id SELF15-mq

Description and main

functionality
Transporting messages internally between components and connectors

Target node/s At least 3 nodes, to ensure reliability

Candidate technologies Kafka

Enabler component Device Registry

Id SELF15-rs

Description and main

functionality

Component responsible for registering devices/connector types and providing list of

devices for defined connector types.

Target node/s Edge node powerful enough to host JVM

Candidate technologies Akka Typed, Scala

Enabler component Intelligence Component

Id SELF15-smrt

Description and main

functionality

Module will be responsible for deciding which configurations and configuration

values should be applied. This could be realised in one of two ways:

• User will define the desired state of the system and intelligence component will

apply the values

• User will define rules and in case of some events configuration will be updated.

Target node/s Edge node powerful enough to host JVM

Candidate technologies Akka Typed, Scala

B.6 - Federated machine learning: FL Orchestrator
Table 9. General information for FL Orchestrator

Enabler FL Orchestrator

Id T52E1

Owner and support PRODEVELOP, SRIPAS, UPV

Description and main

functionalities

In general, FL takes place on local nodes training local version of the shared model

and producing parameters to be combined to deliver a new (improved) version of

the global/shared model. Moreover, the basic version of FL consists of multiple

workers and a central manager and follows the vanilla master-slave pattern.

However, FL can involve also additional nodes (virtual or real) that combine

selected groups of parameters in a scenario-specific order (e.g., mediator nodes).

This may happen when, among others, the system is to deal with complex data

ownership structures, or when data is unbalanced. The FL orchestrator is

responsible of specifying details of FL workflow(s)/pipeline(s). This includes FL

job scheduling, managing the FL life cycle, selecting and delivering initial

version(s) of the shared algorithm, as well as modules used in various stages of the

process, such as training stopping criteria. Finally, it can specify ways of handling

different “error conditions” that may occur during the FL process.

Vertical, related

capabilities and features

• Manageability - it shall manage/orchestrate the training process among the

involved parties

• Scalability - it should be able to add/remove desired/undesired parties from

the training as well as inferencing processes

Plane/s involved
• Smart Network and Control Plane - a network interface should be managed

in the communication between parties – mediators (if any) - masters

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 39 of 58

Enabler FL Orchestrator

Relation with other

enablers

• T44E4: OpenAPI management enabler

• T52E2: FL Training collector

• T52E3: FL repository

• T52E4: FL Local Operations enabler

• T52E5: FL Privacy enabler

Requirements mapping

• R-C-2: Data governance

• R-C-3: Compliance with legal requirements on data protection

• R-C-5: Local processing capabilities

• R-C-7: Edge-oriented deployment

• R-P3A-9: Edge intelligence

• R-P3A-12: Edge connectivity

• R-P3B-15: Automatic defect detection

• R-P3B-21: Automatic recognition

• R-P3B-14: Defect classification categories

Use case mapping

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-2: Vehicle non-conformance causes identification

• UC-P3B-1: Vehicle’s exterior condition documentation

Figure 13. High-level structure of FL Orchestrator

Components

Enabler component FLS API server

Id T52E1_API

Description and main

functionality

Offers a REST API to allow the communication and interaction with FL Structure

components. Hence, it allows to retrieve information or perform FL management

actions, to FL parties or external actors.

Target node/s Cloud server, High-tier edge node

Candidate technologies Swagger

Enabler component FLS Workflow Manager

Id T52E1_WorkflowManager

Description and main

functionality

This component is in charge of defining workflow for a specific incarnation of FL

lifecycle. The workflow specifics are configured on the basis of a file containing

information in JSON format (scheduling candidates are global sate and optimistic

lock scheduling, single-party DAG scheduling, multi-party coordinated scheduling).

Workflow description also specifies, among others, source of initial shared

algorithm, ML technique to be used (possibly multi-component one), topology for

information exchange (parameter flow), use of additional/auxiliary nodes, method

used for parameter aggregation, handling of error conditions (e.g., one of workers

going offline/not delivering results), management module(s). It is also finally in

charge of defining when the training process should stop based on e.g., the federated

model convergence, or reaching a predefined max-iteration threshold .

Target node/s Cloud server, High-tier edge node

Candidate technologies FATE FLOW

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 40 of 58

B.7 - Federated machine learning: FL Training Collector
Table 10. General information for FL Training Collector

Enabler FL Training Collector

Id T52E2

Owner and support SRIPAS, NEWAYS, UPV, PRODEVELOP

Description and main

functionalities

In the context of this enabler, two aspects of the FL process need to be supported.

1. There exist multiple ways of combining local results to deliver new version of

the shared model (e.g., FedSGD, FedAvg); moreover, averaging can be

completed in a single step, or updates can be applied sequentially in a specific

order.
2. Different topologies of FL-running systems may be supported. For instance,

beyond the master-slave topology, in order to deal with unbalanced data,

additional layer of “Mediator Training collectors” have been recently proposed.

In this context one should acknowledge that as research on FL continues, new

methods of combining local results, and novel topologies (matching needs of

complex use cases) can be proposed. Hence, this enabler should be able to

accommodate them.
Hence, the FL training collect can be univocally instantiated, or in order to realise

more advanced topologies like the one using Mediators, multiple instances can be

configured within a given workflow (T52E1) to realise a hierarchical FL. The FL

training collector will consist of two components: (i) the combiner responsible of

providing updates with respect to the shared averaged model, and (ii) the I/O

component which will carry out the input and output communications of the enabler.

