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Executive Summary 
This deliverable is written in the framework of WP3 – Requirements, Specification and Architecture of 

ASSIST-IoT project under Grant Agreement No. 957258. The document is the first of a series that are devoted 

to formalising ASSIST-IoT technological architecture. This document aims at outlining the guiding principles 

of ASSIST-IoT architecture, altogether with the identification of main elements (Views) and enablers to be part 

of it.  

Next Generation Internet of Things field is urgently requiring the creation of a robust, formal, valid, useful 

reference architecture to build deployments upon. Several initiatives are detected, as well as classic concepts of 

architecture definition are varyingly meeting requirements. However, the blueprint is yet to come. 

This deliverable reports the works done towards defining ASSIST-IoT architecture guiding principles and key 

considerations for its deployment, which has redounded in a two-dimensional structure divided in planes and 

verticals within which the actual technological assets will be included. These assets have been defined (novel 

approach) as enablers, which aim at encapsulating the innovative functionalities that ASSIST-IoT’s provides. 

Throughout the core sections of the document, there can be found the motivated decisions that will guide the 

architecture in ASSIST-IoT: the selection of service-based philosophy, the use of containerisation and the 

rationale behind the selection of Functional, Node and Deployment View, among others.  

In addition, deep study of each plane and vertical has been included. The results of the research have allowed 

to describe the key enablers, digging into their objective and candidate technologies (e.g., custom components 

on Apache Kafka, Scala, Akka, Apache Jena to create the Semantic translation enabler in the Data Management 

plane). 

In order to establish a language for a common understanding of the terms, a Glossary has been created and 

accompanies this document as appendix. 

This document aims at being the starting point for further improvements and refinements that will come later 

during the project. Thus, to finalise it, a clear roadmap of forthcoming actions is included, altogether with some 

early conclusions obtained. 
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1. About this document 

The main objective of this document is to set the foundations of the ASSIST-IoT architecture. Considering 

that the most prominent outcome of the project will be its blueprint architecture, this deliverable must be key 

for understanding the rest of technical content of ASSIST-IoT. More specifically, D3.5 aims at being a first step 

in the description of the architecture. While deep understanding of the diverse elements of the ASSIST-IoT 

architecture will need further elaboration and joint interpretation with WP4, WP5 and WP6, this deliverable 

(D3.5) depicts the guiding principles, the base structure, and the main elements (with their role and fit) of the 

architecture. In other words, the backbone of the technical provision of the project is defined in this deliverable. 

1.1. Deliverable context 

Keywords Lead Editor 

Objectives O1: D3.5 is the first definition of the architecture, that is the outcome of objective 1. 

O2: Smart network’s Functional View is provided with overview of its core enablers. 

O3: Security and Privacy vertical capabilities are described with overview of main enablers. 

O4: Federation of smart AI enablers is preliminary outlined. 

Work plan 

 

Milestones This deliverable does not mark any specific milestone completion; however it contributes 

towards MS5 – Final architecture defined, that will be achieved by submitting D3.7.  

Deliverables This deliverable is fed by the elaboration of D3.2 (use-cases and requirements) and will 

serve as the basis for the forthcoming updates of the architecture in D3.6 and D3.7. It will 

also be feeding developments in WP4 and WP5, inspiring the production of D4.1 and D5.1. 

1.2. The rationale behind the structure 
As mentioned in the previous section, deliverable D3.5 aims at laying the first grounds in the description of the 

ASSIST-IoT architecture. This deliverable D3.5 will be updated in D3.6 and D3.7, that will redound in a formal 

Reference Architecture (RA) definition document. Therefore, it has been adopted a structure aligned with usual 

formal description of a RA, including the definition of guiding principles and views of the architecture. 

