

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D4.1 Initial Core Enablers Specification
Deliverable No. D4.1 Due Date 31-JUL-2021

Type Report Dissemination Level Public

Version 1.0 WP WP4

Description Initial specification of Smart IoT Devices, Edge Nodes and enablers of the

horizontal planes of ASSIST-IoT.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 2 of 78

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 3 of 78

Authors
Name Partner e-mail

Alejandro Fornés P01 UPV alforlea@upv.es

Ignacio Lacalle P01 UPV iglaub@upv.es

Eduardo Garro P02 PRO egarro@prodevelop.es

Paweł Szmeja P03 IBSPAN pawel.szmeja@ibspan.waw.pl

Piotr Sowiński P03 IBSPAN piotr.sowinski@ibspan.waw.pl

Nikolaos Vrionis P06 INFOLYSIS nvrionis@infolysis.gr

Antonios Varkas P06 INFOLYSIS avarkas@infolysis.gr

Alex van den Heuvel P09 NEWAYS alex.van.den.heuvel@newayselectronics.com

Ron Schram P09 NEWAYS Ron.Schram@newayselectronics.com

Fotios Konstantinidis P10 ICCS fotios.konstantinidis@iccs.gr

Konstantinos Naskou P10 ICCS konstantinos.naskou@iccs.gr

Zbigniew Kopertowski P15 OPL Zbigniew.Kopertowski@orange.com

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 4 of 78

History
Date Version Change

1-Jun-2021 0.1 ToC presented

2-Jul-2021 0.2 First round of contributions completed. Subsections 4.2 and 4.3 with

their respective annex content partially provided (enabler templates

missing)

9-Jul-2021 0.3 Second round of contributions completed. Ready for internal review

19-Jul-2021 0.4 Integration of changes from IR (INFOLYSIS). Minor changes in

Section 1. Acronyms completed. Tables and figures completed and

homogenised.

26-Jul-2021 0.5 Integration of changes from IR (MOW, ICCS). Minor changes in

Section 3.

31-Jul-2021 1.0 Final version submitted to EC

Key Data
Keywords Enablers, Hardware specifications, Edge nodes, Smart IoT devices

Lead Editor Alejandro Fornés (P01 - UPV)

Internal Reviewer(s) Theoni Dounia (P06 - INFOLYSIS), Piotr Dymarski (P08 - MOW), Konstantinos

Naskou (P10 - ICCS)

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 5 of 78

Executive Summary
This deliverable is written in the framework of WP4 – Core enablers design and development of ASSIST-IoT

project under Grant Agreement No. 957258. The document gathers the work and outcomes of the four tasks of

the work package, which are devoted to the design and implementation of enablers and hardware elements

required to implement the different planes of the ASSIST-IoT architecture.

The realisation of the ASSIST-IoT architecture requires the design and development of specific elements, both

software and hardware, that support the exposed functionalities and in the way they have been conceived: these

are the Smart IoT Devices, the Edge Nodes and the enablers of the architecture. This document presents the

specifications of both the hardware elements to be implemented under the scope of the Device and Edge Plane,

and the enablers of the upper three planes of the ASSIST-IoT architecture (no software developments will be

presented in this deliverable, just design decisions).

Regarding the hardware specifications of the equipment, general information regarding operation, storage and

mechanical conditions are provided. Two Smart IoT Devices have been formalised: the ASSIST-IoT localisation

tag and the ASSIST-IoT fall arrest device, which are devoted to localise assess and people as per requirement

from the use cases. These devices consider Ultra-Wide Band (UWB) as the key technology for providing the

localisation accuracy expected for the project. Additionally, the specifications of the Edge node include all the

electronics and firmware required for serving the use cases of the project, including wired and wireless

interfaces, processor and memory, power, etc.

As a reminder, an enabler is an abstraction term that represents a collection of components, running on hardware

nodes, that communicate among them for delivering a particular functionality to the system. Enablers can only

be interacted with via their exposed interfaces. By M9 of the project (July 2021), a total of 19 enablers have

been identified and formalised:

• From the Smart Network and Control plane: Smart Orchestrator, SDN Controller, Auto-configurable

network enabler, Traffic classification enabler, Multi-link enabler, SD-WAN enabler, WAN

Optimisation enabler, and VPN enabler.

• From the Data Management plane: Long-term Storage enabler, Edge Data Broker, Semantic Repository

enabler, Semantic Translator enabler, and Semantic Annotator enabler.

• From the Applications and Services plane: Tactile Dashboard, Business KPI reporting enabler,

Performance and Usage Diagnosis enabler, OpenAPI Management enabler, Video Augmentation

enabler, and MR enabler.

These enablers have been identified responding to requirements presented in D3.2, as well from architecture

specifications. Being the first document of a series of three iterations, the information provided in this

deliverable is susceptible to change, both in the number of enablers provided and regarding design decisions

during enablers’ implementation. The report summarises the different technologies that can be used/enhanced

to realise those enablers, as well as includes enough schemas and diagrams to start the technical developments

in WP4. This deliverable will be updated later on in the project (D4.2 by M18, D4.3 by M30), serving as the

basis for the technical provision of the whole WP.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 6 of 78

Table of contents

Table of contents ... 6

List of tables .. 7

List of figures .. 7

List of acronyms .. 9

1. About this document .. 12

1.1. Deliverable context .. 12

1.2. The rationale behind the structure .. 12

1.3. Outcomes of the deliverable... 13

1.4. Lessons learnt ... 14

1.5. Deviation and corrective actions .. 14

2. Introduction ... 16

3. Devices specifications ... 18

3.1. General specifications .. 18

3.2. Smart IoT devices .. 18

3.2.1. ASSIST-IoT localisation tag .. 19

3.2.2. ASSIST-IoT fall arrest device ... 19

3.3. Edge node ... 20

3.3.1. Edge node electronics .. 21

3.3.2. Edge node firmware ... 24

4. Initial horizontal enablers specification ... 25

4.1. Smart Network and Control enablers ... 26

4.1.1. Enablers’ descriptions summary .. 27

4.2. Data Management enablers .. 29

4.2.1. Enablers’ descriptions summary .. 30

4.3. Application and Services enablers ... 31

4.3.1. Enablers’ description summary.. 32

5. Future Work... 34

Annex A - Localisation .. 35

Annex B - Enablers templates ... 37

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 7 of 78

List of tables

Table 1. General information of the enabler .. 25
Table 2. Endpoints information of an enabler ... 26
Table 3. Specific information of an enabler component.. 26
Table 4. General information of the Smart Orchestrator enabler .. 37
Table 5. General information of the SDN Controller .. 39
Table 6. General information of the Auto-configurable Network enabler .. 42
Table 7. General information of the Traffic Classification enabler ... 44
Table 8. General information of the Multi-link enabler .. 46
Table 9. General information of the SD-WAN enabler ... 49
Table 10. General information of the WAN Acceleration enabler .. 52
Table 11. General information of the VPN enabler ... 53
Table 12. General information of the Semantic Repository enabler ... 55
Table 13. General information of the Semantic Translation enabler ... 58
Table 14. General information of the Semantic Annotation enabler ... 61
Table 15. General information of the Edge data broker .. 63
Table 16. General information of the Long-term Data Storage enabler .. 65
Table 17. General information of the Tactile Dashboard enabler ... 69
Table 18. General information of the Business KPI reporting enabler ... 70
Table 19. General information of the Performance and usage diagnosis enabler (PUD) 72
Table 20. General information of the OpenAPI management enabler .. 74
Table 21. General information of the Video augmentation enabler .. 76
Table 22. General information of the MR enabler .. 77

List of figures

Figure 1. Planes and Verticals of the ASSIST-IoT architecture .. 16
Figure 2. ASSIST-IoT enablers and hardware elements formalised ... 17
Figure 3. Block schematic diagram of the ASSIST-IoT localisation tag .. 19
Figure 4. Block schematic diagram of the ASSIST-IoT fall arrest device .. 20
Figure 5. General node functions .. 21
Figure 6. Block schematic diagram of the Edge node electronics. .. 22
Figure 7. High-level diagram of an enabler ... 25
Figure 8. Smart Network and Control plane functional blocks and enablers .. 27
Figure 9. Data Management Plane functional blocks and enablers ... 29
Figure 10. Application and Services plane functional blocks and enablers. ... 31
Figure 11. Localisation options in the Smart safety of workers’ pilot .. 36
Figure 12. Possible position of tags ... 36
Figure 13. High-level diagram of the Smart Orchestrator enabler .. 38
Figure 14. High-level diagram of the SDN Controller .. 40
Figure 15. High-level diagram of the Auto-configurable Network enabler .. 43
Figure 16. High-level diagram of the Traffic Classification enabler ... 44
Figure 17. High-level diagram of the Multi-link enabler .. 47
Figure 18. High-level diagram of the SD-WAN enabler ... 50
Figure 19. High-level diagram of the WAN Acceleration enabler .. 52
Figure 20. High-level diagram of the VPN enabler ... 54
Figure 21. High-level diagram of the Semantic Repository enabler ... 56
Figure 22. High-level diagram of the Semantic Translation enabler ... 59
Figure 23. High-level diagram of the Semantic Annotation enabler ... 62
Figure 24. High-level diagram of the Edge data broker .. 63
Figure 25. High-level diagram of the Long-term Data Storage enabler .. 66

file:///C:/Users/aflea/Desktop/ASSIST-IoT_D4.1_Initial_Core_Enablers_Specification_v1.0.docx%23_Toc78536021

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 8 of 78

Figure 26. High-level diagram of the Tactile Dashboard enabler ... 69
Figure 27. High-level diagram of the Business KPI reporting enabler ... 71
Figure 28. High-level diagram of the Performance and usage diagnosis enabler (PUD) 73
Figure 29. High-level diagram of the OpenAPI management enabler .. 75
Figure 30. High-level diagram of the Video augmentation enabler .. 76
Figure 31. High-level diagram of the MR enabler .. 78

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 9 of 78

List of acronyms

Acronym Explanation

AI Artificial Intelligence

AIOTI The Alliance for the Internet of Things Innovation

AoA Angle of Arrival

AoD Angle of Departure

API Application Programming Interface

AR Augmented Reality

ARM Advanced RISC Machines (related to architecture of processors)

BLE Bluetooth Low Energy

CAN Controller Area Network

CHE Container Handling Equipment

CLI Command Line Interface

CNF Cloud-native Network Function

CNI Container Network Interface

CSV Comma Separated Value

DC Direct Current

DDR4 SDRAM Double Data Rate 4 Synchronous Dynamic Random-Access Memory

DGPS Differential Global Positioning System

DLT Distributed Ledger Technology

E2E End to End

EIA Electronic Industries Association or Electronics Industries Alliance

eMMC Embedded MultiMediaCard

ENI Experiential Networked Intelligence

ETSI European Telecommunications Standards Institute

exFAT Extensible File Allocation Table

gNMI gRPC Network Management Interface

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

HA High Availability

HAL Hardware Abstraction Layer

HMD Head-Mounted Device

HRP High Repetition Pulse

HTML HyperText Markup Language

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 10 of 78

HTTP HyperText Transfer Protocol

I/O Input/Output

I2C Inter-Integrated Circuit

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

IoT Internet of Things

JSON JavaScript Object Notation

JTAG Joint Test Action Group (related to test interface)

KPI Key Performance Indicator

LED Light Emitting Diode

LIDAR Light Detection and Ranging

LTS Long-Term Storage

LTSE Long-Term Storage Enabler

MANO Management and Orchestration

ML Machine Learning

MPLS Multiprotocol Label Switching

MPTCP MultiPath TCP

MQTT MQ Telemetry Transport

MR Mixed Reality

NFV Network Function Virtualisation

NFVI Network Function Virtualisation Infrastructure

NFVO Network Function Virtualisation Orchestrator

NGIoT Next-Generation Internet of Things

noSQL Not Only Structured Query Language

NS Network Service

NSD Network Service Descriptor

NXP Next eXPerience (related to a family of processors)

OAM Operations, Administration and Management (related to network traffic)

OEM Original Equipment Manufacturer

ONOS Open Network Operating System

OS Operating System

OSM Open Source MANO

PPP Precise Point Positioning

PUD Performance and Usage Diagnosis

QoS Quality of Service

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 11 of 78

RADAR Radio Detection and Ranging

RAT Radio Access Technology

RDF Resource Description Framework

REST REpresentational State Transfer

RS Recommended Standard

RTG Rubber-Tyred Gantry (crane)

SD Secure Digital

SDN Software-Defined Networking

SD-WAN Software-Defined Wide Area Network

SMARC Smart Mobility ARChitecture

SotA State-of-the-Art

SPDIF Sony/Philips Digital Interface Format

SPI Serial Peripheral Interface

SQL Structured Query Language

SSH Secure Shell

TIA Telecommunications Industry Association

UI User Interface

URL Uniform Resource Locator

USB Universal Serial Bus

UWB Ultra-Wide Band

VIM Virtualised Infrastructure Manager

VNF Virtualised Network Function

VNFD Virtualised Network Function Descriptor

VoIP Voice over Internet Protocol

VPN Virtual Private Network

WAN Wide Area Network

WebRTC Web Real-Time Communication

WiFi Wireless Fidelity

WP Work Package

WS02 Web Services Oxygenated

XML Extensible Markup Language

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 12 of 78

1. About this document

The main goal of this deliverable is to provide the specifications of the horizontal enablers that are going to

be developed under the scope of WP4. These enablers are the cornerstone of the project, since they will enable

the deployment of an ASSIST-IoT architecture in a particular environment, allowing its further evaluation

within the pilots involved in the project. Being the only document that gathers the outcomes of WP4, it will also

include the specifications of the Smart IoT Devices and Edge Nodes that are to be provided for the scope of the

project, despite not being enablers as such.

It should be highlighted that this deliverable corresponds to the first document of a series of three iterations, and

therefore its content will be expanded and adapted as the project evolves. The rationale behind the iterative

nature of its development is based on the fact that both the requirements and the architecture produced by the

work of WP3 are still evolving (and therefore new enablers or modifications in the current ones may be needed),

and as a result the interactions between enablers from WP4 and WP5 may require adapting them (in the form

of new interfaces, methods, components, etc.).

1.1. Deliverable context

Keywords Lead Editor

Objectives O2: D4.1 presents the specifications of the enablers of the Network’s plane (some of them,

NFVs), including the auto-configurable enabler which will apply the models to improve the

network performance.

O3: Specifications of enablers focused on data (semantics, broker, storage) are provided.

O4: Enablers from different planes, supported by AI (Artificial Intelligence) models, are

described.

O5: Human-centric interfaces for the use cases are presented.

Work plan

Milestones This deliverable does not mark any specific milestone; still, it contributes to the realisation

of MS3 – Enablers defined, that will be achieved in M12. Although far in time, it is also

central part of MS6 – Software structure finished.

Deliverables This deliverable receives inputs from D3.1 (State-of-the-art), D3.2 (requirements and use-

cases) and D3.5 (architecture definition). Once enablers are being delivered, they will feed

the deliverables of WP6 related to testing, integration, distribution and documentation, they

will be the cornerstone of pilots’ implementations of WP7, and they will be a key part in the

technical evaluation to be performed under the scope of WP8.

1.2. The rationale behind the structure
This deliverable consists of four sections and two annexes. It starts with an introduction followed by a section

(Section 3) dedicated to the specifications of Smart IoT devices and Edge Nodes (which is complemented by

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 13 of 78

Annex A - , devoted to Smart IoT Devices for localisation). Afterwards, Section 4 is devoted to present the

enablers’ specifications. However, to facilitate the readers’ comprehension, the corresponding templates with

their initial specification (composed of a set of tables and diagrams) have been moved to Annex B - at the end

of the document, leaving in this section the high-level scope of the horizontal Planes and just the description

and main functionalities provided by the identified enablers. Last but not least, since this is the initial document

of the deliverable series, the last section of this document concludes with a summary of the future work that

will be carried out in the work package and is to be included in the next iterations of the deliverable.

1.3. Outcomes of the deliverable
The specifications of the hardware elements to be implemented under the scope of the Device and Edge Plane

(Edge nodes and Smart IoT Devices), and the enablers of the upper three planes of the ASSIST-IoT architecture

have been formalised. Regarding the hardware specifications, general ones for the Edge nodes and the Devices,

such as operating, storage and mechanical conditions, are provided. On the one hand two Smart IoT Devices

have been formalised: the ASSIST-IoT localisation tag and the ASSIST-IoT fall arrest device, which are

devoted to assets localisation as per requirement from the use cases. The former aims at localising people or

objects by means of UWB technology. From the use cases described in D3.2, it will be used in different use

cases such as UC-P1-1 (Asset location management), UC-P1-2 (CHE location tracking), UC-P2-2 (Geofencing

boundaries enforcement), and UC-P2-3 (Danger zone restrictions enforcement). Regarding the fall arrest device,

besides localising the person, it incorporates a fall arrest detector, which is used by construction workers while

working at height. It will be used specially for UC-P2-5 (Near-miss fall from height detection). On the other

hand, the specifications of the Edge node include all the electronics and firmware required for serving the use

cases of the project, including wired and wireless interfaces, processor and memory, power, etc.

A set of enablers has been formalised in this deliverable (information is mostly provided in Annex B - for

readers’ convenience). Formalisation includes the provided functionality, requirements and use cases mapping,

components that comprise each enabler and, for some of them, the endpoints (at different degree of detail). With

regards to the Smart Network and Control plane, eight enablers have been formalised: (1) the Smart

Orchestrator enabler, for orchestrating and managing the virtualised network functions that will be deployed

over the Kubernetes infrastructure; (2) the SDN Controller, based on ONOS, that will manage the control plane

and will prioritise traffic in the network; (3) the Auto-configurable network enabler, that will adapt the policies

of the SDN Controllers for ensuring QoS of applications based on specialised AI methods; (4) Traffic

classification enabler, in charge of classifying traffic according to different classes (video streaming, traffic

data, VoIP, etc.); (5) Multi-link enabler, which will allow reliable communication among different radio access

technologies; (6) SD-WAN enabler, in charge of facilitating the private connection between different sites,

forming a secure WAN with application QoS support; (7) WAN Optimisation enabler, which will consist of a

set of components to improve the performance of WAN connections; and (8) VPN enabler, that will facilitate

the connection of a Device from another network to the one of the site.

The Data Management plane considers all common data-related functions and services. The enablers are

classified in two functional blocks: Data Governance, including (1) Long-term Storage enabler, that serves a

secure and resilient storage, offering different storage sizes, individual storage space for other enablers; and (2)

Edge Data Broker, in charge of enabling the efficient management of data demand supply from/to the Edge

nodes, optimally distributing data where it is needed for application, services and further analysis; and then the

Semantic enablers, which consists of (3) the Semantic repository enabler, which offers a “Nexus” for data

models and ontologies; (4) the Semantic Translator enabler, that provides a configurable service to change the

contents of semantically annotated data in accordance with translation rules; and lastly the (5) Semantic

Annotator enabler, which offers a syntactic transformation service that annotates data in various formats and

lifts it into RDF.