Plane/s involved
Smart Network and Control plane, a network interface should be managed in the

communication between parties – mediators (if any) - masters

Vertical N/A

Relation with other

enablers

• T43E8: Long-term data storage enabler

• T44E4: OpenAPI management enabler

• T52E2: FL Orchestrator

• T52E3: FL repository

• T52E4: FL Local Operations enabler

• T52E5: FL Privacy enabler

Requirements mapping

• R-P2-7: Monitoring the weather conditions at the construction site

• R-P2-8: Personal cooling system

• R-P3A-9: Edge intelligence

• R-P3B-15: Automatic defect detection

• R-P3B-21: Automatic recognition

• R-P3B-14: Defect classification categories

Use case mapping

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-2: Vehicle non-conformance causes identification

• UC-P3B-1: Vehicle’s exterior condition documentation.

Figure 14. High-level structure for FL Training Collector

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 41 of 58

Components

Enabler component FLTC I/O
Id T52E2_IO

Description and main

functionality

Provides a REST API to allow the input and output communication to and from the FL

training collector enabler. On the one hand it is responsible of receiving and FL local

updates that are sent to the FLC Combiner component. On the other hand, it is

responsible of communicating updates of the new FL model obtained in the FLC

Component to involved training parties or to the FL repository. The communication

capabilities of this component will be designed so that it can conceptually deal with

situations in which more complex topologies are used.
Target node/s Cloud server, High-tier edge node
Candidate technologies Swagger

Enabler component FLTC Combiner

Id T52E2_Combiner

Description and main

functionality

This component will receive “suggestions” from a certain number (possibly all) local

nodes and combine them to generate an updated FL model. It can include both

homogeneous and heterogeneous FedAvg solutions for e.g., Logistic Regression Models,

Decision-tree Models, or even Neural Network Models. Finally, it will broadcast the

aggregated model back to involved parties.
Target node/s Cloud server
Candidate technologies FedML

B.8 - Federated machine learning: FL Repository
Table 11. General information for FL Repository

Enabler FL Repository

Id T52E3

Owner and support SRIPAS, NEWAYS, PRODEVELOP, UPV

Description and main

functionalities

One of key aspects of application of Federated Learning in IoT ecosystems is making

it configurable. In this context, the FL Repository enabler is proposed. This

repository will store (and deliver upon request/need) the ML algorithms or ML

models. The FL repository will consist of four main components: ML Algorithms

libraries (that gathers ML algorithms in its first stage, i.e., without involving any

modelling associated with a particular training data set), ML models libraries

(intermediary or final versions of ML models, once they have been already trained

with a particular data set), Collectors (averaging algorithms to be used on the FL

training process – if used), and Auxiliary component (for any needed additional

module). Note that each component will be demarcated with metadata, specifying all

necessary aspects of its functionality. Moreover, multiple implementations of the

same functionality, optimised for different computer hardware and/or implemented

in different languages, may also be stored. While it is assumed that majority of

components will be stored as source code, use of binaries are not precluded.

Plane/s involved
• Device and Edge Plane - as the FL repository may be instantiated with edge

devices

• Data Management Plane - in order to collect several ML data repositories

Vertical

• Manageability - it shall manage/orchestrate the training process among the

involved parties

• Scalability - it should be able to add/remove desired/undesired parties from the

training as well as inferencing processes

Relation with other

enablers

• T43E8: Long-term data storage enabler

• T44E4: OpenAPI management enabler

• T52E1: FL Orchestrator

• T52E2: FL Training collector

• T52E3: FL repository

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 42 of 58

Enabler FL Repository

Requirements mapping

• R-C-2: Data governance

• R-C-3: Compliance with legal requirements on data protection

• R-C-5: Local processing capabilities

• R-C-7: Edge-oriented deployment

• R-P2-7: Monitoring the weather conditions at the construction site

• R-P2-8: Personal cooling system

• R-P3A-9: Edge intelligence

• R-P3A-12: Edge connectivity

• R-P3B-15: Automatic defect detection

• R-P3B-21: Automatic recognition

• R-P3B-14: Defect classification categories

Use case mapping

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-2: Vehicle non-conformance causes identification

• UC-P3B-1: Vehicle’s exterior condition documentation

Figure 15. High-level structure for FL Repository

Components

Enabler component ML Algorithms library

Id T52E3_ML_Algorithms

Description and main

functionality

These libraries will be used by local nodes to instantiate local processes (T52E1). The

way that libraries (modules) will be stored will be similar to the way that standard ML

libraries It will made available ML algorithms that can be used for either regular ML

modelling, or for FL modelling. Moreover, as in the well-known cases of use of external

ML modules, appropriate ML library modules are to be downloaded to the local node,

installed and used to complete model training.