Section 2 serves as an overview of RA design, comparing the different approaches. Section 3 starts by mapping 

those approaches with ASSIST-IoT, defining the principles adopted and the overall structure of ASSIST-IoT 

architecture and explaining the essential cornerstone elements (enablers). In Section 4, the different transversal 

NGIoT concerns devised for ASSIST-IoT are tackled, including the description of main enablers. Sections 5, 6 

and 7 are devoted to explaining the four different views existing in ASSIST-IoT: Functional View (including 

main enablers), Node View and Deployment View.  
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2. Reference Architecture Design Principles 

For the ASSIST-IoT architecture to be built upon, key principles of established Reference Architectures (RA) 

will be leveraged. This section’s main objective is to provide an overview of the main concepts exploited to 

conceive RAs, as well as to introduce the main architecture paradigms, available in the market, for building 

systems intended for different scenarios. The selected design choices, abstractions and methodology of the 

concepts and approaches upon which ASSIST-IoT will be built are presented in detail in Section 3, while the 

main outcomes lie in the subsequent sections.  

2.1. Concepts 
Applied to the IoT ecosystem, a RA can be described as a useful model that can serve as a set of guidelines to 

implement an IoT system. Their objective consists of assessing a set of requirements in order to provide a set 

of functionalities, information structures and mechanisms [1], serving as a blueprint for developing and 

implementing IoT architectures. Reference Architectures usually have a high level of abstraction, so they can 

be applied for different domains or application, setting the ground for discussing under a common vocabulary. 

The standard ISO/IEC/IEEE 42010 [2], which is leveraged in many modern RAs as was reviewed in deliverable 

D3.1, specifies a conceptual model to aid in the description of architectures: 

 

Figure 1. Conceptual model of an architectural description defined in ISO/IEC/IEEE 42010 [2] 

The most vital concepts in defining an architecture from the standard are summarised below: 

• A stakeholder in the architecture of a system is an individual, team, organisation, or classes thereof, 

having an interest in a system [2]. Interests also referred to as concerns are defined the next point. The 

architect must ensure that there is adequate stakeholder representation across the board, including 

nontechnology stakeholders (such as acquirers and users) and technology-focused ones (such as 

developers, system administrators, and maintainers). Stakeholders can range from developers, testers 

and maintainers to support staff, administrators, product engineers and end users, among others [3].   



Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial 

 

Version 1.0   –   30-APR-2021   -  ASSIST-IoT© - Page 12 of 63 

• A concern is a topic of interest to one or more stakeholders belonging to an architecture [4]. A concern 

could be manifest in many forms, such as in relation to one or more stakeholder’s needs, goals, 

expectations, responsibilities, requirements, design constraints, assumptions, dependencies, quality 

attributes, architecture decisions, risks or other issues pertaining to the system [2]. 

• A viewpoint is a work product establishing the conventions for the construction, interpretation and use 

of architecture Views to frame specific system concerns [2]. It defines the stakeholders whose concerns 

are reflected in the viewpoint and the guidelines, principles, and template models for constructing its 

views [3]. The functional viewpoint is always present in architecture descriptions (which describes the 

functional elements of a system, along with their responsibilities, interfaces, and main interactions). 

Because of the wide range of opinion, standards do not require a specific set of viewpoints, they expect 

that they are selected appropriately depending on the system-of-interest. 

• A view is a work product expressing the architecture of a system from the perspective of specific system 

concerns [2], illustrating how the architecture addresses them. An architecture description shall include 

exactly one architecture view for each architecture viewpoint used. According to [3], the core views of 

an architecture are the Functional, the Information, the Concurrency, The Development, the 

Deployment and the Operational views.  

• A perspective is a collection of activities, tactics, and guidelines that are used to ensure that a system 

exhibits a particular set of related quality properties that require consideration across a number of the 

system’s architectural views [3]. Although not formally defined by the aforementioned standards, this 

reference is included in [2] as a note. In some architectures, perspectives are referred to as system 

characteristics, however, in ASSIST-IoT the term “Vertical” will be used instead since apart from 

inherent properties, specific software will be included under its scope to meet or solve specific cross-

cutting concerns.  

2.2. Architecture paradigms 
Almost every software application written today can be broken into three elements: a front-end or client-side, a 

backend, and some type of database. While requests are made to the developed application via the frontend 

interface, the backend code does all the heavy lifting, and any relevant data that needs to be stored or accessed 

is sent to or retrieved from the database (see Figure 2). 