Lastly, six enablers have been defined under the scope of the Applications and Services plane. These enablers

are: (1) the Tactile Dashboard, in charge of representing data from the use cases, through meaningful combined

visualisations in real time. It will also contain the user interfaces for administrative instantiation and

configuration of enablers and services; (2) the Business KPI reporting enabler, which facilitates the visualisation

and combination of charts, tables, maps and other visualisation graphs for the desired KPIs and metrics; (3) the

Performance and Usage Diagnosis enabler, that will collect performance metrics from monitored targets for

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 14 of 78

acting over them (manually or via another dedicated enablers); (4) the OpenAPI Management enabler, which

will facilitate publishing all enablers APIs under a unified access, also for external users; (5) the Video

Augmentation enabler, which will carry object recognition capabilities offered via computer vision; and (6) the

MR enabler, that will facilitate the visualisation of data through head-mounted MR devices.

1.4. Lessons learnt
During the past months, the partners of the Consortium have focused their effort in developing the design

specifications of the enablers that will facilitate the realisation of the ASSIST-IoT architecture. Additionally,

the specifications of the hardware equipment (Edge nodes characteristics, Smart IoT Devices) that will be

needed for the realisation of the use cases have been formalised as well. From all this work, the following

insights have been extracted:

• UWB is the technology for implementing Smart Devices for localisation that better suits the

requirements of the use cases of the project, mostly because of its accuracy and due to its robustness

against interferences.

• Most of the enablers designed are generic and loosely-coupled to the use cases. This means that they

can be easily leveraged in different verticals or environments. However, flexibility entails integration

effort. For instance, the enablers of the Smart Network and Control plane require adaptation to the site’s

topology and needs (VPNs, WANs, network policies, etc.), whereas those from the Data Management

plane need ontologies, data models and data collectors to transform, share and store data.

• Besides, specific enablers such as multi-link, video augmentation and MR, address direct requirements

from the use cases. The will be developed in a way that could be used in other environments that could

benefit from the provided functionalities

• Discovering all the interactions that will be needed between enablers is not a trivial task: specific

endpoints, code modifications, addition of a component, etc. must be analysed, and in some cases, they

may not be discovered until actual developments/implementation. This analysis has to be pushed

forward to avoid work duplicities.

1.5. Deviation and corrective actions
The Consortium has made a great effort to envision and formalise the enablers that will be needed for the

realisation of the ASSIST-IoT architecture to address specific use cases. However, there are some deviations

with respect to the initial plan that have to be tackled during the next phase:

• No enablers have been defined for the Device and Edge plane. Although some enablers from this plane

have been discussed, work has been focused mostly towards the hardware equipment needed for the

use cases. According to the ASSIST-IoT architecture, these enablers should facilitate or increase

analytics, AI and communication capabilities. Now that the hardware specifications have been

completed, these enablers will be formalised in the upcoming months.

• Some additional enablers might be needed, specifically for the Smart Network and Control Plane. It is

still to be defined how particular networking aspects, such as interaction with Container Network

Interface (CNI) Kubernetes plugins, will be tackled by the Smart Orchestrator. This is, whether this

enabler would handle these features via specific configuration options over the deployed plugins, or by

means of dedicated, complementary enablers. A dedicated analysis will be carried out under the scope

of task 4.2.

• The DLT Communication enabler from the Data Management was expected to be included in this

deliverable. It was intended to deliver blockchain distributed across many nodes, to provide data

integrity verification, as well as communication auditing. However, its functionality was too similar to

some of the enablers provided in WP5, and seemed to span across different planes, therefore it was

removed from this iteration of the deliverable, at least until its scope is clearly defined.

• Last, all enablers were expected to reach the same level of maturity (in its definition) by M9. Meaning,

having a clear description of their functionalities, listing the components that compose them, including

an analysis of candidate technologies to leverage during their implementation, etc. in order to achieve

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 15 of 78

an equal level of readiness for technical development. However different degrees of completion have

been experienced. This, in any case, is not considered a deviation on the execution, as the team considers

an uneven distribution as the usual progress of the WP. There is the commitment to reach a steady state

on the descriptions of the enablers by M12, where the first Open Call of ASSIST-IoT will be launched.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 16 of 78

2. Introduction

The ASSIST-IoT architecture is structured following a multidimensional approach composed of horizontal

Planes and Verticals. As explained in D3.5, the Planes represent a classification of logical functions that fall

under the scope of a particular domain, whereas Verticals target Next Generation IoT (NGIoT) properties that

exist on different Planes, either independently or requiring cooperation of elements from different Planes. The

ASSIST-IoT Planes include a set of functional blocks aiming at addressing current concerns of different sectors,

such as logistics and industry, leveraging NGIoT ecosystems.

The ASSIST-IoT architecture is a conceptual, high-level architecture, and therefore, there is a gap between its

design and an actual implementation in an ecosystem that can benefit from utilising NGIoT technologies.

Aiming at understanding the real needs of stakeholders of different industrial sectors, a first study of

requirements was realised and presented in D3.2. These requirements need to be addressed, always considering

that ASSIST-IoT does not solely target the three industrial sectors studied in the project, and thus both the

architecture and the technical solutions should be applicable in other sectors as well.

In ASSIST-IoT, functionalities are provided by means of enablers. An enabler is an abstraction term that

represents a collection of components (generally software, but without precluding the possibility of having

hardware ones), running on nodes, that work together for delivering a particular functionality to the system.

They can be fully independent or may require the cooperation with other enablers to deliver their intended

functionality. As explained in D3.5, software components will be containerised, following an encapsulation

paradigm in which enablers can communicate between them only through dedicated exposed interfaces,

avoiding the possibility of having direct communication between components of different enablers.

These enablers have been designed considering not only the identified requirements but also the State-of-the-

Art (SotA) of the technologies involved in their realisation, that was presented in D3.1 and therefore it is not

part of the present deliverable. In any case, it should be mentioned that some of the main ASSIST-IoT enablers

and technical decisions come almost naturally from architecture specifications and are later reassured by the

requirements.

This document focuses mainly on providing the initial specification of enablers of the horizontal Planes. In

a nutshell, the ASSIST-IoT planes are the following ones:

• The Device and Edge plane, which contains the

physical and tangible components of the

interconnected ecosystem and describes the

collection of functions that can be logically

appointed to them.

• The Smart Network and Control Plane, which

manages virtual and wireless aspects of network

connectivity, following the SDN/NFV paradigm.

• The Data Management plane, that handles all

functions related to a virtual shared data

ecosystem, including but not limited to

semantics, governance and storage.

• The Application and Services plane, which

supports and provides human-centric enablers for end-user applications and services.

Being the first document of the deliverable series, specifications can (and will) be expanded in the next two

iterations that will be delivered later on in the project. It should be highlighted that the enablers, despite being

the cornerstone of the ASSIST-IoT ecosystem and hence the main focus of WP4 work, are not the only outcome

provided by this work package. The Smart IoT devices and Edge nodes, as well as other non-software artifacts

such as ontologies and data processing rules, are also part of the same work package, and therefore their related

outcomes will be presented either in this deliverable or in its future iterations. In particular, this deliverable will

include the initial specifications of Smart IoT devices and Edge nodes. The hardware equipment and the

enablers that have been formalised so far are depicted in Figure 2.

Figure 1. Planes and Verticals of the ASSIST-IoT

architecture

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 17 of 78

Figure 2. ASSIST-IoT enablers and hardware elements formalised

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 18 of 78

3. Devices specifications

The use cases formalised in D3.2 have been studied and used as input to determine the characteristics of the

Edge node and the Smart IoT devices that will be developed as part of the ASSIST-IoT project. The conclusion

is that for both the port automation pilot and the smart safety of workers’ pilot, localisation is a key aspect that

needs to be addressed by dedicated Smart IoT devices. In the port pilot, localisation is required for determine

the position of Container Handling Equipment (CHEs) with an accuracy better than 1 meter, whereas in the

smart safety’s pilot it is needed for tracking people, geofencing, evacuation purposes and also to identify near-

miss fall events (i.e., in case a worker is suspended by a fall arrest system, a rescue operation has to be initiated)

in a construction site.

In order to fulfil these requirements, two Smart IoT devices will be developed to support localisation: the

ASSIST-IoT localisation tag and the ASSIST-IoT fall arrest device. They are described in Section 3.2 along

with their particular specifications. UWB has been selected as key implementation technology for implementing

localisation. More information about localisation and the rationale behind selecting UWB is presented in Annex

A - . Apart from these devices, the Edge node that will be developed under the scope of ASSIST-IoT is presented

in Section 3.3, with its hardware and software specifications. It will support/provide analytic, AI and

communication capabilities, as well as localisation functionality, required by the use cases. The following

section describes the general specifications that have to be met by the Edge node and the Smart IoT devices.

3.1. General specifications
The general specifications for the Smart IoT devices and Edge node are given in this section. These are common

specifications that have to be fulfilled by the Edge node and the Smart IoT devices that will be developed within

the ASSIST-IoT project.

Environmental operating conditions:

• Ambient temperature range for normal operation: -10 to 50 [ºC].

• Relative humidity range for normal operation: 20 to 80 [%] non-condensing.

• Test methods: IEC60068-2-2(Bd), IEC60068-2-1(Ad).

Environmental storage conditions:

• Storage temperature range: -20 to 70 [ºC].

• Storage relative humidity: 5 to 95 [%] non-condensing.

Mechanical conditions:

• Shock: 25 [g-force].

o Shock test method according: IEC60068-2-29

• Random vibration:

o Sine sweep: 0.5 [g-force].

o Random vibration (Truck level) : 0.37 [grms].

o Sine dwell: 2-[g-force].

o Test method according: IEC60068-2-6.

The enclosure of the Smart IoT devices and the Edge node must meet Ingress Protection code: IP53 or better

(IP5x = Dust protected, IP x3 = protection against spraying water). The material and dimensions of the enclosure

will be determined during implementation.

3.2. Smart IoT devices
Two Smart IoT Devices devoted to people localisation have been designed: The ASSIST-IoT localisation tag

and the ASSIST-IoT fall arrest device. The former is used to localise the person and to warn that person in case

it enters an unrestricted or dangerous area, while the latter acts as an emergency device. It incorporates as fall

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 19 of 78

arrest detector and an Inertial Measurement Unit (IMU) to automatically communicate a dangerous situation to

the Edge node enabling the latter to act.

Additionally, for localisation, anchors and tags are used (see also Annex A -). The Edge node will be designed

in a way that it can also be used as anchor. The localisation enabler receives the distance of a tag to the anchors

on request of an enabler. The localisation enabler knows where the anchors are placed, meaning that it can

determine the absolute position of the tag. The position of a tag can be displayed on a map from a construction

side or on the floorplan of a building.

3.2.1. ASSIST-IoT localisation tag

The ASSIST-IoT localisation tag is a Smart IoT device used for people localisation. This device has tag

functionality and it contains a buzzer and red LED to indicate to the person that he/she is in a restricted area.

This device has been designed considering mainly the requirements for the smart safety of workers’ pilot,

however, many other use cases can be envisioned with it. Its block schematic diagram is given in the next figure:

Figure 3. Block schematic diagram of the ASSIST-IoT localisation tag

A short description with the key specifications of the different parts of the ASSIST-IoT localisation tag is given:

• UWB Transceiver: Ultra-Wide Band (UWB) is used for localisation purposes. UWB is also used e.g., for

communication with the anchors. Key specifications of UWB are:

o Fully interoperable with IEEE 802.15.4 HRP UWB.

o Ranging technique based on IEEE802.15.14z.

o Position accuracy < 50 cm.

• Battery: The Smart IoT device is battery powered and can work stand-alone for more than 12 hours. The

DC-DC converter creates a constant on-board voltage for the different devices.

• Buzzer: The Buzzer is used to give audio feedback to the user. The moment at which the buzzer is operated

is determined by the localisation enabler.

• LED: The LED flashes to give a user visual feedback. The moment at which the LED flashes is determined

by the localisation enabler.

• Micro controller: The micro controller controls the communication over UWB and controls the LED and

buzzer when needed.

• Clock: The clock function generates the clock signal required by the micro controller. The exact clock

circuitry and clock frequency will be determined during implementation.

• Program/Debug: This interface is used for development purposes.

3.2.2. ASSIST-IoT fall arrest device

The ASSIST-IoT fall arrest device is an emergency device. It is a localisation tag with a fall arrest sensor

interface, an Inertial Measurement Unit (IMU) and a push button. The push button is used by the person wearing

the tag, to indicate that this person is in an emergency situation and needs immediate help. The fall arrest device

has a fall arrest detector interface which is used to connect the fall arrest sensor. This sensor detects a deployed

fall-arrest system, indicating a person being suspended, and jointly with the IMU, the device determines if the

DC-DC

Converter

UWB
Transceiver

Micro
controller

LED

Buzzer

Clock

Program/Debug

Battery

Antenna

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 20 of 78

person has fallen or not. If an emergency situation is detected, a message is transmitted to the anchors

immediately. An enabler can pick up this message and act accordingly. A block schematic diagram is given in

the following figure:

Figure 4. Block schematic diagram of the ASSIST-IoT fall arrest device

A short description of the different parts is given:

• Fall arrest sensor interface: It must be possible to connect a fall arrest detector to this device. The exact

specifications for this interface are not known yet. The fall arrest sensor itself needs to be selected. This can

be a switch or strain gauge device.

• Inertia Measurement Unit (IMU): The IMU will be a six-axis sensor, 3-axis to measure acceleration and

3-axis to measure angular rate. The microcontroller reads the measured values and determines if a dangerous

situation occurs. If this is the case the microcontroller will send an emergency message with the UWB

transceiver.

• UWB Transceiver: UWB is used for localisation purposes. UWB is also used e.g., for communication with

the anchors. Key specifications of UWB are:

o Fully interoperable with IEEE 802.15.4 HRP UWB.

o Ranging technique based on IEEE802.15.14z.

o Position accuracy < 50 cm.

• Battery: The Smart IoT device is battery powered and can work stand-alone for more than 12 hours. The

DC-DC converter creates a constant on-board voltage for the different devices.

• LED: The LED is used to indicate the user that the device is operational. The LED will be green blinking

when operational.

• Micro controller: The micro controller controls the communication over UWB and controls the LED and

buzzer when needed.

• Clock: The clock function generates the clock signal required by the micro controller. The exact clock

circuitry and clock frequency will be determined during implementation.

• Program/Debug: This interface is used for development purposes.

3.3. Edge node
In D3.5, the general Edge node functions were described (see Figure 5). To be able to implement the functional

blocks, both hardware and firmware are needed. The different pilots have been studied and have been used as

input to determine which hardware and firmware needs to be implemented. The compute power, memory,

Physical Network Interface, Smart IoT device interfaces, etc., are part of the Edge node electronics and are

described in Section 3.3.1. The hardware abstraction layer, operating system and the container runtime are

described in Section o.

DC-DC

Converter

UWB
Transceiver

Micro controller

LED

Clock

Program/Debug

Battery

Antenna

Push button
Fall arrest

sensor interf.

IMU

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 21 of 78

Figure 5. General node functions

3.3.1. Edge node electronics

As shown in Figure 5, the hardware of the Edge node consists of Compute power, Memory, Physical Network

Interface, Smart IoT device interfaces, and dedicated sensors and actuators (if needed). A block diagram with

the components that will be present to implement the hardware of the Edge node is detailed in Figure 6. Besides,

the specifications of the different parts of the electronic components are also provided in this section.

Wired interfaces

The following wired interfaces are part of the Edge node electronics:

• USB: USB interfaces are used for many purposes; this can be to connect sensors but also to connect memory

expansion. Key specifications are:

o USB 2.0 Host interface with USB-A connector.

o USB 3.0 host interface with USB-C connector.

• 2 x Ethernet: Ethernet is used to connect to a local Ethernet network. Key specifications are:

o 10/100/1000Mbps compatible.

o Unshielded RJ45 connector.

• CAN: Within cars the CAN bus is used for communication between sensors/actuators and the ECU. By

connecting to this CAN bus, the Edge node can gather the data, the software can decide which data will be

processed and what will be communicated with the cloud. Key specifications are:

o CAN 2.0 with female DB9 connector.

o CAN FD with female DB9 connector.

• RS485: The RS485 physical layer can be used for many purposes e.g., to connect external sensors, I/O

expansion or actuator control. RS-485 only specifies the electrical characteristics of the generator and the

receiver: the physical layer. It does not specify or recommend any communication protocol. The

communication protocol depends on the usage and will be defined when it is known what exactly is going

to be connected. Key specifications:

o Signal definition according to EIA RS-485.

o 10 Mbps as maximum communication speed.

o Can be used point-to-point and for bus structures.

o Female DB9 connector.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 22 of 78

Figure 6. Block schematic diagram of the Edge node electronics.

• RS232: The RS232 physical layer can also be used for many purposes e.g., to connect external sensors, I/O

expansion or actuator control. RS-232 only specifies the electrical characteristics of the generator and the

receiver: the physical layer. It does not specify or recommend any communication protocol. The

communication protocol depends on the usage and will be defined when it is known what exactly is going

to be connected. Key specifications:

o Signal definition according TIA/EIA RS-232-F.

o 250kbps as maximum communication speed.

o Can be used for point-to-point connections.

o Female DB9 connector.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 23 of 78

Wireless interfaces

The following wireless interfaces are part of the Edge node electronics:

• UWB: This interface is mainly used for localisation purposes but can also be used for communication. E.g.,

for communication with the tags, this enables the Edge node to act as an anchor. Key specifications of UWB

are:

o Fully interoperable with IEEE 802.15.4 HRP UWB.

o Ranging technique based on IEEE802.15.14z.

o Position accuracy < 50 cm.

• WiFi: WiFi can be used for connecting smart IoT devices or other wireless sensors. WiFi can also be used

to connect to a network e.g., to create a communication channel with a server or a bac office in the cloud.

• BLE: Bluetooth Low Energy is used for low power short range communication with, smart IoT devices or

other wireless sensors.

• Mobile network wireless module: A mobile network wireless module with M.2 interface will be used.

M.2 is a standardised interface for internally mounted expansion cards. Depending on what is needed and

what is available in the market a 4G module, a 5G module or a module that combines 4G/5G can be used.

Compute power

The compute power is implemented as follows:

• Processing module: A processing module with a SMARC 2.1 (Smart Mobility ARChitecture) interface

will be used. SMARC 2 is a standardised small form factor computer module definition. Various modules

are available which enables to scale compute power for a specific application. For the processing module

the key specifications are listed below. These specifications are based on NXP’s i.MX 8M Plus processor

and are minimum specifications, hence the final chosen module will have equal or better specifications.

o Dual ARM Cortex-A53 application processor up to 1.8GHz.

o ARM Cortet-M7 real time processor @ 800MHz.

o Machine learning accelerator.

o 4GB DDR4 SDRAM memory.

o 8GB eMMC FLASH.

• Micro SD Card interface: The Micro SD Card is used for non-volatile data storage. This interface will be

according the SD3.0 specification with exFAT as filesystem.

Supportive functions

Besides the electronics to implement the functions itself, the following supportive functions are specified:

• Clock & Reset: The clock and reset function generates the clock signals required by the different parts of

the Edge node. The exact clock circuitry and clock frequencies will be determined during implementation

of the Edge node. The reset circuitry keeps the Edge node in reset until the input voltage and the generated

local voltages are stable and within the required range. When a local supply voltage goes out of range, e.g.

due to a fault, the Edge node will be reset. When the fault is removed the Edge node can come out of reset.