Target node/s Cloud server, High-tier edge node

Candidate technologies
Decision concerning way in which the metadata will be implemented and used needs to

be further investigated. The two main approaches are: (i) use of semantic technologies,

or (b) use of XML-based demarcation, such as Scikit-learn

Enabler component ML Models library

Id T52E3_ML_Algorithms

Description and main

functionality

The repository will also persist ML trained models. These models can be conceptualised

in two “scenarios”.

a. If the enabler is installed on a local node, it will store models that are currently in

training (note that local node can be involved in multiple FL processes realised

independently) and/or are “in use” by this node.
b. If the repository is instantiated in some “more central location” it will store current

versions of shared models (including initial models). Here, depending on the

topology, shared models may represent a group of nodes (e.g., in the case of use of

Mediators), or be common to all nodes.
Target node/s Cloud server, High-tier edge node

Candidate technologies TensorFlow YOLO

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 43 of 58

Enabler component FL Collectors library
Id T52E3_FL_Collectors

Description and main

functionality

As described in the FL Training Collector (T52E2), different Federated averaging

algorithms can be applied to combine local results. This component of the FL repository

will store them.
Target node/s Cloud server, High-tier edge node
Candidate technologies FedML

Enabler component Auxiliary component
Id T52E3_Auxiliary

Description and main

functionality

Any other modules that may be needed to instantiate FL can be also stored in the FL

repository. Among them possible modules related to process verification, error handling,

stopping criteria, authorisation, belong to this category.
Target node/s Cloud server, High-tier edge node
Candidate technologies FATE Flow, FedML

B.9 - Federated machine learning: FL Local Operations
Table 12. General information for FL Local Operations

Enabler FL Local Operations Enabler

Id T52E4

Owner and support SRIPAS, PRODEVELOP, UPV

Description and main

functionalities

One of key goals of FL is to assure protection of privacy of data, owned by individual

stakeholders. Therefore, data is expected to be used only locally, to train local

version of the shared model, and only parameters update proposals of the ML

algorithm are shared with other master or other participants. When the FL training

process has concluded, the final shared ML model is used to deliver specific

functionality, also called inference engine. Both operations (model training and

model inference) involve access to private data. This means that it is crucial to

“encapsulate” local processes within a single “node” (that is controlled by data

owner). However, it should be noticed that the data that is being used in both FL

training processes has to be in the same format, which is imposed by the ML model

that is being employed. In order to carry out with all these local operations, the FL

Local Operation enabler is proposed. It will consist of four components: Local data

transformer component (that will be in charge of guaranteeing that data is

appropriately formatted for the FL model in use), Local Model training component,

Local Model inference component, and Communication component (to enable in

and out communications between involved local parties and FL orchestrator and FL

collector).

Vertical, related

capabilities and features

• Manageability - it shall manage/orchestrate the training process among the

involved parties

• Scalability - it should be able to add/remove desired/undesired parties from the

training as well as inferencing processes.

Plane/s involved
• Smart Network and Control plane, a network interface should be managed in

the communication between parties – mediators (if any) - masters

Relation with other

enablers

• T43E8: Long-term data storage enabler

• T44E3: Performance and Usage diagnosis enabler

• T44E4: OpenAPI management enabler

• T52E1: FL orchestrator

• T52E2: FL Training collector

• T52E3: FL repository

• T52E4: FL Local Operations enabler

• T52E5: FL Privacy enabler

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 44 of 58

Requirements mapping

• R-C-2: Data governance

• R-C-3: Compliance with legal requirements on data protection

• R-C-5: Local processing capabilities

• R-C-7: Edge-oriented deployment

• R-P2-7: Monitoring the weather conditions at the construction site

• R-P2-8: Personal cooling system

• R-P3A-9: Edge intelligence

• R-P3A-12: Edge connectivity

• R-P3B-15: Automatic defect detection

• R-P3B-21: Automatic recognition

• R-P3B-14: Defect classification categories

Use case mapping

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-2: Vehicle non-conformance causes identification

• UC-P3B-1: Vehicle’s exterior condition documentation.

Figure 16. High-level structure for FL Local Operations

Components

Enabler component FL Local Data transformer

Id T52E4_DataTransformer

Description and main

functionality

In IoT ecosystems, each partner may (and is likely to) store data in its own (private/local)

format. Use of FL requires transformation of appropriate parts of local data into the

correct format. This format has to be described as part of the FL configuration, and all

participating nodes have to oblige. This may be achieved by node owner providing

appropriate transformation component. However, such component can be envisioned as

being downloaded from the FL Repository (T52E3). Moreover, transformation may

involve creation of a separate (sub-)repository consisting of only FL-bound data, or be

based on performing translation “on the fly”, during model training and/or inference.

Note that it is easy to formulate rationale why one could create a (sub-)repository for

FL training data, while to apply translation on the fly during model application. It should

be stressed that transformations are applied only to data that participates in FL-related

activities
Target node/s Edge node
Candidate technologies Scikit-learning, LabelEncoder

Enabler component FL Local Model trainer

Id T52E4_Local_Model_trainer

Description and main

functionality

The Local Model training component is responsible for local model training. During

configuration it instantiates appropriate ML training libraries and, if this is the

beginning of the process, initial version of the shared model. This step can be completed

locally by the node owner, but this is unlikely. The main problem would be assuring

uniformity of training methods across nodes belonging to different owner. More likely,

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 45 of 58

Enabler component FL Local Model trainer
the necessary modules (ML algorithm libraries and the initial version of the shared

model) will be downloaded from the FL Repository (T52E3).
Target node/s Edge node
Candidate technologies TensorflowFederated, or FATEClient