 

Figure 2. Three-tier architecture 

In the early deployment stages, IoT applications were simple, and the number of IoT elements involved were 

small, so that IoT developers typically shared the burden of contributing to and maintaining the codebase. As 

the Next Generation Internet of Things (NGIoT) grows, new features shall be added to the applications, leading 

to (i) an increase in the operational workload, and (ii) a necessary horizontal and/or vertical scaling, requiring 

that more servers host the application. The complexity of the NGIoT applications is growing steadily, and 

hundreds of tests shall be carried out to guarantee that any minimum change made does not compromise the 

integrity of the existing code. 

To cope with the increase of the number of elements present and workload required in IoT systems, software 

architectures are the starting point to design them and to solve a specific problem or adapt to a need. Some 

approaches have been proposed to address the complexity, at different levels, of software architectures. The 

asset of plans that form the software architecture guide the management of the information infrastructure to 

enable the desired state. Architectural patterns define how to organise system components when building a 

complete system and meeting the requirements set by an activity [5]. Architecture is not just about design, it 

also involves coding, abstraction, standards, formal training (of software architects), and style. The architecture 

deals with the interactions and constraints on those elements. 
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The variety on architectural styles and patterns available in the software industry makes it necessary to 

understand the particularities that suit in each situation. The most relevant software architectures and 

patterns1 are listed below [6]: 

• Layered architecture pattern closely matches the traditional IT communication, organised in 

horizontal layers. Each layer (commonly: User-Business-Infrastructure) has a specific role within the 

application and can communicate with each other through defined interfaces and different topologies 

(e.g.: OSI model). 

• Microkernel (plug-in architecture pattern) is a natural pattern for implementing product-based 

applications, that are packaged and made available for download in versions as a typical third-party 

product. The core component contains the minimal functionality required to make the system 

functional, and plug-in modules contain specialised processing (e.g. Eclipse and extra compilers). 

• Event-driven architecture is a distributed asynchronous pattern that manages data processing timeouts 

by building a central unit that accepts all data and then delegates it to the decoupled components that 

asynchronously receive and process events. Consists of two main topologies: the mediator (used when 

need to orchestrate multiple steps within an event through a central mediator) and the broker (used when 

you want to chain events together without the use of a central mediator - e.g., JavaScript web page). 

• Space-based architecture is specifically designed to address and solve scalability and concurrency 

issues, being a better architectural approach than trying to scale a database or adapt caching technologies 

to a non-scalable architecture. It is suitable for applications that have variable and unpredictable 

concurrent user volumes. The space-based pattern works around the idea of distributed shared memory, 

and try to minimise the factors that limit application scaling. There are two main components within 

this architecture pattern: a processing unit and virtualised middleware. (e.g. cloud). 

• Serverless architecture is a cloud computing approach to building and running apps and services 

without the need for infrastructure management [7]. In serverless applications, code execution is 

managed by a server, allowing developers to implement code setting without taking care of server 

maintenance, while a third-party cloud service takes full responsibility. This configuration eliminates 

the need for extra resources, application scaling, server maintenance, and database and storage systems. 

• The architecture paradigm based on services is focused on performing functions that break complex 

problems into a series of simpler ones [8], executing tasks through a communication protocol over a 

network. Services are designed to be separately deployable, allowing to build highly scalable and 

resilient systems, in order to respond to hardware events, or listening for data requests from other 

software [9]. Service-based architectures vary in terms of services characteristics, service taxonomy 

and granularity [10]. There are two main approaches of the architecture paradigm based on services: 

o Monolithic architecture is a traditional software model that aims to build a single-tiered 

software application in which different components are combined into an indivisible program 

or platform formed by a code base with several modules [11].  

o Service-oriented architectures (SOA) can be seen as a natural evolution of monolithic pattern 

by decoupling an application into smaller modules. All the services would then work with an 

aggregation layer which can be termed as bus. This architecture can still be seen as a monolith 

from the deployment perspective, while microservices lead towards independent deploys. 

o Microservices architecture style structures a robust solution as a set of lightly coupled small 

services which are isolated in small coherent and autonomous units, to solve the problem of 

complex architecture and code redundancies 

Architectures based on services: 

Since ASSIST-IoT will follow one of the architecture paradigms based on services, here we delve into them to 

motivate the choice made in the next section. Monolithic architectures are the first approach of architectures 

based on services, grouping systems that are implemented as single unit of deployment. It has been the 

benchmark operating model for many years and countless applications have been successfully built. Its 

simplicity allows avoiding many of the problems associated with distributed systems, resulting in simpler 

developer workflows, monitoring and testing. The most common point of view about monolithic architectures 

 
1 https://techbeacon.com/app-dev-testing/top-5-software-architecture-patterns-how-make-right-choice 

https://techbeacon.com/app-dev-testing/top-5-software-architecture-patterns-how-make-right-choice
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refers to single process monolith, where all the code is packed into a single process. However, it may be the 

case in which a series of modules function as a single indivisible system, summarising monoliths as architectures 

where all functionalities in the system have to be deployed together [12]. 