As soon as the Edge node comes out of reset the boot process is started.

• Watchdog: The software of the Edge node stops kicking the watchdog when it has been crashed. After a

timeout period the watchdog will reset the Edge node and the boot process will start. When the reason for

crashing is removed the Edge node will start operating as expected.

• Local power supplies: The local power supplies generate the on-board required voltages from the input

voltage. The specifications for the local power supplies are determined during implementation. The

specifications for the input voltage are:

o Input voltage: 12V ± 5%.

o Ripple & noise 150mVpp.

o Connector type: Panel mount power jack connector 2.1 x 5.5 mm.

• PSU monitoring: The local voltages are measured and can be read back by software. This is used for

diagnostic purposes and is useful during production of the Edge node. When voltages are out of range, the

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 24 of 78

Edge node will stay in reset to prevent faulty or unexpected behaviour. The Edge node will also enter the

reset state when one of the power supplies becomes out of range. The root cause could be that a hardware

fault occurs during normal operation or that the Edge node is used outside the specified input voltage range.

• Expansion connector: The expansion connector is going to be implemented for future use. Interfaces like

RS232, RS485, USB, I2C, SPI, SPDIF, I2S, etc., can be made available at this connector. During

implementation it will be determined which interfaces will be made available at the expansion connector.

• JTAG/Debug: The JTAG/Debug interface is used for debug purposes during development of the Edge

node and for test purposes during production. The exact specifications of this interface will be determined

during implementation. This interface is not available for normal use.

• Status LEDs: These LEDs are used to indicate the status of the Edge node (e.g., power OK, Ethernet link

status, etc). The number of LEDs and the accompanying function will be determined during implementation.

Some LEDs will be visible at the outside of the enclosure to give the user status information, some LEDs

will be inside the box and provide status feedback during implementation for debugging purposes.

3.3.2. Edge node firmware

As shown in Figure 5, the firmware of the Edge node consists of an Operating System (OS) which is built on

top of a Hardware Abstraction Layer (HAL), a container runtime and in addition pre-installed software to

support enablers will be used. This pre-installed software operates on top of the OS, next to the container runtime

so custom containers can use this pre-installed software.

Key specifications of the Edge node firmware are given:

• Operating System (OS): Yocto1, based on Linux, is used as OS. The Yocto Project is an open source

collaboration project that helps developers creating custom Linux-based systems regardless of the hardware

architecture. The project provides a flexible set of tools and a space where embedded developers worldwide

can share technologies, software stacks, configurations, and best practices that can be used to create tailored

Linux images for embedded and IOT devices, anywhere a customised Linux OS is needed.

• Hardware Abstraction Layer (HAL): The HAL consists of device driver as interface between the

electronics and the OS. The Yocto project supports several kinds of peripherals and provides device drivers

which implement hardware specific functionality for these peripherals. Besides, not supported peripherals

of the Edge node will need own developed device drivers. These are also part of the HAL.

• Configuration and initialisation: The configuration and initialisation of the standard interfaces (Ethernet,

Serial, etc.), SSH and a default user will be preconfigured on the Edge node, making the node fully

functional and ready to run enablers on.

• Container runtime: For the container runtime, Docker is used. Docker is a set of platform-as-a-service

products that use OS-level virtualisation to deliver software in packages called containers. Containers are

isolated from one another and bundle their own software, libraries and configuration files; they can

communicate with each other through well-defined channels. As the enablers will be implemented as

containers, Docker will be preinstalled.

• Pre-installed software: It is expected that some software will be used by several enablers and at the same

time, it must be possible to update the Edge node firmware. For this reason, the following supportive

software will be pre-installed at the Edge node:

o Python: Python is a general-purpose programming language that will be used by many enablers. It

is used for web development, AI, machine learning, mobile application development, etc. As

Python will be used on the Edge node, it will be preinstalled.

o Software update support: Software update support is needed to be able to update the HAL, OS and

specific device drivers e.g., to apply security patches, deploy new features or bug fixes. The update

mechanism is to be determined e.g. “swupd” or “mender.io” can be used. The software update

support is used to support the configuration enabler.

1 https://www.yoctoproject.org/

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 25 of 78

4. Initial horizontal enablers specification

The specification of all the identified enablers is formalised following the ASSIST-IoT enabler template. The

original template, and provided in D3.5, is composed of four sections: (1) a table with general information about

the enabler, including its description, plane to which it belongs and the requirements that it addresses; (2) a

basic diagram depicting the high-level communication among its components; (3) a table summarising all the

functionalities provided by its endpoints (APIs, or other type of interfaces); and (4) a set of table, one for each

of its components, with dedicated information about them.

A few considerations have to be considered about the information provided in this deliverable. First of all, the

template has evolved, and therefore some slight differences are present (e.g., in the first table of the template,

now the mapping with the use cases is included). Besides, because of being at early stages of WP4, some design

choices have not been taken yet, and therefore (i) the list of endpoints (third section of the template) is

preliminary (and in some cases, not provided), and (ii) some implementation aspects of their components in the

last section of the templates will not be included (e.g., hardware and software requirements, and the row devoted

to implementation technologies has been modified for this deliverable to “Candidate Technologies”). Finally,

for facilitating the reading of the section, templates will be provided in Annex B - , leaving just the description

of the provided functionalities in the core document. More specifically, the delivered templates include:

Table 1. General information of the enabler

Enabler Name of the enabler (follow glossary guidelines to name it)

id Short unique identifier/acronym

Owner and support Lead and supporting beneficiaries

Description and main
functionalities

Functional description of the enabler (description paragraph and bullet points for
describing its functionalities)

Plane/s involved
Horizontal plane or planes on which the enabler's features are delivered [Only one for
horizontal enablers, transversal enabler intersect more than one]

Relation with other
enablers

List of enablers (core or vertical) that interact with this one. Just list.

Requirements mapping
List of the IDs of the requirements addressed or considered. Attach a short rationale
(1/2 sentences)

Use case mapping List of the IDs of the use cases related to this enabler.

Required components List of the names of the components that form this enabler

Figure 7. High-level diagram of an enabler

Table 2 describes the endpoints that will be offered by each enabler. As aforementioned, because of being in a

very early stage, some enablers have a very basic table of endpoints described (hence, to be improved) or even

it is not present. Besides, for each of the components that are part of a particular enabler, a table like the one

presented in Table 3 is included.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 26 of 78

Table 2. Endpoints information of an enabler

Method URL Payload (if needed) Description Response format

GET/POST/
PUT/DELETE

/{something}/…
Data needed to be
included

Main functionality
provided

In the future, a table should be
provided for each method to show
data format, response codes…

Table 3. Specific information of an enabler component

Enabler component Name of the enabler component

id Short unique identifier. E.g., T4XEY_{Key_name/concept}

Description and main
functionality

Functional description of the component (description paragraph and bullet points for
describing its functionalities that are required by enabler/s)

Target node/s
Physical device in which it can be installed (edge node, smart IoT device, cloud…). If not
decided just “to be decided”

Candidate technologies
Candidate technologies to implement it. In some cases, they might be already “final
choices” whereas for others it is under decision, but at least implementation options
must be presented (can be something like “custom component in Python using Flask”)

4.1. Smart Network and Control enablers
The main objective of the Smart Network and Control plane is the realisation of a networking infrastructure for

NGIoT ecosystems, facilitating the interconnection of both hardware (i.e., nodes and devices) and software (i.e.,

enablers) elements either from inside or outside the site’s network, and the configuration of different networking

aspects that provide the required characteristics for different use cases in terms of latency, bandwidth, Quality

of Service (QoS), etc.

The architecture considered in the ASSIST-IoT architecture follows the softwarisation paradigm based on

SDN/NFV2 that has been evolved during the last decade in the telecommunication industry, as also exposed in

the deliverable devoted to the State-of-the-Art (D3.1). It provides three main advantages with respect to former

architectures:

• Large reduction of costs related to network equipment (most network functions, now virtualised, can

be instantiated in general purpose equipment).

• Faster reconfiguration and flexibility, since the instantiation and configuration of network functions

(and routing aspects) can be automated, also for elastic scaling of resources.

• Openness, facilitating the utilisation of open-source software while reducing the dependency of

proprietary elements, either software or hardware.

In this paradigm, the NFV Management and Orchestration (MANO) and the SDN Controller are the main

elements, being the former in charge of instantiating and managing the lifecycle of Virtualised Network

Functions (VNFs), and the latter in controlling the packet forwarding, among other networking aspects, based

on specified policies. In the ASSIST-IoT ecosystem we aim at leveraging this paradigm, but adapted to an

industrial ecosystem in which containers (and Kubernetes as container orchestrator) are expected to be

prevalent, instead of leveraging (or at least minimising the necessity of) virtual machines.

The enablers of the Smart Network and Control plane can be classified under four functional blocks, namely

“Smart Orchestrator”, “SDN Controller”, “VNFs” and “Self-contained network”, as it can be seen in Figure 8.

The logical classification in different functional blocks is purely conceptual, not having any further impact

neither in design nor in deployment stages. Most of these enablers will be instantiated and controlled by the

Smart Orchestrator enabler, regardless of being their belonging functional block.

2 M. S. Bonfim, K. L. Dias and S. Fernandes, “Integrated NFV/SDN Architectures: A Systematic Literature Review”,

ACM Comput. Surv. vol 51, 6 (2019).

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 27 of 78

Figure 8. Smart Network and Control plane functional blocks and enablers

These enablers have been identified following the requirements defined in D3.2. It should be mentioned that

the number and the scope of these enablers can be modified since requirements are still evolving, and therefore

they should not be taken as close at this point. All the enablers will be related to requirements and use cases that

they will address, but in summary they target demands from the use cases like:

• Ensuring specific minimum latencies, bandwidths and/or QoS.

• Network reliability to prevent absence or loss of connections.

• Provisioning of machine-to-machine communication or mesh networks, when required.

• Multi-link wireless network capabilities.

• Support for Kubernetes-based networking and its interaction with SDN (pending to be defined).

4.1.1. Enablers’ descriptions summary

Smart Orchestrator

This enabler facilitates the interaction of User Interfaces (UIs) and other enablers with the main components of

the MANO framework, namely the Network Function Virtualisation Orchestrator (NFVO) and the Kubernetes

clusters, exposing only the required inherent functionalities. In particular, this enabler will control the whole

lifecycle of Virtualised Network Functions (VNFs), from their instantiation to their termination, allowing their

deployment in any k8s cluster available. If needed, adaptations for lightweight alternatives such as k3s will be

studied.

This enabler is also in charge of performing additional functionalities, like the validation of submitted

descriptors for Virtualised Network Functions (VNSD) and Network Services (NSD). Finally, it also acts as an

abstraction layer, decoupling the underlying selected NFVO technology from the ASSIST-IoT ecosystem. In

this way, in case the NFVO component is changed in the future, only this layer would need to be adapted without

having to modify the interfaces of the rest of enablers that communicate with this one.

SDN Controller

The SDN Controller is the key element of an SDN-enabled network, being the software that takes over the

responsibilities of the control plane from the hardware elements (switches mostly), including monitoring and

management of packet flows. Although typically installed in a dedicated machine, its functionalities are

intended to be provided following the ASSIST-IoT architecture based on enablers, either by adopting a

distribution that matches it or by making the necessary adaptations to fulfil them. The main functionalities are

related to network management, operation and maintenance, allowing topology management, network

configuration, network control and network operations, among other features.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 28 of 78

Auto-configurable network enabler

This enabler provides optimised network routing configuration capabilities to the SDN Controller of an

ASSIST-IoT ecosystem. This enabler will consist of an application that consumes the northbound APIs of the

SDN Controllers to generate a policy that improves the performance of one/many KPIs of the network (e.g.,

latency). The selection of the most suitable model depends on the use cases, and the objective of this enabler is

to provide three different strategies (pending to define) to be compatible with the selected Controller.

Traffic classification enabler

The aim of this enabler is to classify network traffic into a number of application classes (video streaming, VoiP,

Network control, best effort, OAM, etc.), making use of a AI/ML framework and dedicated algorithms. The

traffic classification enabler can be seen as a service of the application layer of the general SDN architecture.

To provide its functionalities, three stages are needed: (i) data processing and feature extraction, (ii) model

selection training, and (iii) inference and results. For developing this particular enabler, we will rely on modules

of the SDN Controller for providing the features of the data to perform the inference, but in case this information

it is not enough the necessary components will be added.

The results provided by this enabler can be used for supporting network policy-making processes for ensuring

QoS (application priority), optimising traffic, or enhancing security (therefore results must be consumed by

other enablers).

Multi-link enabler

Multi-link wireless network capabilities provide the possibility of sending streams of data over different Radio

Access Networks and different channels in each of them (for instance, regarding cellular, using more than 1

connection). Besides, it should provide reliability mechanisms: in case one channel is down, signal cannot be

lost or at least it should be recovered almost in real time. The reliability mechanism will be integrated by means

of redundancy rather than diversity (e.g., MPTCP), since it is better considering latency aspects, especially when

switching.

Regarding redundancy, signal will be sent through two channels, of (at least) two different RATs, so in case

one is down the other can take over. In case of video streaming, the redundant channel will transmit at lower

resolution, and in case it has to take over this resolution will dynamically increase. Since this enabler comes

from a requirement of the port automation pilot, the involved RATs will be cellular, WiFi and fluidmesh

(starting with two of them). When the main link is lost and the second takes over, a third channel should be

initiated for acting as the redundant one. This enabler will be expanded in the future to support not just multi-

link connections for video but also for other classes of low-latency traffic.

SD-WAN enabler

The objective of this enabler is to provide access between nodes from different sites based on SD-WAN

technology. This enabler will consist of three main virtualised elements, (i) an edge node in each one of the sites

to be interconnected (SD-WAN edge), which will act as the endpoint between the site’s network and the

different access networks that connect them (MPLS, Internet, 4G, Satellite, etc.), creating/finalising the

necessary tunnels; (ii) an SD-WAN controller, which includes, IP address management, and pushing down

policies onto SD-WAN Edges, among other functionalities; and (iii) a configuration server, also known as WAN

Service Configurator, that contains the application-based policies and functionalities (configuration of end-to-

end WAN services, QoS/business optimisation, etc.).

Besides, the SD-WAN edge will consist of two main components, a virtual switch and monitoring agents. The

monitoring agents will collect network metrics that will be processed in the WAN monitoring module, getting

outcomes that in turn will feed the WAN Service Orchestrator for applying the optimal configurations (in tunnel

selection and application prioritisation).

WAN Acceleration enabler

This enabler aims at increasing the efficiency of data transfer in Wide Area Network. This enabler will contain

a set of independent, standalone VNFs with that purpose. These functions can be either chained (so data that

requires of different techniques travels through the different functions) or selected for specific purposes. For

now, three functions are expected to be provided: traffic shaping, data compression and data decompression.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 29 of 78

VPN enabler

This enabler will facilitate the access to a node or device from a different network to the site’s private network

using a public network (e.g., the Internet) or a non-trusted private network. VPN enabler must work in High

Availability (HA) mode, with VPN servers distributed in different nodes, and failover. As a first step, the site’s

network will be considered trusted, so VPNs will not be needed to connect nodes or devices that belong to it.

It should be highlighted that SD-WAN enabler will be the primary choice for connecting sites’ networks while

VPN will (primarily) connect particular external elements to the site’s network since (i) VPN lacks both network

and application-level performance optimisation, and (ii) it requires extensive manual effort to add different sites

to the entire WAN.

4.2. Data Management enablers
The Data Management plane organises common data-related functions and services. To support highly dynamic

and heterogeneous data flow pipelines the enablers on this plane are designed to be the building blocks of

decentralised systems, where operations on data are performed exactly where and when they are needed. To this

end, this plane delivers solutions to control the data traffic (edge data broker), process the data (semantic

translation and annotation) and safely persist it (long-term storage), as required. The data transformation

functions are designed to support static (i.e., bulk) data, as well as streaming data. In order to use consistent

security mechanisms across the project, the data access control uses the functions delivered by the authentication

and authorisation enablers from the Security, Privacy and Trust vertical (see deliverable D5.1, or its later

revisions D5.2, D5.3).

The Data Management plane is conceptually divided into two functional blocks: Data Governance and

Semantics (please, refer to individual enabler descriptions for detailed explanations).

Figure 9. Data Management Plane functional blocks and enablers

On the one hand, the Data Governance block gathers enablers that, in principle, do not need to modify data, but

rather offer a service that improves data safety and availability, security, or helps to optimise the flow of data,

based on its contents. On the other hand, the Semantics functional block delivers semantically enabled

transformations that process and, when needed, change the data to conform to the requirements of every node

in a data pipeline. Semantic data processing is supported by the repository enabler, which organises models and

configuration files used in semantic translation and annotation in order to ease the design of semantic data

pipelines.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 30 of 78

4.2.1. Enablers’ descriptions summary

Semantic repository enabler

This enabler offers a “Nexus” for data models and ontologies, that can be uploaded in different file formats, and

served to users with relevant documentation. This enabler is aimed to support files that describe data models or

support data transformations, such as ontologies, schema files, semantic alignment files etc.

Additionally, human-readable documentation for the models will be served. Offered files, their metadata and

documentation are, in principle, public, so that this enabler could be used as support for a shared semantic

ecosystem. The secure access restrictions may be more tightly controlled with an API manager in future

versions.

In short, the core function of this enabler is to be a database of data models and ontologies, with public read

access. In summary, it supports:

• Versioning: different versions of data models.

• Ownership: only the data model owner may update a data model.

• Provision & search: Data models are public and browseable.

• Documentation: Documentation provided by data model owner is served.

Semantic translation enabler

Semantic Translation enabler offers a configurable service to change the contents of semantically annotated

data in accordance with translation rules – so called “alignments”, or alignment files. The core use-case, around

which this enabler is designed, is to move data between semantic ontologies (which can be thought of as data

schemas or vocabularies) that can express the same information, without changing the meaning of the

information.

Flexibility of design and expressivity of configuration files allow for other use-cases, such as semantic reduction

(removing selected information, e.g., because of privacy reasons), further annotation (adding additional

information based on data content and possibly external variables), or even encoding or encrypting selected data

items into a serialised form.

The Semantic Translator supports RDF as the only modern standard for semantic data. By design it supports

and promotes the “core ontology” design, in which data transformations are always unidirectional and done to,

or from a central ontology, and paired into “translation channels” to achieve bidirectional transformations. In

this manner, n-to-n translations can be easily implemented, and the cost of including a new data model in

existing deployments does not grow exponentially.

Translation services are offered as a “static” API for batch data, or through a publish-subscribe broker for

streaming data.

Semantic annotation enabler

This enabler offers a syntactic transformation service, that annotates data in various formats and lifts it into

RDF. Full list of formats is yet to be decided and the first version will support JSON.

The enabler is lightweight and stateless, so that it may have many independent deployments. The core

functionality is designed to be integrated into a pipeline before the Semantic Translation enabler, which requires

the use of RDF. In essence, using Semantic Annotator enables usage of the Semantic Translator with formats

other than RDF.