Enabler component FL Local Data Inference

Id T52E4_ Local_Model_Inference

Description and main

functionality

The third component is responsible for use of the trained model. Here, the model may be

used (1) after the FL process is completed, or (2) it may start to be used from a certain

(predefined by the owner) level of quality of the shared model. In the latter case, each

new version of the shared model would replace the previous one. Obviously, it is

implicitly assumed that each new version of the shared global model will deliver better

quality of results. Here, data to be fed into the trained model is transformed using the

Data transformer component. Interpretation of the results of application of the model to

specific input data (including actions to be, possibly, undertaken on the basis of the

results) is likely to be provided by the data owner. However, it is also possible that

appropriate module is going to be downloaded from the FL Repository (T52E3).
Target node/s Edge node

Candidate technologies OpenVINO, OpenCV (for video inference)

Enabler component FL Local Communication

Id T52E4_Local_Communication

Description and main

functionality

Use of this component facilitates the only “correct” way to communicate in and out with

the node that is participating in FL. It is to be configured to send parameters (parameter

update proposals) to the FL Training Collector (T52E2) and receive back the updates to

be applied to obtain the next version of the shared model.
Target node/s Edge node
Candidate technologies Swagger

B.10 - Federated machine learning: FL Privacy
Table 13. General information for FL Privacy enabler

Enabler FL Privacy enabler
Id T52E5

Owner and support CERTH, SRIPAS, PRODEVELOP, UPV, NEWAYS

Description and main

functionalities

Enabler that guarantees that different parties are not able to derive insights about

each other's training data, based on messages exchanged during the training process

(e.g., weights). Methods of creating differentially private noise, and homomorphic

encrytpion will be available.

Vertical, related

capabilities and features
• Self-* (Self-healing, Self-monitoring)

• Security, Privacy and Trust

Plane/s involved
• Device and Edge Plane

• Data Management Plane

Relation with other

enablers

• T43E8: Long-term data storage enabler

• T44E3: Performance and Usage diagnosis enabler

• T44E4: OpenAPI management enabler

• T52E1: FL orchestrator

• T52E2: FL Training collector

• T52E3: FL repository

• T52E4: FL Local Operations enabler

Requirements mapping

• R-C-2: Data governance

• R-C-3: Compliance with legal requirements on data protection

• R-C-5: Local processing capabilities

• R-C-7: Edge-oriented deployment

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 46 of 58

Use case mapping

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-2: Vehicle non-conformance causes identification

• UC-P3B-1: Vehicle’s exterior condition documentation

Figure 17. High-level structure for FL Privacy enabler

Components

Enabler component Homomorphic encryptor
Id T52E5_Homomorphic_Encryptor

Description and main

functionality

An encryption model is needed to ensure data confidentiality. Encryption models are

transforming the data and are valuable to be executed prior to any data transferring. As

data need to be stored or perform calculations, a homographic model may be the most

appropriate model.
Target node/s Nodes that have to send the FL output
Candidate technologies Paillier Encryption, Affine Homomorphic Encryption

Enabler component Differential privacy
id T52E5_DiffPrivacy

Description and main

functionality

Differential privacy mechanism is to run prior to any data transaction. The mechanism

adds noise in the data making it harder for attackers to get the data. The process is a

rigorous mathematical framework and calls for computational power.
Target node/s Nodes that have to send the FL output
Candidate technologies TBD

Enabler component Keys protocol Exchanger

id T52E5_ProtocolExchanger

Description and main

functionality
Key exchange protocols can enhance the confidentiality and integrity in the network’s

communication. A paradigm that can be implemented is the SSL/TLS.

Target node/s Nodes that have to send the FL output

Candidate technologies TLS/SSL

B.11 - Cybersecurity: Cybersecurity monitoring enabler
Table 14. General information for Cybersecurity monitoring enabler

Enabler Cybersecurity monitoring enabler
Id T53E3
Owner and support S21Sec
Description and main

functionalities
Security monitoring enabler for threat detection and incident response.

Provides security awareness and visibility and infrastructure monitoring.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 47 of 58

Having raw data as input will set a series of processing steps will enable the

discovery of cybersecurity threats. This process goes through a sequence of these

steps:

• Collect, parse and normalise input events
• Enrich normalised events

• Correlate events to detect cybersecurity threats and produce alerts

Vertical, related

capabilities and features
• Security, Privacy and Trust

Plane/s involved all

Relation with other

enablers

• T53E4: Cybersecurity monitoring agent enabler

• T53E1: Authorisation enabler

• T53E2: Identity Manager enabler

• T43E8: Long Term Storage enabler

Requirements mapping

• R-P1-1: CHE location services and operational status

• R-P2-4: Continuous authentication for wristband. Un-authorised use is

detected and reported

• R-P3A-11: Connectivity between OEM and fleet. Network connection

assessment

Use case mapping

• UC-P1-1: Asset location management

• UC-P1-2: CHE location tracking

• UC-P1-4: RTG-truck identification and authentication

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-1: Fleet in-service emissions verification

• UC-P3A-2: Vehicle non-conformance causes identification

Figure 18. High-level structure of Cybersecurity monitoring enabler

Figure 18 describes the components of the solution, receiving as input logs from the infrastructure and

produced cybersecurity alerts as output.