Edge data broker enabler

The edge data broker enables the efficient management of data demand and data supply from/to the Edge Nodes.

It optimally distributes data where it is needed for application, services and further analysis. Data distribution

is based on reported demand and available resources at the Edge Nodes. It provides: (i) subscriptions and

messages between the broker and the Edge Nodes; (ii) management of message scheduling, routing and

delivery; (iii) common interfaces for searching; and (iv) finding information.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 31 of 78

Long-term data storage enabler

The role of this enabler is to serve as a secure and resilient storage, offering different storage sizes and individual

storage space for other enablers (which could request back when they are being initialising in Kubernetes pods).

It also guarantees that the data will be kept safe, in face of various kinds of unauthorised access requests, or

hardware failures, by only allowing access to the data once the Identity Manager and the Authorisation enablers

have confirmed their access rights.

4.3. Application and Services enablers
Both devices’ specifications (physical plane) and the two upper lying ASSIST-IoT horizontal Planes (Smart

Network and Control plane, and Data management plane) will facilitate the collection of real-time data from

massively distributed sets of sensors and heterogeneous networks. The main goal of the enablers of the

Applications and Services plane is, therefore, to expose, interact and provide added value (over such collected

data) via human-centric dashboards and tactile interfaces (AR and MR). To do so, the Applications and Services

enablers’ definitions have followed a similar approach as the App Entities recommendation proposed in the

AIOTI framework3. It defines features to provide application logic, including data visualisation and user

interaction services, data analytics capabilities, various kinds of data protection support, and data management

logic.

ASSIST-IoT Application and Services enablers will consequently help human decision-makers to coordinate

operations from different responsibility angles/roles (i.e., accessing rights). In particular, the project foresees

three types of user roles:

1. End-users with read-only access: These users will be able to access the platform and analyse business

KPIs aided by the customisable charts and graphs that will be offered via enablers of this plane. These

results will help them to take decisions based on the provided insights, and supported by means of the

Intelligent Decision-Making services provided.

2. ASSIST-IoT system administrators with read-and-write access: These users will be able to manage the

on-boarding of all the devices and enablers of the platform, as well as to monitor their performance

status and proceed accordingly in case of unexpected behaviour or even platform failures.

3. ASSIST-IoT external developers or practitioners: The stakeholders responsible for the ASSIST-IoT

infrastructure, may allow external parties to include additional capabilities. In order to grant them access

to particular areas of enhancement, specific clauses can be enabled or disabled over the overall platform.

As it can be seen in the Figure 10, the enablers of the Application and Services plane can be classified under

three main functional blocks, “Dashboards”, “AR/MR features”, and “ASSIST-IoT API Management”.

Figure 10. Application and Services plane functional blocks and enablers.

The Dashboard functional block is formed by three enablers: Tactile dashboard, Business KPI reporting enabler,

and Performance and Usage Diagnosis enabler. They have both server-side and client-side modules that will

enable users to see and interact with content in user-friendly interfaces. AR/MR features block gathers two

enablers that will expose the Intelligent Decision-Making information in more advance human-to-machine

3 https://aioti.eu/wp-content/uploads/2018/06/AIOTI-HLA-R4.0.7.1-Final.pdf

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 32 of 78

interfaces thanks to Computer Vision and Mixed Reality engines. Finally, the ASSIST-IoT API management

block is in turn formed by the OpenAPI manager who will let expose the HTTP trigger function endpoints as

REST APIs for those users with granted access rights. An individual enabler description is detailed next.

4.3.1. Enablers’ description summary

Tactile dashboard enabler

The Tactile dashboard has the capability of representing data stored in all the ASSIST-IoT deployments through

meaningful combined visualisations in real time. It is expected that it will also be able to integrate the Business

KPI reporting, and the Performance and Usage Diagnosis enablers in order to provide the capability of exposing

KPIs needed to evaluate the success of a particular organisation activities in which it is engaged. It will also be

in charge of sending notifications based on the status of the data received from all the monitored ASSIST-IoT

devices and enablers, respectively. To do so, the enabler will provide all the required web environment, split in

two main components: (i) a frontend, that offers a web application based on a customised Vue.JS framework

through which the ASSIST-IoT users and administrators can interact with; and (ii) a backend, that handles all

the services needed for generating the frontend dashboard interfaces. Moreover, in order to manage the roles

permissions, the enabler will connect with the Identity Manager and Authorisation enablers in order to ensure

which users are authorised.

Business KPI reporting enabler

The best way to understand data of those companies that can make use of ASSIST-IoT platform is to visualise

them. With the Business KPI reporting enabler it is expected that end-users can get the collected data from one

or more storages and databases (such as the Edge broker enabler or the LTSE) into a collection of panels that

will bring clarity, extract business insights, and allow to focus on only the KPI that are relevant to the

organisation. To accomplish that goal, the Business KPI reporting enabler will provide a graphical and intuitive

interface to make custom graphics, allowing to choose, in a very intuitive way among several types of graphs.

Performance and usage diagnosis enabler (PUD)

Performance and Usage Diagnosis (PUD) enabler aims at collecting performance metrics from monitored

targets by scraping metrics to HTTP endpoints and highlighting potential problems in the ASSIST-IoT platform.

This will allow to autonomously act in accordance (if enabled) or to notify the platform administrator for fine-

tuning the associated machine resources. Four main components form the PUD enabler: (i) the PUD server,

responsible for storing the time series data or metrics from long stable platform jobs; (ii) a Push Gateway to

allow ephemeral and batch jobs to also expose their metrics; (iii) a WebUI used to visualise the aforementioned

collected data; and (iv) an alert manager that will trigger specific actions depending on previously configured

rules.

Hence, the PUD enabler will provide an end-to-end approach to infrastructure and application monitoring,

covering all levels with easy instrumentation. The enabler will collect performance metrics trying to maintain

operational simplicity while being able to adapt to varying scales/levels of the ASSIST-IoT infrastructure. By

integrating it with a wide range of service discovery systems via REST APIs, PUD enabler will stay

synchronised with the ASSIST-IoT infrastructure that it is actually monitoring.

OpenAPI management enabler

API management is a process that encompasses publishing, documenting, and overseeing APIs in a secure, and

scalable environment. It allows organisations to monitor the interfaces’ lifecycles of their published APIs, and

guarantee that the demands for both internal and external developers, as well as applications that are

communicating with the associated APIs, are appropriately met. Therefore, it provides the competencies for

ensuring successful API usage in developer, business, and security perspectives.

API specification and documentation is a key factor for technology adoption, regardless of the software that is

used internally or by external third parties. With the growth of publicly available APIs, some standards and

tools have emerged. ASSIST-IoT, as an open platform, will be able to allow additional features out of the project

development itself. To do so, a unified API access through the Open API manager will be provided. In particular,

it will consist of an API design document for each ASSIST-IoT enabler based on Swagger definitions, followed

by an API publisher interface. Next, the user will be able to subscribe to the APIs through the API subscription

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 33 of 78

web GUI, namely API Portal. In order to guarantee some level of management privileges, different set of access

rights will also be able to be adopted by configuring them via the Cybersecurity enablers.

Video augmentation enabler

The Video Augmentation enabler will allow to perform computer vision functionalities over captured images

or video streams either from ASSIST-IoT Edge nodes, or from ASSIST-IoT databases. The enabler will be

formed (i) firstly by a Machine Leaning training block over which object detection of particular end-user assets

can be detected (e.g., cargo containers or cars damages), followed by (ii) an Inference Engine, aiming to overlap

new unseen data as input. Then, it will provide to the end user visual insights to help on enhancing operational

efficiency or operational safety on the considered use cases. As it can be noticed, the Video Augmentation

enabler will interact with the ML algorithms repository in order to select the most appropriate ML algorithm

according to the objected data (although this is a user decision, not an autonomous decision).

MR enabler

The MR enabler is designed for providing immersive experience to practitioners of ASSIST-IoT in general, and

for the Worker’s safety pilot in particular as a first action line. The enabler will receive data from the Edge data

broker or from the LTS enabler and will transform this data into a suitable format for visualisation capabilities

over head-mounted MR displays (in principle, it is foreseen for MS Holo-Lens MR goggles). Information will

then be displayed to the user, according to their authorisation/access rights, supporting user interaction with the

virtual content and view customisation.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 34 of 78

5. Future Work

This deliverable presents the work developed so far under the scope of WP4. It corresponds to the first document

of a series of three iterations, and therefore the specifications depicted in the document are susceptible to change.

In this document, the main results presented are the specifications of the Edge nodes and Smart IoT devices that

will be developed in the project, and the specifications of the enablers that will be provided (for the upper three

planes of the ASSIST-IoT architecture, namely the Smart Network and Control Plane, the Data Management

plane and the Application and Services plane).

Regarding enablers specifications, results are presented following a template developed specifically for that

purpose. It includes a table with main functionality and general information, a high-level diagram of its

components, a table with endpoints, and a dedicated table for each of its components, in which rationale and

candidate technologies for their implementation are highlighted. For the sake of facilitating the reading, most

of this information has been placed into an annex, leaving in the core document the functionalities provided by

each enabler.

The finalisation of this deliverable kicks off the software developments of the work package. Hence, the

following actions are expected for each enabler:

• Distribution of tasks among the partners that contribute into its realisation.

• Finalisation of the endpoints/API calls required for the enabler (some of the enablers did not have it

ready at this point).

• Initiation of the software developments of each of its components.

• Definition of possible interactions with WP5 or other WP4 enablers. Although they are intended to be

as standalone as possible, so they can be reutilised by third parties and integrated in systems beyond

ASSIST-IoT, some functionalities (such as authentication or long-term storage) are provided by other

enablers, so they are not replicated within many enablers. Interactions will be formalised in the next

deliverable devoted to architecture (D3.6).

• First results ready and available by the next deliverable iteration (the degree of development will not be

homogeneous for all the enablers).

First software results are expected to be delivered with the second iteration of the deliverable. It is likely that

some deviations occur during their development, such as:

• Slight modification of the provided functionalities.

• Change of the components that conform the enabler. For instance, some components may have been

described at high level and thus may require to be split into more components.

• Modification of the technologies used for implementing the enabler with respect to the candidate ones

highlighted in this document. Despite the fact that several discussions have taken place for identifying

them, these decisions may not be valid during implementation.

• Identification of the necessity of more enablers to support the others.

Apart from the enablers identified so far, there are some actions that are specific for the Device and Edge plane.

First of all, the formalisation of the enablers for this plane is still to be performed, work that it is to be carried

out shortly. Besides, regarding the hardware elements developed for the project, the number of Smart IoT

Devices will be (likely) increased once the requirements of the use cases and the necessities of the pilots are

refined. All the outcomes that come out from the action points highlighted in this section will be presented in

the next iteration of this deliverable, i.e., D4.2.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 35 of 78

Annex A - Localisation
For both the port automation pilot and the smart safety of workers’ pilot, indoor and outdoor localisation is

needed. As per requirement of the use cases, people and equipment needs to be localised with an accuracy of

less than 50 cm. With standard inexpensive GPS/GNSS, this accuracy cannot be reached. Still, with more

sophisticated and expensive solutions, accuracy can be improved to decimetre level, e.g., with GNSS using

geodetic grade and dual band antennas. Sub-decimetre accuracy can be reached with Differential GPS (DGPS)

using a refence receiver with known location, being also possible to use a global Precise Point Positioning (PPP)

service.

GPS/GNSS can be used for outdoor localisation, however, it cannot be used for indoor localisation since

reception of the satellite signals cannot be guaranteed. Different principles of operation exist for indoor

localisation:

• Signal strength measurement.

• Angle of Arrival (AoA) and Angle of Departure (AoD) measurement.

• Time of flight measurement.

• Phase-based measurement.

• Combination of Time of flight and Phased based measurement e.g. as used by Lidar

• Image-based triangulation or 3D reconstruction (with cameras).

Signal strength measurement is not accurate enough for fulfilling the requirements, and therefore this method

will not be used. A solution using Lidar is relatively expansive compared to other solutions, whereas image-

based triangulation would need relatively high compute power to be working continuously. This would lead to

an energy consuming solution which is not that suitable for portable or resource-constrained solutions.

Another solution is to place anchors at fixed and known locations and give the person or object, of which the

position needs to be known, a tag. This tag communicates with the anchors and by means of time-of-flight

measurement, the distance between tag and anchor is determined (the Edge node can serve as anchor, as it can

be seen in Figure 11). Since several tags will be used to create a 3D, live view of the location of people (and

assets, see Figure 12), these have to be cost effective. The are several possibilities for implementation:

• UWB: with time of flight, it is the most precise indoor localisation technology available for industrial

applications. Accuracy of 10 cm can be reached, which fulfils the aforementioned requirement of 50

cm. This is also a standard: candidate technology.

• WiFi: Accuracy of 1-5 meters: not selected.

• Bluetooth: Accuracy of meters, with BLE 5.1 accuracy of 50 cm can be reached: candidate technology.

• Camera: Camera is on fixed position, making use of person recognition. A person cannot give feedback

or emergency signalling to the specific person in case of danger, being complex: not selected.

Two technologies remain: BLE and UWB. For indoor use, the received signal may have travelled many paths.

On the one hand, for BLE, this means that the signal is attenuated and thus the position accuracy is reduced

compared to free line of sight. On the other hand, due to the wide band aspect of UWB, multipath received

signals and distance measurement is not influenced that much. Therefore, because of being more accurate and

performing better with disturbances from the environment compared to BLE, UWB is selected to implement

localisation.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 36 of 78

Figure 11. Localisation options in the Smart safety of workers’ pilot

Figure 12. Possible position of tags

Smart-IoT Device
Tag

Edge Node / Gateway

Netwerk /Switch

Server

Application

Data: BIM, etc.

Anchor

Anchor

Anchor
Initiator

Localisation Error < 50 cm

Anchor density: every 30m

UWB: IEEE802.15.4Std

Tag

FL

Application

Data

3G/4G/5G Gateway/Server

GNSS

iPhone11 Included UWB
Plan: Google, Samsung,

WiFi

Ethernet

UWB
BLE

Configuration &
Visualisation

Tag

Tag

WiFi

Ethernet

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 37 of 78

Annex B - Enablers templates

B.1 - Smart orchestrator enabler
Table 4. General information of the Smart Orchestrator enabler

Enabler Smart Orchestration enabler

id T42E1

Owner and support UPV, NEWAYS, OPL

Description and main
functionalities

This enabler facilitates the interaction of user interfaces and other enablers with the main
components of the MANO framework, namely the Network Function Virtualisation
Orchestrator (NFVO) and the Kubernetes clusters, exposing only the required inherent
functionalities. In particular, this enabler will control the whole lifecycle of Virtualised
Network Functions (VNFs), from their instantiation to their termination, allowing their
deployment in any k8s cluster available. If needed, adaptations for lightweight
alternatives such as k3s will be studied.

This enabler is also in charge of performing additional functionalities, like the validation
of submitted descriptors for Virtualised Network Functions (VNSD) and Network Services
(NSD). Finally, it also acts as an abstraction layer, decoupling the underlying selected
NFVO technology from the ASSIST-IoT ecosystem. In this way, in case the NFVO
component is changed in the future, only this layer would need to be adapted without
having to modify the interfaces of the rest of enablers that communicate with this one.

Plane/s involved Smart Network and Control Plane

Relation with other
enablers

• T42E2: SDN Controller

• T42E6: SD-WAN enabler

• T55EX: (task has not started hence not formally documented yet) – Orchestration
of enablers deployment

Requirements mapping

• R-P1-20: Remote latency capabilities (it will be in charge of deploying those CNFs in
charge of ensuring it)

• R-P1-22: Multilink wireless network capabilities (it will be in charge of deploying the
related CNFs)

• R-P3A-11: Connectivity between OEM and fleet (it may/can deploy a ping-based CNF
to evaluate connection between fleet and OEM prior to an update, and instantiate
those VNFs needed for stablishing the connection)

• R-P3A-12: Edge Connectivity (it may/can deploy CNFs to support required latencies)

Use case mapping

This enabler is inherent to an ASSIST-IoT ecosystem and therefore it should be present at
all pilots, otherwise it would not be possible to orchestrate VNFs and hence the Smart
Network and Control plane would not be present. Among the use cases of the project,
the ones with higher need of it are:

• UC-P1-6: Wireless remote RTG operation

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-6: Safe navigation instructions

• UC-P3B-1: Vehicle’s exterior condition documentation

Required components MANO Abstraction Layer, Descriptor Validator, NFVO, Kubectl Proxy

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 38 of 78

Figure 13. High-level diagram of the Smart Orchestrator enabler

Endpoints

This list of endpoints is pending to be increased. The revised list will be provided in the next iteration of the

deliverable (D4.2).

Method URL Description

GET

/vnfd Returns all the available VNFs in the catalogue.

GET /vnf/{id} Find VNFD by id

POST

/vnfd Adds a VNFD to the catalogue

PUT /vnf/{id} Updates a VNFD

DELETE /vnf/{id} Deletes a VNFD

GET

/nsd Return all the available NSs in the catalogue.

GET /nsd /{id} Find NSD by id

POST

/nsd Adds a NSD to the catalogue

PUT /nsd/{id} Updates a NSD

DELETE /nsd/{id} Deletes a NSD

GET /nsi Returns all running NS instances

POST /nsi/{id} Creates an instance of a NS

DELETE /nsi/{id} Terminates a NS instance

GET /k8s Returns all the registered k8s clusters

POST /k8s Registers a new k8s in a VIM

DELETE /k8s/{id} Deletes an existing VIM

POST /vnf/name Uploads the container image of a VNF

Components

Finally, in the following tables are summarised the functionalities and rationale of the components that are

needed, also shown in Figure 14 for implementing the enabler. There is no need of splitting the components

over different nodes.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 39 of 78

Enabler component MANO Abstraction Layer

id T42E1_abstraction

Description and main
functionality

This component will be the main entrypoint to the functionalities provided by the enabler,
hence exposing the APIs, so other enablers (or user interfaces) can communicate with the
NFVO and the k8s clusters of the MANO framework. It will act as an abstraction layer,
meaning that an ASSIST-IoT deployment can be agnostic to the final choice of NFVO
technology. If other technologies are to be used, the endpoints should be adapted
accordingly.

Target node/s High-tier Edge node

Candidate technologies Custom python component, Flask, Open API.

Enabler component Descriptor Validator

id T42E1_validator

Description and main
functionality

This component of the enabler will be responsible of checking that (i) VNFD and NSD are
compliant with their respective JSON schemas, and (ii) there is a package for them
already uploaded to the containers repository.

Target node/s High-tier edge node

Candidate technologies Custom python component, Flask, JSON Schema.

Enabler component NFVO

id T42E1 _NFVO

Description and main
functionality

This component is responsible of orchestrating and managing the lifecycles of Network
Services, from their instantiation to their termination. To this end, it communicates with
the k8s clusters, which manages the virtualised infrastructure (NFVI). It should also
provide connectivity among the VNFs involved. Although represented as a single
component, it consists of many different services, each of them in its respective container.

Target node/s
High-tier edge node (it has to be able to communicate with all the K8s clusters of the
site)

Candidate technologies EMCO, OSM

Enabler component Kubectl Proxy

id T42E1_kubectl

Description and main
functionality

This component is in charge of the communication between the NFVO (and the
abstraction layer) and the k8s clusters. The native kubectl proxy of k8s will be used for
this purpose.