Components

Enabler component Collector

Id
T53E3-01 Cybersecurity monitoring enabler (collector, normalisation, event

correlator)

Description and main

functionality

The cybersecurity monitoring server will be responsible of collecting, processing,

and analysing the incoming information from the infrastructure under study and will

consolidate an output that will provide cybersecurity monitoring information related

to different events.

Target node/s Cloud, Edge

Candidate technologies SYSLOG, RSYSLOG, NGLOG, ossec, wazuh

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 48 of 58

Enabler component Normalisator

Id T53E3-02

Description and main

functionality
The normalisator shall receive structured data and will normalise and complete it.

Target node/s Cloud, Edge

Candidate technologies JSON, ossec, wazuh

Enabler component Correlator

Id T53E3-03

Description and main

functionality

The correlator shall receive normalised data events and generate and alert when

policy requires it.

Target node/s Cloud, Edge

Candidate technologies Simple Event Correlator SEC, ossec, wazuh

B.12 - Cybersecurity: Cybersecurity monitoring agent

enabler
Table 15. General information for Cybersecurity monitoring agent enabler

Enabler Cybersecurity monitoring agent enabler
Id T53E4
Owner and support S21Sec

Description and main

functionalities

Perform functions of an endpoint detection and response system, monitoring and

collecting activity from end points that could indicate a threat.

Security agent runs at a host-level, combining anomaly and signature-based

technologies to detect intrusions or software misuse. It can also be used to monitor

user activities, assess system configuration, and detect vulnerabilities.

Agent enabler communicates with Monitoring enabler. Agent module can run inside

other enablers to report Monitoring enabler.

Vertical, related

capabilities and features
• Security, Privacy and Trust

Plane/s involved all

Relation with other

enablers

• T53E3: Cybersecurity monitoring enabler

• T53E1: Authorisation enabler

• T53E2: Identity Manager enabler

• T43E8: Long Term Storage enabler

Requirements mapping

• R-P1-1: CHE location services and operational status

• R-P2-4: Continuous authentication for wristband - un-authorised use is

detected and reported.

• R-P3A-11: Connectivity between OEM and fleet - network connection

assessment

Use case mapping

• UC-P1-1: Asset location management

• UC-P1-2: CHE location tracking

• UC-P1-4: RTG-truck identification and authentication

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-1: Fleet in-service emissions verification

• UC-P3A-2: Vehicle non-conformance causes identification

Figure 19 describes the agent component of the of the Cybersecurity monitoring agent enabler.

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 49 of 58

Figure 19. Cybersecurity monitoring with monitoring agent

 Components

Enabler component Agent module

Id T53E4-01

Description and main

functionality

Agent is installed and running at hosts or node level and reporting to cybersecurity

monitoring server.

Target node/s Cloud, Edge

Candidate technologies ossec-agent, wazuh-agent, other monitoring log based agent technologies

B.13 - Cybersecurity: Identity manager enabler
Table 16. General information for Identity Manager enabler

Enabler Identity Manager enabler
Id T53E2
Owner and support S21Sec

Description and main

functionalities

Identity Management enabler will store user credentials and data. Using OAuth2

protocol, it will offer a federated identification service where service requester and

provider will be able to establish a trusted relation without previously knowing each

other.

When a requester (Access Entity) asks for a service (Access Controlled Entity), the

provider will redirect the request to a third-party identity server, known by both

parties, so the requester can identify itself and obtain a session token. The service

provider will ask the identity server to validate the token and provide data about the

requester.

This way a secure identification process is completed without the service provider

having received the requester credentials.

This enabler works in collaboration with the Authorisation enabler. Interaction with

Authorisation enabler components (PEP) are described in the corresponding section.

Vertical, related

capabilities and features
• Security, Privacy and Trust

Plane/s involved
• Data Management Plane

• Application and Services Plane

Relation with other

enablers

• T53E1: Authorisation enabler

• T43E8: Long Term Storage Enabler

• T53E3: Cybersecurity monitoring enabler

• T53E4: Cybersecurity monitoring agent enabler

Requirements mapping
• R-P1-10: CHE Identification

• R-P1-6: Terminal data access

• R-P1-13: CHEs authentication range

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 50 of 58

• R-P2-11: Geofencing

• R-P2-4: Continuous authentication for wristband

• R-P3A-6: Active monitoring mode initiation by the OEM software engineer

capability

• R-P3A-7: Active monitoring mode initiation by the Aftersales service

technician capability

• R-P3A-8: Active monitoring mode initiation by the driver capability. (Auth and

Authz REQUIRED)

Use case mapping

• UC-P1-1: Asset location management

• UC-P2-2: Geofencing boundaries enforcement

• UC-P2-1: Worker’s health and safety assurance

• UC-P3A-2: Vehicle non-conformance causes identification

The diagram describes the interactions of the Identity Manager enabler with Authorisation Enabler and Policy

Enforcement Point (PEP) component which will require interaction with Identity Manager.

Figure 20. High-level structure of Identity Manager enabler

Components

Enabler component Identity Manager module

Id T53E2-01

Description and main

functionality

Contains the user or entities credentials store and data. It will offer a OpenId/OAuth2

interface.