Target node/s
High-tier edge node (it has to be able to communicate with all the K8s clusters of the
site)

Candidate technologies Kubernetes kubectl

B.2 - SDN Controller
Table 5. General information of the SDN Controller

Enabler SDN Controller

id T42E2

Owner and support OPL, UPV

Description and main
functionalities

The SDN Controller is the key element of a SDN-enabled network, being the software that
takes over the responsibilities of the control plane from the hardware elements (switches
mostly), including monitoring and management of packet flows. Although typically

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 40 of 78

Enabler SDN Controller

installed in a dedicated machine, its functionalities are intended to be provided following
the ASSIST-IoT architecture based on enablers, either by adopting a distribution that
matches it or by making the necessary adaptations to fulfil them. The main functionalities
are related to network management, operation and maintenance, allowing topology
management, network configuration, network control and network operations, among
other features.

Plane/s involved Smart Network and Control Plane

Relation with other
enablers

• T42E1: Smart Orchestration enabler

• T42E3: Auto-configurable Network enabler

• T42E4: Traffic Classification enabler

Requirements mapping
• R-P3A-11: Connectivity between OEM and fleet (it provide connectivity setup and

control)

• R-P3A-12: Edge Connectivity (it provides network core connectivity for edge systems)

Use case mapping

This enabler is one of the main components of networking system in an ASSIST-IoT
ecosystem, and it should be present at all pilots, where network connectivity is required
among edge systems and core platform components. Exemplary use cases in the project
are:

• UC-P1-6: Wireless remote RTG operation

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-6: Safe navigation instructions

• UC-P3B-1: Vehicle’s exterior condition documentation

In the ONOS architecture (the one that will be leveraged for the project), one can distinguish core functional

modules like Configuration, Control, Operation, Topology, and Northbound (NB) and Southbound (SB) API.

Core subsystems are related to device, link, host, topology, etc. On the one hand, the usage of the SB API on

the network level facilitates the integration of different vendors’ devices. On the other hand, the NB API is

available for application developers. Being ONOS the implementation that will be used for the project, it is

possible to leverage REST API and also new generation of control and configuration interfaces like gNMI,

gNOI, P4Runtime, NetDisco. The main functions envisioned in the project to be useful are the following:

Device, Link, Host, Topology, Path, Flow , Flow Objectives, Group, Meter, Intent,, Application, Component

Configuration.

Figure 14. High-level diagram of the SDN Controller

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 41 of 78

Endpoints

This list of endpoints is pending to be increased. The revised list will be provided in the next iteration of the

deliverable (D4.2).

Method URL Description

GET/POST/
PUT/DELETE

/link/ ?{device=deviceId}
{port=portNumber}
{direction=[ALL,INGRESS,EGRESS]}

Lists all infrastructure links, creates, update, deletes device

GET/POST/
PUT/DELETE

/devices/{deviceid}/ports
Lists all infrastructure devices, creates, update, deletes device

GET/POST/
PUT/DELETE

/hosts/{hostId}
Lists all end-stations hosts.

GET /topology/clusters/{clusterId} Gets list of topology cluster overviews.

GET/POST
/DELETE

/paths/{elementId}/{elementId}
Gets set of pre-computed shortest paths between the specified
source and destination network elements

GET/POST
/DELETE

/flows/{deviceId}/{flowId}
Creates, lists, deletes a single flow rule applied to the specified
infrastructure device

GET/POST
/DELETE

/meters/{deviceId}
Creates, lists, deletes a single meter entry applied to the
specified infrastructure device.

GET/POST
/DELETE

/intents/{app-id}/{intent-id}
Gets the details for the given Intent object. Creates, deletes a
new Intent object.

GET/POST/
PUT/DELETE

/applications/{app-name}
Gets a list of all installed applications. Activates, deactivates the
named application.

GET/POST
/DELETE

/configuration/{component}
Gets the configuration values for a single component. Adds,
removes a set of configuration values to a component

Components

Enabler component Northbound API

id T42E2_NB

Description and main
functionality

Northbound API provide REST API and new generation interfaces using gNMI, gNOI,
P4Runtime, NetDisco. It is needed for developing applications for network control and
orchestrations and can be used by other external enablers. It consists of set of functions
for mentioned above modules.

Target node/s High-tier Edge node

Candidate technologies Java and microservices will be used for this purpose

Enabler component Southbound API

id T42E2_SB

Description and main
functionality

Southbound API provide protocols like NETCONF and new generation interfaces using
gNMI, gNOI, P4Runtime, NetDisco. It is needed for network devices control provided by
different vendors.

Target node/s High-tier Edge node

Candidate technologies Java and microservices will be used for this purpose

Enabler component Control Module

id T42E2_Control

Description and main
functionality

This component is responsible for network flow control and meter API. It allows for
network routing and traffic management.

Target node/s High-tier Edge node.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 42 of 78

Enabler component Control Module

Candidate technologies Usage of NB and SB API technologies

Enabler component Configuration Module

id T42E2_Configuration

Description and main
functionality

This component is in charge of configuration of network devices, tracking the changes in
the configuration of the network.

Target node/s High-tier Edge node.

Candidate technologies Usage of NB and SB API technologies

Enabler component Topology Module

id T42E2_Topology

Description and main
functionality

This component is responsible for topology management of the network. It manages and
keeps information about the network graph and network devices, links, and hosts.

Target node/s High-tier Edge node.

Candidate technologies Usage of NB and SB API technologies.

Enabler component Operation Module

id T42E2_Operation

Description and main
functionality

This component is responsible for topology management of the network. It manages and
keeps information about the network graph and network devices, links and hosts.

Target node/s High-tier Edge node.

Candidate technologies Usage of NB and SB API technologies.

Enabler component Graphic User Interface

id T42E2_Interface

Description and main
functionality

This component will expose the functionalities of the internal modules of the SDN
Controller for administrative purposes.

Target node/s High-tier Edge node.

Candidate technologies Usage of NB and SB API technologies.

B.3 - Auto-configurable Network enabler
Table 6. General information of the Auto-configurable Network enabler

Enabler Auto-configurable Network enabler

id T42E3

Owner and support OPL, UPV

Description and main
functionalities

This enabler provides optimised network routing configuration capabilities to the SDN
Controller of an ASSIST-IoT ecosystem. This enabler will consist of an application that
consumes the northbound APIs of the SDN Controllers to generate a policy that improves
the performance of one/many KPIs of the network (e.g., latency). The selection of the
most suitable model depends on the use cases, and the objective of this enabler is to
provide three different strategies to be compatible with the selected Controller.

Plane/s involved Smart Network and Control Plane

Vertical, related
capabilities and features

Not Applicable

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 43 of 78

Enabler Auto-configurable Network enabler

Relation with other
enablers • T42E2: SDN Controller

Requirements mapping

• R-P1-20: Remote latency capabilities (this enabler can help prioritising involved
traffic)

• R-P3A-12: Edge Connectivity (this enabler can prioritise traffic related to PCM
calibration updates)

Use case mapping

This enabler fits all those use cases in which there is interest in that a particular traffic
could be prioritised later on by the SDN Controller. The listed use cases refer to those in
which it would be key (or just recommended) that traffic of either video streams, mission
critical systems or image data have priority.

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-6: Safe navigation instructions

• UC-P3B-1: Vehicle’s exterior condition documentation

• UC-P3B-2: Exterior defects detection support

Required components Policy module, monitoring module

Figure 15. High-level diagram of the Auto-configurable Network enabler

Components

Enabler component Policy Engine

id T42E3_Policy

Description and main
functionality

This component is in charge of creation of polices and its execution in the SDN network
for optimising the network traffic and creation of routing paths. It obtains the network
information using SDN controller and data traffic using monitoring system. The
optimising algorithms can be supported by AI techniques.

Target node/s High-tier Edge node.

Candidate technologies AI techniques, software module (python, java).

Enabler component Monitoring Module

id T42E3_Monitoring

Description and main
functionality

This component is responsible for collecting network traffic statistics. The KPI
specification will be based on use cases requirements. Potential open source tool is rt-
sflow to be used.

Target node/s High-tier Edge node.

Candidate technologies Monitoring tools, rt-sflow, ifstat

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 44 of 78

B.4 - Traffic Classification enabler
Table 7. General information of the Traffic Classification enabler

Enabler Traffic Classification enabler

id T42E4

Owner and support OPL, UPV

Description and main
functionalities

The aim of this enabler is to classify network traffic into a number of application classes
(video streaming, VoiP, Network control, best effort, OAM, etc.), making use of a AI/ML
framework and dedicated algorithms. The traffic classification enabler can be seen as a
service of the application layer of the general SDN architecture. To provide its
functionalities, three stages are needed: (i) data processing and feature extraction, (ii)
model selection training, and (iii) inference and results. For developing this particular
enabler, we will rely on modules of the SDN Controller for providing the features of the
data to perform the inference, but in case this information it is not enough the necessary
components will be added.

The results provided by this enabler can be used for supporting network policy-making
processes for ensuring QoS (application priority), optimising traffic, or enhancing security
(therefore results must be consumed by other enablers).

Plane/s involved Smart Network and Control Plane

Relation with other
enablers

• T42E2: SDN Controller

• T42E3: Auto-configurable Network enabler

Requirements mapping

• R-P1-20: Remote latency capabilities (this enabler can help prioritising involved
traffic)

• R-P3A-12: Edge Connectivity (this enabler can prioritise traffic related to PCM
calibration updates)

Use case mapping

This enabler fits all those use cases in which is interesting that a particular traffic could
be prioritised later on by the SDN Controller. The listed use cases refer to those in which
it would be key (or just recommended) that traffic of either video streams, mission critical
systems or image data have priority.

• UC-P1-7: Target visualisation during RTG operation

• UC-P2-6: Safe navigation instructions

• UC-P3B-1: Vehicle’s exterior condition documentation

• UC-P3B-2: Exterior defects detection support

Required components
Traffic Classification API, Data Stream Network Classifier, Knowledge Database, Training
Module

Figure 16. High-level diagram of the Traffic Classification enabler

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 45 of 78

Endpoints

This is a preliminary list of endpoints expected to be improved and increased. The revised list will be provided

in the next iteration of the deliverable (D4.2).

Method URL
Payload (if
needed)

Description
Response

format

GET /training/execute
Starts a training session, with the model and
data stored in the knowledge database
(model in T52E3, ML algorithms repository)

GET /database/model
Returns de last trained model so it can be
reused

POST /inference/start
Starts listening to a specific network
interface to analyse the incoming traffic

POST
/inference/
configuration

Method for configuring specific parameters
of the inference method

Components

Finally, in the following tables are summarised the functionalities and candidate technologies of the components

that are needed, shown in Figure 16, for implementing the enabler. Given the large size that the dataset may

have, it would be recommended that the Knowledge Database is deployed jointly with the training module. In

general, for avoiding network congestion, it is preferable that at least the API and the Network Classifier are

instantiated in the same host as the SDN Controller (There is no need of splitting the components over different

nodes).

Enabler component Traffic Classification API

id T42E4_API

Description and main
functionality

This component is needed for acting as a central proxy of the operations that are offered
by the enabler. It is responsible of managing the API calls related to starting an inference
(i.e., traffic classification) process, add new data to the data set and retrain the
corresponding AI model with new data, among other actions.

Target node/s High-tier Edge node (recommended along with SDN Controller)

Candidate technologies Flask will be used for this purpose

Enabler component Knowledge Database

id T42E4_Database

Description and main
functionality

This component will contain the training dataset, the model’s data to be either updated
by the Training Module or leveraged by the Network Classifier, and other information
needed by the enabler to work. Given the potential large size of the data, it may be
recommended to instantiate this enabler in the same node with the rest of components
of the enabler.

Target node/s
High-tier Edge node. It would be recommended to be in the same host as the training
module.

Candidate technologies To be decided, possibility of just using a local persistent volume of k8s.

Enabler component Training Module

id T42E4_Training

Description and main
functionality

This component is in charge of the training of the model with new traffic data. Data will
come from .pcap files, however, the training module will receive just the extracted
features and not the entire files (passed by another application of the SDN Controller or
developed further on in the project if needed).

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 46 of 78

Enabler component Training Module

Target node/s
High-tier Edge node. It would be recommended to be in the same host as the
Knowledge Database.

Candidate technologies
To be decided. Preference towards Tensorflow with libraries such as Keras or scikit-learn
depending on the final model choice. Regarding the model choice, ETSI ENI Proof of
Concept #54 and the work from Pritom et al.5 will be considered.

Enabler component Data Stream Network Classifier

id T42E4_Classifier

Description and main
functionality

This component will receive the extracted features of a traffic data packet and will
determine the class of traffic to which it belongs, among the available options.

Target node/s
High-tier Edge node. It would be recommended to be in the same host as the SDN
Controller.

Candidate technologies
To be decided. Preference towards Tensorflow with Python and libraries like NumPy and
Pandas, Spark or lightweight alternatives for data stream processing (this component
may be split in two in the future)

B.5 - Multi-link enabler
Table 8. General information of the Multi-link enabler

Enabler Multi-link enabler

id T42E5

Owner and support UPV, NEWAYS, OPL, PRO, TL

Description and main
functionalities

Multi-link wireless network capabilities provide the possibility of sending video streams
of data over different Radio Access Networks and different channels in each of them (for
instance, regarding cellular, using more than 1 connection). Besides, it should provide
reliability mechanisms: in case one channel is down, signal cannot be lost or at least it
should be recovered almost in real time. The reliability mechanism will be integrated by
means of redundancy rather than diversity (e.g., MPTCP), since it is better considering
latency aspects, especially when switching.

Regarding redundancy, signal will be sent through two channels, of (at least) two
different RATs, so in case one is down the other can take over. In case of video streaming,
the redundant channel will transmit at lower resolution, and in case it has to take over
this resolution will dynamically increase. Since this enabler comes from a requirement of
the port automation pilot, the involved RATs will be cellular, WiFi and fluidmesh (starting
with two of them). When the main link is lost and the second takes over, a third channel
should be initiated for acting as the redundant one.

This enabler will be expanded in the future to support not just multi-link connections for
video but also for other classes of low-latency traffic.

Plane/s involved Smart Network and Control Plane

Vertical, related
capabilities and features

Not Applicable

Relation with other
enablers

• T43E8: Long-term data storage enabler

• T44E1: Tactile Dashboard enabler

Requirements mapping • R-P1-22: Multilink wireless network capabilities (self-explanatory).

4 https://eniwiki.etsi.org/index.php?title=PoC_05:_Intelligent_Traffic_Profiling
5 P. Kumar Mondal, L. P. Aguirre Sanchez, E. Benedetto, Y. Shen, and M. Guo, “A dynamic network traffic classifier

using supervised ML for a Docker-based SDN network”, Connection Science, 2020.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 47 of 78

Enabler Multi-link enabler

• R-P1-21: Remote reliability capabilities (in case one network fails, another can take
over, considering redundancy mechanisms)

Use case mapping
• UC-P1-6: Wireless remote RTG operation

• UC-P1-7: Target visualisation during RTG operation

Required components
API Server, Network Agent, Network Selection Middleware, Configuration Database,
Signalling Server, Video Origin Server, Video Destination Server, Video Client

Figure 17. High-level diagram of the Multi-link enabler

Endpoints

Method URL Description

POST /video/server Selects the server to which pushing the video from the origin server.

POST /video/source Selects the IP address of the video source

GET /links/interfaces
Returns the available, common radio interfaces for the hosts that contain both
origin and destination servers

POST /link/interfaces Configures the interfaces allowed for video transmission

POST /link/initiate
Initiates the signaling flow between the origin and the destination server,
based on the better connection

POST /video/initiate
Initiates the signaling flow and the video transmission from the origin to the
destinations server, based on the better connection

POST /video/end
Ends the signaling flow and the video transmission from the origin to the
destinations server

POST /client/connect The video client connects to a video server to reproduce its content

Components

Finally, in the following tables are summarised the functionalities and candidate technologies of the components

that are needed, shown in Figure 17, for implementing the enabler. Most components will be deployed together

in the Edge node that will act as the “sink” of the wireless multilink enablers and will receive the video data

sent by the video origin server to be presented to the end user. The latter is the only component that won’t be

placed along with the rest of components, since it will be located on the edge node that is physically connected

(or can reach by wired interface) input from the camera/s and has to send it through the channels mandated by

the network selection middleware (a secondary API may be needed at this point).

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 48 of 78

Enabler component API Server

id T42E5_server

Description and main
functionality

The high-level operations will be managed by API endpoints (e.g., peer origin and
destination server, video quality demanded, etc.)

Target node/s Any

Candidate technologies Flask

Enabler component Network Agent

id T42E5_agent

Description and main
functionality

The network agent will gather network metrics (latency, packet loss, bandwidth, etc.)
from the established connections and send the data to the Network Selection Middleware
for primary RAT selection.

Target node/s Any

Candidate technologies To be decided (IPerf, D-ITG, NetPerf, etc.)

Enabler component Configuration database

id T42E5_configuration

Description and main
functionality

This component will register the information related to Edge nodes that will need the
establishment of communication, including the available RATs. It will not store any data
related to the “preferred” connection. That feature is managed by the network selection
middleware once all the required connections are established.

Target node/s Any

Candidate technologies PostgreSQL (later on, it can be substituted by LTSE enabler)

Enabler component Network Selection Middleware

id T42E6_selection

Description and main
functionality

This middleware will analyse the RTT of the available RATs and will decide which will be
the main radio channel, the redundant and the backup ones (not transmitting). It should
be highlighted that it won’t be continuously changing among the main and the redundant
connection unless detecting anomalous number of packet drops.

Target node/s Any

Candidate technologies Custom component in Python

Enabler component Signaling Server

id T42E5_signaling

Description and main
functionality

This component will establish the connections between peers, according to the
information stored in the configuration database. Since redundant mechanisms are to be
implemented, the connections will be peer to peer, independent.

Target node/s Any

Candidate technologies Websockets, WebRTC, OvenMediaEngine

Enabler component Video destination server

id T42E5_server

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 49 of 78

Enabler component Video destination server

Description and main
functionality

It will receive the video streams for the different RATs and perform the typical operations
such as video decoding to present results to the user. It will present to the user only the
video from the primary connection choice.

Target node/s Any

Candidate technologies
To be decided. Candidate technologies to leverage: WebRTC, openCV, H.264,
OvenMediaEngine

Enabler component Video client

id T42E5_client

Description and main
functionality

This component will be present in a computer user graphical interface, so user can
observe the video stream in (almost) real time.

Target node/s Any

Candidate technologies To be decided. Candidate technologies to leverage: HTML5 Player, OvenPlayer

Enabler component Video origin server

id T42E5_origin

Description and main
functionality

It will be connected to the video source and perform all the operations related to video
encoding, transcoding, etc. Video will be sent by the connections (and quality) mandated
by the Network Selection middleware.

Target node/s Any

Candidate technologies
To be decided. Candidate technologies to leverage: webRTC, OvenMediaEngine engine,
H.264

B.6 - SD-WAN Enabler
Table 9. General information of the SD-WAN enabler

Enabler SD-WAN enabler

id T42E6

Owner and support UPV, OPL

Description and main
functionalities

The objective of this enabler is to provide access between nodes from different sites based
on SD-WAN technology. This enabler will consist of three main virtualised elements, (i)
an edge node in each one of the sites to be interconnected (SD-WAN edge), which will act
as the endpoint between the site’s network and the different access networks that
connect them (MPLS, Internet, 4G, Satellite, etc.), creating/finalising the necessary
tunnels; (ii) an SD-WAN controller, which includes, IP address management, and pushing
down policies onto SD-WAN Edges, among other functionalities; and (iii) a configuration
server, also known as WAN Service Configurator, that contains the application-based
policies and functionalities (configuration of end-to-end WAN services, QoS/business
optimisation, etc.).

Besides, the SD-WAN edge will consist of two main components, a virtual switch and
monitoring agents. The monitoring agents will collect network metrics that will be
processed in the WAN monitoring module, getting outcomes that in turn will feed the
WAN Service Orchestrator for applying the optimal configurations (in tunnel selection
and application prioritisation).

Plane/s involved Smart Network and Control Plane

Relation with other
enablers

• T42E1: Smart Orchestrator

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 50 of 78

Enabler SD-WAN enabler

Requirements mapping

• R-P3A-12: Edge Connectivity (OEM and Edge nodes may not be in the same network,
and the connection among them should be secure and anonymous in case data
travels through public networks. SD-WAN enabler can aid to apply QoS mechanisms
to reduce E2E latency as well).

Use case mapping

This enabler will grant a secure and optimised connection for applications and services
from different sites.

• UC-P3B-1: Vehicle’s exterior condition documentation

• UC-P3B-2: Exterior defects detection support

Required components
Virtual Switch, Monitoring Agent, SD-WAN controller, WAN Monitoring, Monitoring
Database, WAN Service Configurator

Figure 18. High-level diagram of the SD-WAN enabler

Components

Finally, in the following tables are summarised the functionalities and candidate technologies of the components

that are needed, shown in Figure 18, for implementing the enabler. The components of this enabler will be

instantiated in a decentralised manner. For each site that is expected to be connected to the WAN, at least a

virtual switch and a monitoring agent has to be present in an SD-WAN edge node (this is, a node connected to

the access networks, like the Internet). Besides, the SD-WAN Controller and the applications on top of it that

control the logic of the WAN connections need to have connectivity with the SD-WAN edge nodes and have to

be instantiated preferably together (the SD-WAN Controller, the WAN Monitoring, Monitoring Database and

the WAN Service Configurator).

Enabler component Virtual Switch

id T42E6_switch

Rationale

This component will be located in the ASSIST-IoT Edge nodes that act as SD-WAN edge.
It will receive commands from the SD-WAN Controller to set-up the connections between
sites through the (wired) access networks and apply the corresponding rules to ensure
the QoS requirements of the involved applications.

Node type/s*
Edge node with direct access to the networks connecting the sites that want to be
communicated (e.g., Internet, MPLS, etc.).

Candidate technologies OpenVSwitch

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 51 of 78

Enabler component Monitoring Agent

id T42E6_agent

Rationale
This component will be located in the ASSIST-IoT Edge nodes that act as SD-WAN edge.
It will gather network metrics (latency, packet loss, jitter, etc.) that will be send to the
WAN Monitoring component.

Node type/s*
Edge node with direct access to the networks connecting the sites that want to be
communicated (e.g., Internet, MPLS, etc.).

Candidate technologies To be decided (IPerf, D-ITG, NetPerf, etc.)

Enabler component SD-WAN controller

id T42E6_controller

Rationale
The (SDN) controller will control the switches of the SD-WAN edge, based on the path
policies mandated by the WAN Service configuration component.

Node type/s*
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN.

Candidate technologies To be decided (probably ONOS)

Enabler component WAN Monitoring

id T42E6_monitoring

Rationale

This component will collect and analyse the information captured by the monitoring
agents instantiated in the SD-WAN edge nodes in order to analyse if these metrics are
still compliant to the QoS thresholds. If the collected metrics exceed the threshold of
service policies, it communicates with the WAN Service Configurator in order to decide a
reconfiguration.

Node type/s*
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN.

Candidate technologies
Custom component in Python. Since no large traffic is expected, stream technologies
won’t be used.

Enabler component Monitoring Database

id T42E6_database

Rationale
This component will aid the WAN monitoring component to store the retrieved
monitoring parameters that could be useful for further analysis.

Node type/s*
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN.

Candidate technologies
To be decided. Mongo is the preferable option, especially since historic data could be
used for better training or refinement. In case only context data is needed (last, updated
data needed, not historic), FIWARE’s Orion Context Broker could be used for it.

Enabler component WAN Service Configurator

id T42E6_config

Rationale
The main objective of this component is to select among the available tunnels (and
underlying access networks) the optimal one according to QoS thresholds.

Node type/s*
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN

Implementation
technologies

Custom component in Python

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 52 of 78

B.7 - WAN Acceleration enabler
Table 10. General information of the WAN Acceleration enabler

Enabler WAN Acceleration enabler

id T42E7

Owner and support UPV, NEWAYS, OPL

Description and main
functionalities

This enabler aims at increasing the efficiency of data transfer in Wide Area Network. This
enabler will contain a set of independent, standalone VNFs with that purpose. These
functions can be either chained (so data that requires of different techniques travels
through the different functions) or selected for specific purposes. For now, three functions
are expected to be provided:

• Traffic shaping

• Data compression

Plane/s involved Smart Network and Control Plane

Relation with other
enablers

• T42E1: Smart Orchestrator

• T42E6: SD-WAN enabler

• T55EX: (task has not started hence not formally documented yet) – Orchestration
of enablers deployment

Requirements mapping
• R-P3A-12: Edge Connectivity (OEM and Edge nodes may not be in the same

network, and the connection among them should be as optimal as possible).

Use case mapping

This enabler will accelerate the connections for applications and services from different
sites. In theory it can be installed in any deployment with multi-site deployments, so they
can be of utility in these use cases of the project:

• UC-P3B-1: Vehicle’s exterior condition documentation

• UC-P3B-2: Exterior defects detection support

Required components
Network Stream Processor, Traffic Shaping module, Data Compression module, Data
Decompression module

Figure 19. High-level diagram of the WAN Acceleration enabler

Components

Enabler component Network stream processor

id T42E7_stream

Description and main
functionality

This component will receive the data streams and execute the acceleration functions
demanded via the enabler interface.

Target node/s
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN

Candidate technologies To be decided (options: spark, Kafka, etc.)

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 53 of 78

Enabler component Traffic shaping module

id T42E7_shaping

Description and main
functionality

This component implements a bandwidth management technique for delaying less-
priority data packets to ensure that other applications fulfil their intended QoS, latency
or performance requirements.

Target node/s
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN

Candidate technologies Custom component in Python or Go.

Enabler component Data Compression module

id T42E7_compression

Description and main
functionality

This component will be in charge of compressing network traffic to reduce bandwidth
usage of the WAN network.

Target node/s
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN

Candidate technologies Custom component in Python or Go.

Enabler component Data Decompression module

id T42E7_decompression

Description and main
functionality

This component will be in charge of decompressing the network traffic that arrives from
the WAN network and that has been comprised by the Data Compression counterpart.

Target node/s
Cloud or Edge Node with access to the SD-WAN edge nodes of the sites to be connected
to the WAN

Candidate technologies Custom component in Python or Go.

B.8 - VPN enabler
Table 11. General information of the VPN enabler

Enabler VPN enabler

id T42E8

Owner and support UPV

Description and main
functionalities

This enabler will facilitate the access to a node or device from a different network to the
site’s private network using a public network (e.g., the Internet) or a non-trusted private
network. VPN enabler must work in High Availability (HA) mode, with VPN servers
distributed in different nodes, and failover. As a first step, the site’s network will be
considered trusted, so VPNs will not be needed to connect nodes or devices that belong
to it.

It should be highlighted that SD-WAN enabler will be the primarily choice for connecting
sites’ networks while VPN will (primarily) connect particular external elements to the
site’s network since (1) VPN lacks both network and application-level performance
optimisation, and (2) it requires extensive manual effort to add different sites to the
entire WAN.

Plane/s involved Smart Network and Control Plane

Relation with other
enablers

No interactions have been identified at this point. To evaluate potential case of
interaction with T51E5 – Automated device connection and configuration.

Requirements mapping
• R-P3A-1: Monitored Data channels (in case the car is on the road, the communication

between its far edge node and the system must be private).

Use case mapping • UC-P3A-1: Fleet in-service emissions verification

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 54 of 78

Enabler VPN enabler

This enabler can be of utility in “generic” use cases, for instance when users (mostly
administrators) require access to dashboards and applications (without strict require
latency requirements) from outside the site’s private network.

Required components Load balancer, VPN Server, Health VPN Client

Figure 20. High-level diagram of the VPN enabler

Endpoints

Method URL Description

POST /server/start
This command will start the VPN service with predefined
interfaces and secure keys.

GET /server/key Returns the public key

POST /server/peer
Adds a peer to the servers and return the information
required for its connection

GET /server/peers Returns all the peers

DELETE /server/peer Deletes a specific peer

GET /server/status Returns the status of the VPN servers

POST /client/start

Initiates a VPN connection to a server, using the public key,
address other required options (only for containerised
clients, for pc desktop and mobile phones use a client
available in marketplace)

POST /client/stop
Closes a VPN connection to a server (only for containerised
clients, for pc desktop and mobile phones use a client
available in marketplace)

Components

Finally, in the following tables are summarised the functionalities and candidate technologies of the components

that are needed, shown in Figure 20, for implementing the enabler. Being a key enabler for granting private,

protected access to external users, High Availability mode (HA) is a convenient feature. To support it, different

VPN servers should be instantiated in different nodes. Regarding additional considerations, health check

capabilities must be present in the same host of each VPN server to supervise its correct performance. Finally,

VPN clients have to be instantiated in hosts that belong to other networks.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 55 of 78

Enabler component Load Balancer

id T42E8_balancer

Description and main
functionality

This component will be in charge of distributing the traffic load among the VPN server
instances available in the site’s network. A failover mechanism will be implemented
through it, so in case one server is down an extra instance is initiated and configured
during its recovery.

Target node/s High-tier Edge node

Candidate technologies HAProxy (other alternatives such as ngingx and Traefik will be evaluated)

Enabler component VPN Server

id T42E8_server

Description and main
functionality

This component allows clients to connect to a secure, private network. All data is
encrypted by the VPN protocols the server is configured with, so the connection is
protected (not even Internet Service Providers can monitor it).

Target node/s High-tier Edge node

Candidate technologies Wireguard server (in case it lacks a required feature, other alternatives will be studied)

Enabler component Health Checker

id T42E8_checker

Description and main
functionality

This component will validate the health of each server in response to periodic queries
from the node that contains the load balancer.

Target node/s High-tier Edge node

Candidate technologies Custom Python component

Enabler component VPN Client

id T42E8_client

Description and main
functionality

This component is installed in each host that wants to connect to the private network. It
has the role to initiate the connection with the VPN server, and it is able to decrypt the
data that is send by the VPN server over the public (or non-trusted private) network.

Target node/s (External) Edge node or Smart IoT Device

Candidate technologies Wireguard client (in case it lacks a required feature, other alternatives will be studied)

B.9 - Semantic Repository enabler
Table 12. General information of the Semantic Repository enabler

Enabler Semantic Repository Enabler

id T43E1

Owner and support SRIPAS, MOW, PRODEVELOP, Konecranes, Ford-Werke

Description and main
functionalities

This enabler offers a “Nexus” for data models and ontologies, that can be uploaded in
different file formats, and served to users with relevant documentation. This enabler is
aimed to support files that describe data models or support data transformations, such
as ontologies, schema files, semantic alignment files etc.

Additionally, human-readable documentation for the models will be served. Offered
files, their metadata and documentation are, in principle, public, so that this enabler

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 56 of 78

Enabler Semantic Repository Enabler

could be used as support for a shared semantic ecosystem. The secure access restrictions
may be more tightly controlled with an API manager in future versions.

In short, the core function of this enabler is to be a database of data models and
ontologies, with public read access. In summary, it supports:

• Versioning: different versions of data models

• Ownership: only the data model owner may update a data model

• Provision & search: Data models are public and browseable

• Documentation: Documentation provided by data model owner is served

Plane/s involved Data Management Plane

Relation with other
enablers

• T43E8: Long-term data storage

• T53E1: Identity Manager Enabler

• T53E2: Authorisation Enabler

Requirements mapping

• R-C-2: Data governance (manages data models for different data sources)

• R-P2-15: BIM data models and interoperability compliance (stores relevant data
models)

• R-P3A-2: Data models’ compliance (stores relevant standard data model)

Use case mapping N/A

Required components API Server, Persistent Storage, User Management

Figure 21. High-level diagram of the Semantic Repository enabler

Endpoints

Many of the endpoint URLs contain the version id fragment, which is expected to be numeric with dots

separating the components, of which there may be three at most. For example: ‘1’, ‘1.1’, ‘1.2.3’. To specify the

latest available version, ‘latest’ should be used as the version id.

Method URL
Payload (if
needed)

Description Response format

GET
[model endpoint]
/

 Lists available repositories JSON

POST/
PUT/
DELETE

[model endpoint]
/{repo id}

JSON (PUT,
POST)

Creates (POST), updates (PUT), or
removes (DELETE) a specified
repository and its settings

GET
[model endpoint]
/{repo id}

Returns the settings of the
repository and lists models with
versions and formats in it

JSON

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 57 of 78

Method URL
Payload (if
needed)

Description Response format

GET
[model endpoint]
/{repo id}
/{model id}

Returns the metadata of the
model and lists the available
versions and formats of the given
model

JSON

POST/
PUT/
DELETE

[model endpoint]
/{repo id}
/{model id}
/{version id}

JSON (PUT,
POST)

Creates (POST), updates (PUT), or
removes (DELETE) a version of a
model with its metadata (version,
creation data, modification date,
description etc.)

GET

[model endpoint]
/{repo id}
/{model id}
/{version id}
/meta

Returns the metadata of the
given model version

JSON

POST/
PUT/
DELETE

[model endpoint]
/{repo id}
/{model id}
/{version id}
?format={data format}

Flat file (PUT,
POST)

Sets (POST), updates (PUT), or
removes (DELETE) a specified file
from the server

GET

[model endpoint]
/{repo id}
/{model id}
/{version id}
?format={data format}

Returns the specified version of a
data model in a given format.
e.g.
/raul/saref/1.1/content?format=r
dfxml returns a ‘saref’ model
from repository ‘raul’ in version
1.1 in file format RDF/XML

Flat file in a given
file format

POST/
PUT/
DELETE

[model endpoint]
/{repo id}
/{model id}
/{version id}
/doc

Markdown
documentation
file (PUT, POST)

Sets (POST), updates (PUT), or
removes (DELETE) markdown
documentation

GET

[model endpoint]
/{repo id}
/{model id}
/{version id}
/doc

Returns the documentation for a
model

Markdown
documentation file

Starting with an empty database, we want to create a repository named ‘tea’ and store in it a data model named

‘pu-erh’ in two formats. The process to do this is as follows:

1. POST /tea with JSON specifying the settings for the new repository.

2. POST /tea/pu-erh/1.0/ with JSON specifying the metadata of the data model.

3. POST /tea/pu-erh/1.0/content?format=rdfxml with the raw XML content.

4. POST /tea/pu-erh/1.0/content?format=ttl with the raw Turtle content.

Access to the endpoints in the initial version will be based on simple authentication. This can be later delegated

to the authentication and authorisation enablers. Additionally, roles may be defined to control which users can

access what functionalities. For example, repository and model creation may be restricted to only selected users.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 58 of 78

Components

Enabler component API Server

id T43E1_API

Description and main
functionality

The API Server that manages requests on different endpoints. It is fully stateless.

Node type/s* Any

Candidate technologies Akka HTTP, HTTPS

Enabler component Persistent Storage

id T43E1_storage

Description and main
functionality

Persists model and model documentation files.

Target node/s Any

Candidate technologies Postgres, MySQL

Enabler component User Management

id T43E1_management

Description and main
functionality

Manages access rights to secured endpoints. May be needed for testing alpha versions.
Will be eventually replaced by functions offered by authentication and authorisation
enablers.

Target node/s Any

Candidate technologies Java, Scala

B.10 - Semantic Translation enabler
Table 13. General information of the Semantic Translation enabler

Enabler Semantic Translation Enabler

id T43E2

Owner and support SRIPAS, UPV

Description and main
functionalities

Semantic Translation enabler offers a configurable service to change the contents of
semantically annotated data in accordance with translation rules – so called
“alignments”, or alignment files. The core use-case, around which this enabler is
designed, is to move data between semantic ontologies (which can be thought of as data
schemas or vocabularies) that can express the same information, without changing the
meaning of the information.

Flexibility of design and expressivity of configuration files allow for other use-cases, such
as semantic reduction (removing selected information, e.g. because of privacy reasons),
further annotation (adding additional information based on data content and possibly
external variables), or even encoding or encrypting selected data items into a serialised
form.

The Semantic Translator supports RDF as the only modern standard for semantic data.
By design it supports and promotes the “core ontology” design, in which data
transformations are always unidirectional and done to, or from a central ontology, and
paired into “translation channels” to achieve bidirectional transformations. In this
manner, n-to-n translations can be easily implemented, and the cost of including a new
data model in existing deployments does not grow exponentially.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 59 of 78

Enabler Semantic Translation Enabler

Translation services are offered as a “static” API for batch data, or through a publish-
subscribe broker for streaming data.

Plane/s involved Data Management Plane

Relation with other
enablers

• T53E1: Identity Manager Enabler

• T53E2: Authorisation Enabler

Requirements mapping

• R-C-1: Data sovereignty (provides semantic interoperability for data sources)

• R-P2-15: BIM data models and interoperability compliance (provides
interoperability)

• R-P3A-1: Monitored Data channels (provides interoperability, if needed)

Use case mapping N/A

Required components
API Server, Streaming broker, Translation channel manager, Alignment Application Core,
Storage

Semantic translation has a supporting role in any data transfer that requires the addition of semantic

interoperability. It includes any use-case, in which sender and receiver of data use different semantics. In such

cases, the semantic translation enabler can transform the data and deliver it with semantics compatible with the

receiver. Application of the semantic translation enabler within the scope of concrete use-cases depends not

only on the use-case description, but also on the heterogeneity of data sources and consumers present. The

semantics required by systems and devices used in the pilots is not defined at this time. It is therefore not

possible to authoritatively define a closed list of pilot requirements and use-cases, in which the Semantic

Translation Enabler will for sure be involved.

For example: Requirement BS-P2-4: (Health and safety inspection support) and use-case UC-P2-7: (Health and

safety inspection support) may require semantic translation (or semantic annotation) to present relevant data in

format and semantics understood by the system, that an OSH inspector uses. In case of semantic and syntactic

compatibility (e.g. by virtue of using a common data standard), the semantic enablers will not be needed.

Similarly, in R-P2-11 (Geofencing) semantic transformation of geoposition and geofencing data may be

required.