Target node/s Cloud

Candidate technologies

OAuth2 protocol.

Identity manager Keyrock. https://fiware-idm.readthedocs.io/en/latest/
Identity manager Keycloack. https://www.keycloak.org/

https://fiware-idm.readthedocs.io/en/latest/
https://www.keycloak.org/

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 51 of 58

B.14 - Cybersecurity: Authorisation enabler
Table 17. General information for Authorisation enabler

Enabler Authorisation enabler

Id T53E3

Owner and support S21Sec

Description and main

functionalities

Authorisation server offers a decision-making service based on XACML policies. It

has different modules that interact and can be deployed independently such as, PEP

(Policy Decision Point), PAP (Policy Administration Point), PIP (Policy Information

Point) and PDP (Policy Decision Point). Server will present a Rest interface and will

respond to an external authorisation request. The decision may be accompanied by

a set of action to be launched, in the form of external requests.

• PAP. Edit and publish policy

• PIP. Serve context information

• PEP. Validate identity and request validation

• PDP. Make decision and launch related actions

Interactions with the Identity Manager enabler. Are described in the corresponding

section.

Vertical, related

capabilities and features
• Security, Privacy, and Trust

Plane/s involved
• Data Management Plane

• Application and Services Plane

Relation with other

enablers

• T53E1: Authorisation enabler

• T43E8: Long Term Storage Enabler

• T53E3: Cybersecurity monitoring enabler

• T53E4: Cybersecurity monitoring agent enabler

Requirements mapping

• R-P1-10: CHE Identification

• R-P1-6: Terminal data access

• R-P1-13: CHEs authentication range

• R-P2-11: Geofencing

• R-P2-4: Continuous authentication for wristband

• R-P3A-6: Active monitoring mode initiation by the OEM software engineer

capability

• R-P3A-7: Active monitoring mode initiation by the Aftersales service

technician capability

• R-P3A-8: Active monitoring mode initiation by the driver capability. (Auth and

Authz REQUIRED)

Use case mapping

• UC-P1-1: Asset location management

• UC-P2-1: Workers’ health and safety assurance

• UC-P2-2: Geofencing boundaries enforcement

• UC-P3A-2: Vehicle non-conformance causes identification

Figure 21 describes the interactions of the Authorisation enabler with the Identity Manager enabler and includes

the access entity (user or system which perform the request and the access-controlled entity (as application on

which access control is enforced).

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 52 of 58

Figure 21. High-level structure of Authorisation enabler

Figure 22 describes the cloud-edge decoupling of Authorisation enable components.

Figure 22. Authorisation enabler – cloud and edge

 Components

Enabler component PAP (federated) or local Policy Retrieval Point PRP

Id T53E1-01

Description and main

functionality

Policy Administration Point offers a web interface to edit the policy and publish it in

XACML format to the location where the PDP will use it.

• Present a web interface to build a policy

• Transform to XACML and place it in the PDPs repository

• Provide policy to PDP

Target node/s Cloud

Candidate technologies Docker, Rest, Java

Enabler component PDP (local or federated)

Id T53E1-02

Description and main

functionality

Policy Decision Point is the module responsible of making the actual decision based

on the context information compiled and the policy available.

• Receive a who / what / where question in a Rest interface for validation

• Obtain context information from external sources

• Build a request compiling all the available data

• Validate against the policy

• Return Permit or Deny response

• Launch related post decision actions

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 53 of 58

Target node/s Edge Node, Gateway, Cloud

Candidate technologies Docker, Rest, Java

Enabler component PEP

Id T53E1-03

Description and main

functionality

Policy Enforcement Point is the responsible of requesting a decision to the PDP.

• Validate identity against third party IS

• Launch request to PDP

Target node/s Edge Node, Gateway, Cloud

Candidate technologies Docker, Rest, Java

Enabler component PIP

Id T53E1-04

Description and main

functionality

Policy Information Point presents a Rest interface to publish context data to be used

by the PDP when resolving the decision. It will also offer another interface (Rest and

web) to add data.

• Present an interface to add data to the storage

• Serve context information in a Rest interface

Target node/s Edge Node, Gateway, Cloud

Candidate technologies Docker, Rest, Java

B.15 - DLT-based: Logging and auditing enabler
Table 18. General information for Logging and auditing enabler

Enabler DLT Logging and Auditing

Id T54E1

Owner and support CERTH

Description and main

functionalities

This enabler will log critical actions that happen during the data exchange between

ASSIST-IoT stakeholders to allow for transparency, auditing, non-repudiation and

accountability of actions during the data exchange. It will also log resource requests

and identified security events to help providing digital evidence and resolve conflicts

between stakeholders, when applicable. Billing mechanisms based on the logged

actions may be developed depending on the requirements of the related use cases.

Vertical, related

capabilities and features
• Security, Privacy, and Trust

Plane/s involved

• Data Management Plane

• Edge and Device Plane

• Applications and Services Plane

Relation with other

enablers

• SELF14-03: Notifying and monitoring enabler

• T53E3: Cybersecurity monitoring enabler

• T53E4: Cybersecurity monitoring agent enabler

• T53E2: Identity Manager enabler

• T53E2: Authorisation enabler

Requirements mapping

• R-P1-1: CHE location services

• R-P1-2: CHE location availability

• R-P1-10: CHE identification

• R-P2-1: Personal location tracking

• R-P2-7: Monitoring the weather conditions at the construction site

• R-P2-10: Motion Pattern Monitoring and Analysis

• R-P2-11: Geofencing

• R-P2-10: Motion Pattern Monitoring and Analysis

• R-P2-13: Fall arrest detection

• R-P2-3: Smart wristband for construction workers

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 54 of 58

• R-P2-2: Construction plant location tracking

• R-P2-9: Assessment of Personal Exposure to UV Radiation

• R-P3A-6: Active monitoring mode initiation by the OEM software engineer

capability

• R-P3A-5: Data Storage

• R-P3B-19: Critical Damage Identification Time

Use case mapping

• UC-P1-1: Asset location management

• UC-P1-2: CHE location tracking

• UC-P2-1: Workers’ health and safety assurance

• UC-P2-2: Geofencing boundaries enforcement

• UC-P2-3: Danger zone restrictions enforcement

• UC-P2-4: Construction site access control

• UC-P2-5: Near-miss fall from height detection

• UC-P2-7: Health and safety inspection support

• UC-P3A-1: Fleet in-service emissions verification

• UC-P3B-1: Vehicle’s exterior condition documentation

Figure 23. High-level structure of DLT Logging and Auditing enabler

Components

Enabler component DLT Logging and Auditing

Id T54E1-01

Description and main

functionality

DLT techniques will enhance the security in sharing data, enforce access control

mechanisms, enhance data integrity verification, allow auditing, and support

federated learning (to be conceptualised) with its decentralisation. In this specific

enabler, they will use immutable properties of the DLT/Blockchain to store critical

information in relation to the requirements of the involved use cases. This information

can be used as a digital evidence and resolve conflicts.

Target node/s Cloud

Candidate technologies
IDS (Blockchain-based) Clearing House, Hyperledger Fabric Chaincode (Smart

Contracts), cryptographic techniques

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 55 of 58

B.16 - DLT-based: Data integrity verification enabler
Table 19. General information for Data integrity verification enabler

Enabler Data integrity Verification enabler

Id T54E2

Owner and support CERTH, ICCS, Konecranes, S21SEC GES

Description and main

functionalities

This enabler will provide DLT-based data integrity verification mechanisms that

allow data consumers to verify the integrity of the exchanged data.

Vertical, related

capabilities and features
• Security, Privacy, and Trust

Plane/s involved

• Data Management

• Edge and Device

• Applications and Services

Relation with other

enablers

• T53E2: Authorisation enabler

• Enablers used in Fleet in-service emissions verification (e.g.T43E7 Edge Data

Broker)

Requirements mapping • R-P3A-9: Edge Intelligence

Use case mapping • UC-P3A-1: Fleet in-service emissions verification

Figure 24. High-level structure of Data integrity verification enabler

Components

Enabler component DLT Data Integrity Verification

Id T54E2-01

Description and main

functionality

DLT techniques will enhance the security in sharing data, enforce access control

mechanisms, enhance data integrity verification, allow auditing, and support

federated learning (to be conceptualised) with its decentralisation. In this specific

enabler, they will use immutable properties of the DLT/Blockchain to store data

related to the requirements of the involved use cases. This data can be used for data

integrity verification.

Target node/s Cloud

Candidate technologies
Hyperledger Fabric Chaincode (Smart Contracts), cryptographic techniques (e.g.,

data hashing)

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 56 of 58

B.17 - DLT-based: Distributed broker enabler
Table 20. General information for Distributed broker enabler

Enabler Distributed Broker service

Id T54E3

Owner and support CERTH, ICCS, Konecranes, S21SEC GES

Description and main

functionalities

This enabler will provide secured data sharing mechanisms as regards the data

exchange between different heterogeneous IoT devices belonging to various edge

domains and/or between different enablers of the architecture.

The mechanism will focus on providing a distributed broker service that will serve as

a registry of all the domains and/or ASSIST-IoT enablers that act as data producers

and/or data consumers. Indexing and querying services will facilitate the efficient

retrievability of the stored (meta)data.

This enabler may also act as a facilitator to the enablers that will provide semantic

interoperability by providing searchable metadata of the interoperable domains

complying with the FAIR principles.

Vertical, related

capabilities and features
• Security, Privacy, and Trust

Plane/s involved all

Relation with other

enablers

• T43E3: Semantic Annotation Enabler

• T43E2: Semantic Translation Enabler

• T43E1: Semantic Repository Enabler

• T43E7: Edge Data Broker

• T52E2: FL Data Enabler

• T53E2: Identity Manager enabler

Requirements mapping
• R-P3A-1: Monitored Data channels (TBD)

• R-P2-15: BIM data models and interoperability compliance

Use case mapping

• UC-P3A-1: Fleet in-service emissions verification (TBD)

• UC-P3A-2: Vehicle non-conformance causes identification (TBD)

• UC-P3A-3: Updating the diagnostics methods pool (TBD)

• UC-P2-2: Geofencing boundaries enforcement

• UC-P2-3: Danger zone restrictions enforcement

• UC-P2-6: Safe navigation instructions

• UC-P2-7: Health and safety inspection support

Figure 25. High-level structure of Distributed broker service enabler

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 57 of 58

Components

Enabler component DLT Broker Service

Id T54E3-01

Description and main

functionality

DLT techniques will enhance the security in sharing data, enforce access control

mechanisms, enhance data integrity verification, allow auditing, and support

federated learning (to be conceptualised) with its decentralisation. In this specific

enabler, they will be used to ensure secure data sharing and facilitate (semantic)

interoperability among the heterogeneous IoT devices belonging to various edge

domains and/or of the ASSIST-IoT enablers.