For this reason, the semantic enablers (at this point) address mostly common requirements, and not pilot-specific

ones.

Figure 22. High-level diagram of the Semantic Translation enabler

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 60 of 78

Endpoints

The following endpoints are expected to be improved during the next phase, which will be documented in D4.2.

Translation and configuration REST API.

Method URL
Payload (if
needed)

Description
Response

format

POST /alignments
IPSM-AF 2.0
Alignment file

Upload an alignment

GET /alignments Retrieves list of available alignments JSON

GET, DELETE

/alignments
/{name}/
{version}

 Retrieves or deletes a single alignment file
IPSM-AF 2.0

POST /channels
JSON Channel
configuration

Creates a translation channel using
existing alignments

GET /channels Lists available translation channels

DELETE
/channels
/{channel id}

 Removes a translation channel

POST

/translate
/{alignment id}
/{alignment 2 id}
/{alignment 3 id}

RDF

Translates a single piece of data through a
chain of alignments. The length of the
chain may be limited for performance and
security reasons.

POST
/translate/
{channel id}

RDF

Translates a single piece of data through
alignments that are used by a translation
channel. The data is returned directly,
without actually entering the translation
channel.

Responsive streaming interface.

Translation channels are mini data pipelines implemented within the enabler, that expose two broker topics –

one for input, another one for output. When clients write to the input topic, translated data appears on the output

topic. The broker supports the reactive streaming manifesto, so more complicated streaming pipelines may be

built by combining Semantic Translator topics to other streams.

Method URL
Payload (if
needed)

Description
Response

format

Subscribe/unsubscribe {output topic id}
Subscribe to the output topic of a
translation channel to receive messages.

Send {input topic id} RDF
Send data to a translation channel. It will
be translated and appear on the output
topic for that channel.

RDF

Pushback {output topic id}
Implements the reactive streaming
principles, allowing clients enough time
to process all messages.

Components

Enabler component API Server

id T43E2_API

Description and main
functionality

Main entry point for configuration of the enabler, and for translation via REST API.

Target node/s Any

Candidate technologies Akka http

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 61 of 78

Enabler component Streaming broker

id T43E2_broker

Description and main
functionality

Manages data flow between topics from translation channels and internal stream
processors.

Target node/s Any, preferably close to data source or sink (edge or far edge)

Candidate technologies Apache Kafka, Akka streams

Enabler component Translation channel manager

id T43E2_translation

Description and main
functionality

Manages lifecycle of translation channels

Target node/s Any

Candidate technologies Scala

Enabler component Alignment application core

id T43E2_alignment

Description and main
functionality

The core component that performs semantic translation by applying alignment files to
data. Will be used by the REST API, as well as by the streaming broker. Once configured,
becomes stateless, so can be scaled and deployed in multiple nodes to increase
performance.

Target node/s Any, preferably close to data source or sink (edge or far edge)

Candidate technologies Scala, Apache Jena

Enabler component Storage

id T43E2_storage

Description and main
functionality

Stores loaded alignment files and enabler configuration

Target node/s Any

Candidate technologies Scala, PostgreSQL

B.11 - Semantic Annotation enabler
Table 14. General information of the Semantic Annotation enabler

Enabler Semantic Annotation Enabler

id T43E3

Owner and support SRIPAS, PRODEVELOP, CERTH

Description and main
functionalities

This enabler offers a syntactic transformation service, that annotates data in various
formats and lifts it into RDF. Full list of formats is yet to be decided and the first version
will support JSON.

The enabler is lightweight and stateless, so that it may have many independent
deployments. The core functionality is designed to be integrated into a pipeline before
the Semantic Translation enabler, which requires the use of RDF. In essence, using
Semantic Annotator enables usage of the Semantic Translator with formats other than
RDF.

Plane/s involved Data Management Plane

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 62 of 78

Enabler Semantic Annotation Enabler

Relation with other
enablers

Probably can be entirely standalone

Requirements mapping
• R-C-1: Data sovereignty (provides syntactic interoperability for data sources)
• R-P2-15: BIM data models and interoperability compliance (provides interoperability)
• R-P3A-1: Monitored Data channels (provides interoperability, if needed)

Use case mapping N/A

Required components API Server, Transformer

Figure 23. High-level diagram of the Semantic Annotation enabler

The planned implementation will include a “generic annotator” as an implementation of the annotator template

(delivered as a separate product). The generic annotator will naively transform data to and from RDF annotated

with a generic “syntactic” ontology. Support is planned for JSON, XML and CSV. At least the path to RDF will

be supported. Bidirectional transformation is still researched.

A template for the annotator will be a set of interfaces, that must be individually implemented for deeper support

of semantic annotation of specific data. The enabler is designed to be fully stateless.

Endpoints

Method URL
Payload (if
needed)

Description Response format

POST

/annotate
/{format id}

Message to
annotate

Semantically annotates a message
RDF

POST
/annotate
/{format
id}/custom

Message to
annotate
and custom
annotation
rules

Semantically annotates a message
overriding existing transformers with
custom annotation rules

RDF

GET /annotate Retrieves the list of supported formats

GET
/annotate
/{format id}

Retrieves the annotation rules for a
given format

Components

Enabler component API Server

id T43E3_API

Rationale A lightweight component to direct requests to and from transformers.

Target node/s Any

Candidate technologies Akka http

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 63 of 78

Enabler component Transformer

id T43E3_transformer

Rationale
Serves as a module to translate between a specific set of messages (e.g. JSON for a
given schema) and RDF.

Target node/s Any

Candidate technologies Scala, Apache Jena

B.12 - Edge data broker
Table 15. General information of the Edge data broker

Enabler Edge Data Broker

id T43E7

Owner and support ICCS, UPV, PRODEVELOP, NEWAYS, CERTH

Description and main
functionalities

It enables the efficient management of data demand and data supply from/to the Edge
Nodes. It optimally distributes data where it is needed for application, services and
further analysis. Data distribution is based on reported demand and available resources
at the Edge Nodes. It provides: subscriptions and messages between the broker and the
Edge Nodes; management of message scheduling, routing and delivery; common
interfaces for searching and finding information

Plane/s involved Data Management Plane

Relation with other
enablers

• T44E2: Semantic translation enabler

• T44E4: OpenAPI Management

• T43E8: Long-term Storage enabler

• T44E6: MR enabler

• SELF13: (geo) Localisation

• T54E4: DLT-based Federated Learning enabler

• T55E1: Devices management

• T55E3: Workflow between enablers based on events, messaging exchange, or
others

Requirements mapping • R-C-2 Data governance (This enabler provides effective and efficient use of data)

Use case mapping All

Required components
Distributed Load Balancing, Data Management, Integration with other Broker, Data
Routing

Figure 24. High-level diagram of the Edge data broker

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 64 of 78

Endpoints

Method URL Description

GET /health

The health check will return:
200 when the Edge Data Broker is accepting connections and is joined with the
cluster (for clustered setups).
503 will be returned in case any of the above two conditions are not met.

GET /metrics
Configurable endpoint that provides multiple metrics relevant to monitoring and
alerting

Pub Sub Multiple topics
The Pub/Sub interface of the Broker can be used to send/receive data among
devices and applications

Components

Enabler component Load Balancer

id T43E7_LoadBalancer

Description and main
functionality

The load balancer component is used to ensure that client connections are distributed
among the nodes so that each node has the same number of connections. Distribution
load balancing strategies such as random, source hashing etc. are used to declare which
node will be used to route the incoming connection.

Target node/s Gateway

Candidate technologies MQTT

Enabler component Data Routing

id T43E7_DataRouting

Description and main
functionality

This component allows the edge data broker to dynamically choose the routing map
using customised plugins that were initiated during start up. This component also
provides the mechanism to distribute messages to a set of subscribers (i.e. application or
devices that consumes data) in a shared subscription topic, such that each message is
received by only one subscriber (Shared Subscription).

Target node/s Gateway

Candidate technologies MQTT

Enabler component Data Management

id T43E7_DataManagement

Description and main
functionality

The data management component provides local intelligence capabilities to the Edge
Data Broker, improving the efficient management of the data. The received data is
filtered in real time and routed based on conditional events such that the subscriber will
receive only meaningful data.

Target node/s Gateway

Candidate technologies MQTT, Lua Scripts

Enabler component Integration with other brokers

id T43E7_Integrationwithotherbrokers

Description and main
functionality

This component enables integration capabilities with other brokers, by connecting two
different MQTT brokers to each other. It allows for example that a topic tree of a remote
broker becomes part of the topic tree on the Edge Data Broker.

Target node/s Gateway

Candidate technologies MQTT

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 65 of 78

B.13 - Long-term data storage enabler
Table 16. General information of the Long-term Data Storage enabler

Enabler Long-term Storage Enabler

id T43E8

Owner and support PRODEVELOP, SRIPAS, UPV, CERTH

Description and main
functionalities

The role of this enabler is to serve as a secure and resilient storage, offering different
storage sizes and individual storage space for other enablers (which could request back
when they are being initialising in Kubernetes pods). It also guarantees that the data will
be kept safe, in face of various kinds of unauthorised access requests, or hardware
failures, by only allowing access to the data once the Identity Manager and the
Authorisation enablers have confirmed their access rights.

Plane/s involved Data Management Plane

Relation with other
enablers

• T53E1: Identity Manager Enabler

• T53E2: Authorisation Enabler

• T43E1: Semantic Repository

• T44E1: Business KPI reporting enabler

• T44E2: Performance and usage diagnosis enabler

• T44E4: OpenAPI management

• T43E7: Edge data broker

Requirements mapping

• R-C-2: Data governance

• R-C-3: Compliance with legal requirements on data protection

• R-C-6: Data persistence and trust

• R-P3A-1: Monitored Data channels

• R-P3A-3: OEM fleet data storage

• R-P3A-6: Active monitoring mode initiation by the OEM software engineer
capability

• R-P3B-20: Information pre-fetching

Use case mapping All

Required components
LTSE Gateway, LTS noSQL cluster, LTS noSQL Index, LTS noSQL Shard, LTS noSQL
Document, LTS SQL Server, LTS SQL Database

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 66 of 78

Figure 25. High-level diagram of the Long-term Data Storage enabler

Endpoints

Method URL Description

POST /LTSE/noSQL/<enabler_ID> Creates a new <enabler_ID> NoSQL_node in the node_SQL_Cluster

PUT /LTSE/noSQL/<enabler_ID> Updates a <enabler_ID> NoSQL_node in the LTS_SQL_Cluster

DELETE /LTSE/noSQL/<enabler_ID> Removes an <enabler_ID> NoSQL_node from the LTS_SQL_Cluster

GET
/LTSE/noSQL/<enabler_ID> Retrieves persistent storage information from the LTS_NoSQL_node of the

specific <enabler_ID>

POST /LTSE/SQL/<enabler_ID> Creates a new <enabler_ID> SQL database in the LTS_SQL_Server

PUT /LTSE/SQL/<enabler_ID> Updates the <enabler_ID> SQL database of the LTS_SQL_Server

DELETE /LTSE/SQL/<enabler_ID> Removes an <enabler_ID> SQL database from the LTS_SQL_Server

GET /LTSE/SQL/<enabler_ID> Retrieves persistent storage information from the LTS_SQL_server of the
specific <enabler_ID>

* The inner noSQL APIs of the Cluster, Node, Index and Document as well as a security API will be also exposed.

Components

Enabler component LTSE Gateway

id T43E8_gateway

Description and main
functionality

The LTSE gateway acts as a proxy in order to identify if the external enabler data is
collected whether as SQL or noSQL format. To do so, restAPI calls with append
SQL/noSQL format are available. The LTSE Gateway will, based on the restAPI request,
communicate with the SQL or noSQL cluster accordingly. Additionally, the LTSE Gateway
will be the responsible of guaranteeing the quotes of the enablers not surpassing an
agreed SLA size. Clauses such as maximum storage per enabler, or the maximum period
of storing persistent enabler data are also configured in the LTSE gateway, which in turn
are managed via the Orchestration Enablers deployment enabler. The LTSE gateway is

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 67 of 78

Enabler component LTSE Gateway

also the entrance gate to the LTSE from external enablers, given that the administration
authorisation policies have been confirmed through the Identity manager and the
Authorisation enabler.

Target node/s Any

Candidate technologies Scala, Apache Jena

Enabler component LTS noSQL Cluster

id T43E8_noSQL_cluster

Description and main
functionality

A group of one or more LTS_noSQL nodes instances that are connected together, and
carries out the distribution of tasks, searching and indexing, across all the noSQL nodes.
Any time an instance of LTS noSQL is started from the LTS gateway, a noSQL node is
started. Every noSQl node in the LTE_noSQL_Cluster can handle HTTP and transport
traffic by default with the external enablers through the LTS gateway. The transport layer
is used exclusively for communication between nodes; the HTTP layer is used by REST
clients. New noSQL_Nodes can be added to the LTS_noSQL_cluster in order to increase

capacity. noSQL_Nodes can have different roles (which can be user restricted by setting
the node.roles field in LTS_noSQL_Cluster config YML file):

• Master: elected as responsible for handling LTS_noSQL_cluster management
and state

• Data: hold the spaces (shards) that indexed the data documents, and handle
data related operations like CRUD, search, and aggregations.

Target node/s Cloud-server

Candidate technologies ElasticStack

Enabler component LTS noSQL Index

id T43E8_noSQL_index

Description and main
functionality

An LTS_noSQL_Index is an optimised collection of documents, and each document is a
collection of fields, which are the key-value pairs that contain the associated noSQL
enabler data. An LTS_noSQL_index is a logical grouping of one or more physical shards,
where each shard is actually a self-contained LTS_noSQL_index. By default, once the LTS
gateway has connected the noSQL_enabler with the LTS_noSQL_Cluster, the
noSQL_enabler indexes all data in every field and each indexed field has a dedicated,
optimised data structure. It is also envisioned that the noSQL_LTS enabler is also schema-
less, which means that documents can be indexed without explicitly specifying how to
handle each of the different fields that might occur in its document.

Target node/s Cloud-server

Candidate technologies ElasticStack

Enabler component LTS noSQL Shard

id T43E8_noSQL_shard

Description and main
functionality

By distributing the documents in a LTS_noSQL_Index across multiple shards, and
distributing those shards across multiple nodes, LTS enabler can ensure redundancy,
which both protects against hardware failures, and increases query capacity as
noSQL_Nodes are added to a cluster. As the LTS_noSQL_Cluster grows (or shrinks), it
automatically migrates shards to rebalance the cluster. There are two types of shards:
primaries and replicas. Each document in a LTS_noSQL_Index belongs to one primary
shard. A replica shard is a copy of a primary shard. Replicas provide redundant copies of
the indexed data to protect against hardware failure and increase capacity to serve read
requests like searching or retrieving a document. The number of primary shards in a

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 68 of 78

Enabler component LTS noSQL Shard

LTS_noSQL_Index is fixed at the time that it is created, but the number of replica shards
can be changed at any time, without interrupting indexing or query operations.
However, the larger the shard size, the longer it takes to move shards around when
rebalancing the LTS_noSQL_Cluster. On the other hand, having lots of small shards
makes the processing per shard faster, but more queries means more overhead.

Target node/s Cloud-server

Candidate technologies ElasticStack

Enabler component LTS noSQL Document

id T43E8_noSQL_document

Description and main
functionality

Complex data structures that have been serialised as JSON documents. When there are
multiple LTS_noSQL_Nodes in an LTS_noSQL_Cluster, stored documents are distributed
across the cluster and can be accessed immediately from any node.

Target node/s Cloud-server

Candidate technologies ElasticStack

Enabler component LTS SQL Server

id T43E8_SQL_server

Description and main
functionality

It manages the SQL database cluster, which is a collection of database files from accepted
enablers in a single instance. It performs database actions on behalf of the enablers as
well. The SQL_Server can handle multiple concurrent connections from external
enablers via the LTSE_Gateway. In general, the full hierarchy is: SQL_Cluster,
SQL_Database, schema, table. For High Availability, a master database with one or more
standby servers can be setup, but a master – master architecture can also be deployed.
The standby servers’ databases can remain synchronised with the master server’s
database. If the main server fails, the standby contains almost all of the data of the main
server and can quickly be turned into the new master database server.

Target node/s Cloud-server

Candidate technologies PostgreSQL, PostgREST/psql-api

Enabler component LTS SQL Database

id T43E8_SQL_DB

Description and main
functionality

Inside the SQL_Server are multiple databases, which are isolated from each other but
can access cluster-level objects. Inside each database are multiple schemas, which
contain objects like tables and functions. When connecting to the SQL_database, an
enabler must specify the specific name in its connection request. It is not possible to
access more than one database per connection. Database-level security has two
components: access control managed via the Identity Manager through LTSE_Gateway,
and authorisation control, managed via the Authorisation Enabler through
LTSE_Gateway.

Target node/s Cloud-server

Candidate technologies PostgreSQL

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 69 of 78

B.14 - Tactile Dashboard enabler
Table 17. General information of the Tactile Dashboard enabler

Enabler Tactile dashboard enabler

id T44E1

Owner and support PRODEVELOP, UPV, SRIPAS

Description and main
functionalities

The Tactile Dashboard enabler has the capability of representing data stored in the
ASSIST-IoT pilots, through meaningful combined visualisations in real time. It also
provides (aggregates and homogenises) all the User Interfaces for the configuration of
the different ASSIST-IoT enablers, and associated components. The tactile dashboard is
divided into two components: Frontend, Backend (described in the Dashboard
components tables).

Plane/s involved Application and services plane

Relation with other
enablers

• T44E2: Business KPI reporting Enabler

• T44E3: Performance and usage diagnosis enabler

• T44E4: OpenAPI management enabler

• T53E1: Authorisation enabler

• T53E2: Identity Manager

• T55EX: (task has not started, so that not formally documented yet) – Orchestration
of enablers deployment

Requirements mapping

• R-C-3: Compliance with legal requirements on data protection

• R-P1-6: Terminal data access

• R-P1-15: Alignment exposure

• R-P2-11: Geofencing

• P-P2-14: Evacuation instructions

• R-P3A-7: Active monitoring mode initiation by the aftersales service technician
capability

• R-P3A-8: Active monitoring initiation by the driver capability

• R-P3A-10: Vehicle dashboard notifications

• R-P3B-23: Business frontend

• R-P3B-24: Interactive image annotation support

Use case mapping
This enabler is inherent to the ASSIST-IoT ecosystem and, therefore, it should be present
at all pilots, otherwise it would not be possible to neither configure the ASSIST-IoT
platform nor expose the ASSIST-IoT platform to end-users.

Required components Dashboard frontend, Dashboard backend

Figure 26. High-level diagram of the Tactile Dashboard enabler

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 70 of 78

Components

Enabler component Dashboard frontend

id T44E1_frontend

Description and main
functionality

Offers a web application that exposes the UI through which the user interacts with the
ASSIST-IoT platform.

Target node/s Cloud server

Candidate technologies Custom Javascript front-end framework based on Vue.js

Enabler component Dashboard backend

id T44E1_backend

Description and main
functionality

REST API created to interact from the frontend with the external entities offering different
functionalities of ASSIST-IoT platform. To do so, API requests will be available by
providing a single-entry point in the dashboard, over which all enablers’ APIs must be
exposed for the sake of platform’s management (e.g., SDN controller API endpoints, LTSE
API endpoints, etc.). Furthermore, before allowing access to end-users to the ASSIST-IoT
platform, the dashboard backend will connect to the Identity Manager and Authorisation
Enabler in order to ensure that the access rights and associated roles are properly
authorised.