Target node/s Cloud

Candidate technologies Hyperledger Fabric Chaincode (Smart Contracts), cryptographic techniques

B.18 - DLT-based: DLT-based FL enabler
Table 21. General information for DLT-based FL enabler

Enabler DLT-based Federated Learning

Id T54E4

Owner and support CERTH,ICCS, Konecranes, S21SEC, GES

Description and main

functionalities

This enabler will foster the use of DLT-related components to exchange the local, on-

device models (or model gradients) in a decentralised way avoiding single point of

failures acting as a component to manage AI contextual information in an immutable

form, and avoiding as well alteration to the data.

Vertical, related

capabilities and features
• Security, Privacy, and Trust

Plane/s involved
• Device and Edge Plane

• Data Management Plane

Relation with other

enablers

• T43E7: Edge Data Broker

• T52E2: FL Data enabler

• T52E4: FL Privacy enabler

Requirements mapping
• R-P3A-9: Edge Intelligence

• R-P3A-12: Edge Connectivity

Use case mapping
• UC-P3A-2: Vehicle’s non-conformance causes identification

• UC-P3B-1: Vehicle’s exterior condition documentation

D5.1 – Software Structure and Preliminary Design

Version 1.0 – 30-JUL-2021 - ASSIST-IoT© - Page 58 of 58

Figure 26. High-level structure of DLT-based FL enabler

Components

Enabler component DLT Model Distributor

Id T54E4-01

Description and main

functionality

DLT techniques will enhance the security in sharing data, enforce access control

mechanisms, enhance data integrity verification, allow auditing, and support

federated learning (to be conceptualised) with its decentralisation. In this specific

enabler, they will use immutable properties of the DLT/Blockchain to store local

model updates of Federated Learning Processes in a decentralised manner.

Target node/s Cloud

Candidate technologies
Hyperledger Fabric clients - light nodes, Hyperledger Fabric Chaincode (Smart

Contracts)

	Table of contents
	List of tables
	List of figures
	1. About this document
	1.1. Deliverable context
	1.2. The rationale behind the structure
	1.3. Outcomes of the deliverable
	1.4. Lessons learnt
	1.5. Deviation and corrective actions

	2. Introduction
	2.1. Self-*
	2.2. Interoperability
	2.3. Scalability
	2.4. Security, Privacy and Trust
	2.5. Manageability

	3. Initial vertical enablers specification
	3.1. Self-* enablers
	3.1.1. Self-healing device enabler
	3.1.2. Resource provisioning enabler
	3.1.3. Monitoring and notifying enabler
	3.1.4. Geo(Localisation) enabler
	3.1.5. Automated configuration enabler

	3.2. Federated machine learning enablers
	3.2.1. Introduction
	3.2.2. FL Orchestrator
	3.2.3. FL Training Collector
	3.2.4. FL Repository
	3.2.5. FL Local Operations
	3.2.6. FL Privacy

	3.3. Cybersecurity enablers
	3.3.1. Cybersecurity monitoring enabler
	3.3.2. Cybersecurity monitoring agent enabler
	3.3.3. Identity manager enabler
	3.3.4. Authorisation enabler

	3.4. DLT-based enablers
	3.4.1. Logging and auditing enabler
	3.4.2. Data integrity verification enabler
	3.4.3. Distributed broker enabler
	3.4.4. DLT-based FL enabler

	4. Future Work
	Annex A - Federated Learning taxonomy
	A.1 - Introduction
	A.1.1 - Communication architecture
	A.1.2 - Scale of Federation
	A.1.3 - Data partitioning
	A.1.4 - ML models
	A.1.5 - Privacy mechanisms
	A.1.6 - Motivation of Federation

	A.2 - ASSIST-IoT business scenarios and FL needs matrix

	Annex B - Enabler templates
	B.1 - Self-*: Self-healing device enabler
	B.2 - Self-*: Resource provisioning enabler
	B.3 - Self-*: geo (Localisation) enabler
	B.4 - Self-*: Monitoring and notifying enabler
	B.5 - Self-*: Automated configuration enabler
	B.6 - Federated machine learning: FL Orchestrator
	B.7 - Federated machine learning: FL Training Collector
	B.8 - Federated machine learning: FL Repository
	B.9 - Federated machine learning: FL Local Operations
	B.10 - Federated machine learning: FL Privacy
	B.11 - Cybersecurity: Cybersecurity monitoring enabler
	B.12 - Cybersecurity: Cybersecurity monitoring agent enabler
	B.13 - Cybersecurity: Identity manager enabler
	B.14 - Cybersecurity: Authorisation enabler
	B.15 - DLT-based: Logging and auditing enabler
	B.16 - DLT-based: Data integrity verification enabler
	B.17 - DLT-based: Distributed broker enabler
	B.18 - DLT-based: DLT-based FL enabler