Target node/s Cloud server

Candidate technologies Custom JavaScript framework based on Vue.js

B.15 - Business KPI reporting Enabler
Table 18. General information of the Business KPI reporting enabler

Enabler Business KPI reporting Enabler

id T44E2

Owner and support PRODEVELOP, UPV, SRIPAS

Description and main
functionalities

All valuable Key Performance Indicators (KPIs) desired by the end-user should be available
for representation in graphs, reports, etc. This enabler will allow to embed them as User
Interfaces within the tactile dashboard. It will facilitate the visualisation and combination
of charts, tables, maps and other visualisation graphs in order to search for hidden
insights. The enabler is composed of a server component containing the business logic
engine, accompanied with a UI component that defines the graphical UI that users
interact with, and a Command Line Interface (CLI) tool especially designed for developers.

Plane/s involved Application and services plane

Relation with other
enablers

• T43E4: Edge data broker Enabler

• T43E8: Long-term Storage Enabler

• T44E1: Tactile dashboard Enabler

• T55EX: (task has not started, so that not formally documented yet) – Orchestration
of enablers deployment

Requirements mapping

• R-P1-6: Terminal data access

• R-P2-1: Personal location tracking

• R-P2-2: Construction plant location tracking

• R-P2-3: Smart wristband for construction workers

• R-P2-4: Continuous authentication for wristband

• R-P2-7: Monitoring the weather conditions at the construction site

• R-P2-8: Personal cooling system

• R-P2-10: Motion pattern monitoring and analysis

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 71 of 78

Enabler Business KPI reporting Enabler

• R-P2-11: Geofencing

• R-P2-14: Evacuation instructions

• R-P3A-6: Active monitoring mode initiation by the OEM software engineer capability

• R-P3A-7: Active monitoring mode initiation by the aftersales service technician
capability

• R-P3A-10: Vehicle dashboard notifications

• R-P3B-15: Automatic Defect Detection

• R-P3B-20: Information pre-fetching

• R-P3B-23: Business frontend

Use case mapping

This enabler fits all those use cases in which business analysis and reports are needed.
The following use cases have been in principle identified:

• UC-P1-2: Container Handling Operations reporting

• UC-P2-1: Workers’ health and safety assurance

• UC-P2-7: Health and safety inspection support

• UC-P3A-1: Fleet in-service emissions verification

• UC-P3B-1: Vehicle’s exterior condition documentation

• UC-P3B-2: Exterior defects detection support

Required components Business Server, Business UI, Business CLI

Figure 27. High-level diagram of the Business KPI reporting enabler

Components

Enabler component Business KPI Server

id T44E2_Server

Description and main
functionality

The Server collects data that have been passed through the Semantics flow from data
collectors (either Long-Term Storage or Edge Data Broker enablers) into a dedicated
database and provides access to it to the UI and CLI components via an internal REST API.
Functionality is implemented through modular plugins (Discover, Tag, Lens, Maps,
Timelion, etc.), which contain the business logic and communicate with the UI and CLI
components. Custom plugins can also be easily integrated if needed, thanks to having a
modular approach

Target node/s Cloud server

Candidate technologies Grafana, Kibana

Enabler component Business KPI UI

id T44E2_UI

Description and main
functionality

When the end-user accesses the Business KPI enabler via the Dashboard Graphical User
Interface, the UI component loads all server plugins that comprise the core functionalities
of the Business KPI enabler. It also loads the utils module, which is a collection of helper

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 72 of 78

Enabler component Business KPI UI

functions and objects to ease the developer work. Hence, the UI component provides an
editor to create and explore interactive visualisations and a set of functionalities to allow
end-users (industrial administrators) arrange the visualisations according to their goals.

Target node/s Cloud server

Candidate technologies Grafana, Kibana

Enabler component Business KPI CLI

id T44E2_CLI

Description and main
functionality

The CLI component enables custom plugins built by third party developers to interact with
the Business Server, so that it is reachable from the UI to e.g., provide new data
aggregation methods, or to visualise new chart types, colour palettes, etc.

Target node/s Cloud server

Candidate technologies Grafana, Kibana

B.16 - Performance and usage diagnosis enabler (PUD)
Table 19. General information of the Performance and usage diagnosis enabler (PUD)

Enabler Performance and usage diagnosis enabler (PUD)

id T44E3

Owner and support PRODEVELOP, UPV, SRIPAS

Description and main
functionalities

Performance and Usage Diagnosis enabler aims at collecting performance metrics from
monitored targets by scraping metrics HTTP endpoints on them, and highlighting
potential problems in the ASSIST-IoT platform, so that it could autonomously act in
accordance or to notify to the platform administrator to fine tuning machine resources.
The PUD enabler consists of multiple components, many of which are optional:

• The main PUD server, which stores time series data.

• WebUI used to visualise the collected data.

• A push gateway for supporting short-lived jobs.

• An alert manager to handle alerts.

Plane/s involved Application and services plane

Relation with other
enablers

• T44E1: Tactile dashboard Enabler

• T44E4: OpenAPI management Enabler

• SELF11: Self-healing device Enabler

• SELF14: Monitoring and notifying Enabler

• T53E4: Security monitoring Enabler

• T55EX: (task has not started, so that not formally documented yet) – Orchestration
of enablers deployment

Requirements mapping

• R-C-7: Edge-oriented deployment

• R-P1-5: Container ID tracking system

• R-P1-16: Open/Accessible Remote capabilities

• R-P2-18: Temporary storage

• R-P2-12: Alerts and notifications minimisation

Use case mapping
This enabler is inherent to the ASSIST-IoT platform and, therefore, it should be present at
all pilots, otherwise it would not be possible to monitor and analyse the deployed
infrastructure and carry out the required countermeasures.

Required components PUD server, PUD WebUI, PUD Push Gateway, PUD AlertManager

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 73 of 78

Figure 28. High-level diagram of the Performance and usage diagnosis enabler (PUD)

Components

Enabler component PUD Server

id T44E3_Server

Description and main
functionality

PUD Server scrapes metrics from instrumented enablers on K8S Pods, either directly or
via the intermediary PUD Push Gateway (the latter, for short-lived jobs). It stores all
scraped samples locally and runs rules over these data to either aggregate and record
new time series from existing data or generate alerts. More than one PUD server can be
run for the sake of a High Availability monitoring cluster. These servers will be
independently of each other, relying only on their local time series database stored data
in a custom, highly efficient format local storage for their core functionalities: scraping,
rule processing, and alerting. If PUD agrees on using the Prometheus technology, it will
provide the query language called PromQL that lets the user select and aggregate time
series data in real time. The result of an expression can either be shown as a graph,
viewed as tabular data in WebUI, or consumed by external systems via a REST API, such
as Instant queries, Range queries, Match queries, etc.

Target node/s High-tier edge node (it has to be able to communicate with all the K8s clusters of the site)

Candidate technologies Prometheus, InfluxDB

Enabler component PUD WebUI

id T44E3_WebUI

Description and main
functionality

An API consumer that can be used to visualise the collected PUD data via queries. By
default, WebUI will be listening on localhost with "admin" / "admin" login credentials.

Target node/s High-tier edge node (it has to be able to communicate with all the K8s clusters of the site)

Candidate technologies Grafana

Enabler component PUD Push Gateway

id T44E3_PushGateway

Description and main
functionality

The PUD Push Gateway allows batch jobs and enablers to expose their metrics to the PUD
Server, since these kinds of jobs may not exist long enough to be scrapped.

Target node/s High-tier edge node (it has to be able to communicate with all the K8s clusters of the site)

Candidate technologies Prometheus Gateway

Enabler component PUD AlertManager

id T44E3_AlertManager

Description and main
functionality

Alerting with PUD is separated into two parts. Alerting rules in PUD servers send alerts
to the Alert Manager, which in turn manages those alerts, sending out notifications via

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 74 of 78

Enabler component PUD AlertManager

methods such as email, on-call notification systems, and chat platforms. Therefore, it
takes care of deduplicating, grouping, inhibiting, silencing (if needed), and routing alerts
to the correct receiver integrations:

• “Grouping” categorises alerts of similar nature into a single notification. This is
especially useful during larger outages when many enablers fail at once and
several alerts may be firing simultaneously.

• “Inhibition” is a concept of suppressing notifications for certain alerts if certain
other alerts are already firing. Silences are a straightforward way to simply
mute alerts for a given time. A silence is configured based on matchers, just like
the routing tree. Incoming alerts are checked whether they match all the
equality or regular expression matchers of an active silence. If they do, no
notifications will be sent out for that alert.

PUD Alert Manager is configured via command-line flags and a configuration YAML file.
While the command-line flags configure immutable system parameters, the
configuration file defines inhibition rules, notification routing and notification receivers.

Target node/s High-tier edge node (it has to be able to communicate with all the K8s clusters of the site)

Candidate technologies Prometheus Alert Manager

B.17 - OpenAPI management enabler
Table 20. General information of the OpenAPI management enabler

Enabler OpenAPI management enabler

id T44E4

Owner and support UPV, SRIPAS, PRODEVELOP

Description and main
functionalities

The OpenAPI management enabler will be an API Manager that allows enablers
that publish their APIs, to monitor the interfaces lifecycles and also make sure that needs
of external third parties (including granted open callers), as well as applications that are
using the APIs, are being met. Hence, the OpenAPI manager will provide competencies
for ensuring successful API usage in developer environment, but also could help end-users
for business insights analytics, as well as ASSIST-IoT admins for preserving platform’s
security and protection. To do so, all ASSIST-IoT enablers should document their API in a
common API specification format, which in principle has been identified to be the
Swagger-JSON format.

The provision of a unified API access through the OpenAPI manager consists of several
steps. First, an API design document for each ASSIST-IoT enabler is provided through API
Specification tool (e.g., OpenAPI definitions). Next, the definitions will be imported to the
OpenAPI publisher interface. The user should then subscribe to the APIs through the API
subscription web GUI. In principle, the following types of API users with the corresponding
set of access and management privileges have been identified:

• ASSIST-IoT admins: users will full access to all ASSIST-IoT enablers.

• ASSIST-IoT end-users: users with restricted set of access rights necessary to
execute API calls exposed through the front-end interface.

• ASSIST-IoT External users.

Plane/s involved Application and services plane

Relation with other
enablers

• T44E2: Tactile Dashboard Enabler (for exposing the enabler in the ASSIST-IoT GUI)

• T53E1: Authorisation enabler (for roles permission)

• T53E2: Identity Manager (for access permission)

• All the rest of enablers (for API management and exposure to external users)

Requirements mapping

• R-C-7: Edge-oriented deployment

• R-P1-6: Terminal data access

• R-P1-16: Open/Accessible remote capabilities

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 75 of 78

Enabler OpenAPI management enabler

• R-P1-17: Customisable remote desktop

• R-P2-5: Wristband pairing with other devices capability

• R-P3A-11: Connectivity between OEM and fleet

Use case mapping

This enabler is inherent to the ASSIST-IoT ecosystem and, therefore, it should be present
at all pilots without a specific use case in mind yet. Otherwise, it would not be possible to
allow external granted Open Callers to integrate and communicate their developments
with ASSIST-IoT platform.

Required components API Gateway, API Portal, API Publisher

Figure 29. High-level diagram of the OpenAPI management enabler

Components

Enabler component OpenAPI Publisher

id T44E4_Publisher

Description and main
functionality

A collection of tools that API providers use to define APIs. They also generate API
documentation, manage access and usage policies, and can as well be used for testing
and debug purposes

Target node/s Cloud server

Candidate technologies Swagger

Enabler component OpenAPI Portal

id T44E4_Portal

Description and main
functionality

A community site that enables the interested users to access to documentation, tutorials,
sample code, software development kits, etc. It can also allow to manage subscription
keys and obtain support from the API provider if needed.

Target node/s Cloud server

Candidate technologies WSO2 API Manager + WSO2 Identity Server, Swagger UI

Enabler component OpenAPI Gateway

id T44E4_Gateway

Description and main
functionality

A server that acts as an API front-end, which receives API requests and passes requests
to the back-end. It then passes the responses back to the requester. It can modify the
requests and responses on the fly, and it can also provide the functionality to support
authentication, authorisation, security, audit and caching.

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 76 of 78

Enabler component OpenAPI Gateway

Target node/s Cloud server

Candidate technologies WSO2, APIgee, 3Scale, IBM API Management, Kong

B.18 - Video augmentation enabler
Table 21. General information of the Video augmentation enabler

Enabler Video Augmentation enabler

id T44E5

Owner and support PRODEVELOP

Description and main
functionalities

This enabler receives data (mainly images or video streams) captured either from ASSIST-
IoT Edge nodes, or from ASSIST-IoT databases, and by means of Machine Learning
Computer Vision functionalities, it provides object detection/recognition of particular
end-user assets (e.g., cargo containers, cars’ damages). To carry out the proper object
recognition in operation, an appropriate annotated dataset should be previously used for
training and testing. The Computer Vision functionalities will communicate with the ML
algorithms repository in order to select the most appropriate ML algorithm according to
the objected data. Once the ML algorithm has been trained and validated, it is used in
the Inference Engine in order to overlap new unseen data as input, so that providing an
answer it was trained to output in the User Application.

Plane/s involved Application and services plane

Relation with other
enablers

• T43E8: Long-term data storage

• T44E4: OpenAPI management enabler

• T52E3: ML Algorithms repository

Requirements mapping

• R-P1-5: Container ID tracking system

• R-P1-16: Open/Accessible remote capabilities

• R-P1-17: Customisable remote desktop

• R-P1-23: AR support

• R-P3A-9: Edge Intelligence

• R-P3A-13: Augmented Reality support at the garage

• R-P3B-15: Automatic defect detection

• R-P3B-21: Automatic recognition

• R-P3B-22: Augmented Reality support

Use case mapping • UC-P1-7: Target visualisation during RTG operation

Required components Data Pre-Processor, ML trainer, Inference engine

Figure 30. High-level diagram of the Video augmentation enabler

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 77 of 78

Components

Enabler component VA Data Pre-Processor

id T44E5_DataPreProcessor

Description and main
functionality

Since the data set can be collected from various sources such as a Cameras or Databases,
but the collected data cannot be used directly for performing ML analysis process (e.g.,
there might be a lot of missing data, extremely large values, unorganised or noisy data),
a data pre-processing should be done. First, the data should be split between training
and validation sets. Next, Data pre-processor will also provide tools for cleaning the raw
data such as taking care of missing values, categorical features, and normalisation

Target node/s Cloud server

Candidate technologies Scikit-learning, LabelEncoder

Enabler component VA ML trainer

id T44E5_Trainer

Description and main
functionality

A ML model is a function with learnable parameters that maps an input to a desired
output. The optimal parameters are obtained by training the model on data. ML Trainer
will carry out the process of feeding the network with millions of training data points so
that it systematically adjusts the knobs close to the correct values. The selected ML model
to be used for training can be obtained from the ML Algorithms repository. The training
process may be computationally intensive, because the data can be passed through
Neural Network with several training rounds and it is recommended to be performed on
a GPU.

Target node/s Cloud server or High-tier edge nodes

Candidate technologies OpenCV+Tensorflow (or +Caffee, or +Pytorch)

Enabler component VA Inference Engine

id T44E5_InferenceEngine

Description and main
functionality

Inference Engine will be a set of C++ libraries providing a common API to deliver inference
solutions for ASSIST-IoT: CPU, GPU, or VPU. The Inference Engine API can be used to read
ML model, set the input and output formats, and execute the model on devices.

Target node/s High-tier edge nodes

Candidate technologies OpenVINO, OpenCV

B.19 - MR enabler
Table 22. General information of the MR enabler

Enabler MR enabler

id T44E6

Owner and support ICCS

Description and main
functionalities

The MR enabler receives data and transforms it in a format suitable for visualisation
through head-mounted MR devices. Data, which may come from long-term storage or
real-time data streams, are requested according to its relevance to the user.

Information is displayed to the user, according to their authorisation/access rights, via
an MR device. The enabler supports user interaction with the virtual content and view
customisation.

Plane/s involved Applications and services

Relation with other
enablers

• T43E1: Semantic repository

Deliverable D4.1 – Initial Core Enablers Specification

Version 1.0 – 31-JUL-2021 - ASSIST-IoT© - Page 78 of 78

Enabler MR enabler

• T43E7: Edge data broker

• T43E8: Long-term data storage

• T44E1: Business KPI reporting enabler

• T53E2: Authorisation Enabler

• SELF14: Monitoring and Notifying

Requirements mapping N/A

Use case mapping • UC-P2-7: Health and safety inspection support

Required components Data Integration, Data Publication

Figure 31. High-level diagram of the MR enabler

Components

Enabler component Data Integration

id T44E3.2_DataIntegration

Description and main
functionality

The Data Integration component integrates the data came from long-term storage, real-
time data stream, other services and user input, correlates them according to their
meaning and request to forwards them to the Data visualisation component.

Target node/s Head-Mounted MR Device (HMD)

Implementation
technologies

Unity

Enabler component Data Publication

id T44E3.2_Dapublication

Description and main
functionality

The Data Publication component is responsible to visualise the information to the user
via the MR glasses.

Target node/s Head-Mounted MR Device (HMD)

Implementation
technologies

Unity

	Table of contents
	List of tables
	List of figures
	List of acronyms
	1. About this document
	1.1. Deliverable context
	1.2. The rationale behind the structure
	1.3. Outcomes of the deliverable
	1.4. Lessons learnt
	1.5. Deviation and corrective actions

	2. Introduction
	3. Devices specifications
	3.1. General specifications
	3.2. Smart IoT devices
	3.2.1. ASSIST-IoT localisation tag
	3.2.2. ASSIST-IoT fall arrest device

	3.3. Edge node
	3.3.1. Edge node electronics
	3.3.2. Edge node firmware

	4. Initial horizontal enablers specification
	4.1. Smart Network and Control enablers
	4.1.1. Enablers’ descriptions summary

	4.2. Data Management enablers
	4.2.1. Enablers’ descriptions summary

	4.3. Application and Services enablers
	4.3.1. Enablers’ description summary

	5. Future Work
	Annex A - Localisation
	Annex B - Enablers templates
	B.1 - Smart orchestrator enabler
	B.2 - SDN Controller
	B.3 - Auto-configurable Network enabler
	B.4 - Traffic Classification enabler
	B.5 - Multi-link enabler
	B.6 - SD-WAN Enabler
	B.7 - WAN Acceleration enabler
	B.8 - VPN enabler
	B.9 - Semantic Repository enabler
	B.10 - Semantic Translation enabler
	B.11 - Semantic Annotation enabler
	B.12 - Edge data broker
	B.13 - Long-term data storage enabler
	B.14 - Tactile Dashboard enabler
	B.15 - Business KPI reporting Enabler
	B.16 - Performance and usage diagnosis enabler (PUD)
	B.17 - OpenAPI management enabler
	B.18 - Video augmentation enabler
	B.19 - MR enabler