 

 

 

 

 

 

 

 

 

The opposite approach to monolithic architectures would be to divide this complex structure into smaller 

services. In SOA, application components provide services to other components through communication 

protocols, usually over a network [8]. The architecture includes a messaging middleware component that allows 

mediation and routing, message enhancement, message transformation and protocol transformation [10]. 

Service-oriented architecture principles are independent of any product, vendor or technology, enabling 

interoperability between systems, services and applications [13], [14]. The service bus acts as an orchestrator 

for complex event interactions, while the integration hub handles protocols and other transformations. The 

enterprise services must call code to implement their behaviour based on business processes [15]. 

 

Figure 4. SOA architecture 

To simplify services development, an architectural style that focuses on the design and development of software 

systems as a set of small independent services has emerged [10]. Microservices also bring some complexity in 

understanding the call chain that will happen for any given request, and the performance implications of all the 

additional network calls [16], [17]. A single microservice can be small and easy to understand, both in terms of 

business domain and performance [18], in contrast to a constellation of microservices. 

The microservices architecture pattern does not support the messaging middleware concept, so it typically has 

an API layer between services and the consumers [10], using less elaborate and simple messaging systems and 

lightweight protocols as HTTP, REST or thrift APIs [19]. Microservices architecture makes scaling and adding 

new capabilities much easier, being suitable to develop a large application with multiple modules and user 

Figure 3. Modular monolith with single database (left) and decomposed database (right) 
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journeys [18]. Also, each microservice can be reused as a part of a different application. The granularity on the 

design results in a performance negative side effect of the distributed nature of microservices, as network calls 

and security verification at every endpoint adds additional processing time [20], [21].  

The architecture of a microservice is not that different from the standard three-tier application architecture of 

Figure 2, as each microservice will be formed by three components: a frontend, some backend code, and a way 

to store or retrieve any relevant data in a database. However, there are some differences, as shown in Figure 5: 

 

Figure 5. Elements of microservice architecture 

1. The frontend of a microservice will be an API with static endpoints that will allow microservices to 

easily and effectively interact and send requests to the relevant API endpoint(s). For example, a common 

type of API endpoints for microservices is via HTTP over REST endpoints.  

2. Although the API endpoints may be theoretically separated from the architectural point of view, in 

practice, they live alongside and as part of all the backend code that processes every request. 

3. Most microservices will store some type of data, either in memory or in an external database. 

 

Figure 6. Monolithic vs SOA vs Microservices architecture 

Usage comparison between architecture paradigms based on services. 

Monolithic architectures are suitable for small team or simple applications that require a quick launch such as 

activities that do not demand much business logic, superior scalability, or flexibility have no need to deal with 

the complexity of the microservices architecture. If needed, a monolithic model is a choice that requires less 

initially spending resources, allowing to develop and launch it as soon as possible. 

On the other hand, distributed architectures try to maximise application service reusability, by avoiding 

modifying the entire monolith when a systematic change is required. The more services are reused, the lower is 

the cost of implementing software development and management, so SOA is an ideal architecture method for 

large and complex business applications. It is the most suited architecture for environments that require 

integration with many diverse applications. 

SOA and microservices are architectures built on different component-sharing concepts. SOAs try to avoid 

functionalities duplication by sharing as much as possible, generating tightly coupled components, which 

increases their difficulty to be changed. On the contrary, microservices only expose a defined interface to 

communicate its single closed units [10]. Minimal dependencies allow easier deployment and less risk while 

changing modules or services. Microservices architectures are focused on decoupling, so a systematic change 
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implies creating a new service [18]. They require expertise, with the proper skills and knowledge, and it is 

focused on teams’ collaboration and freedom of choice. The following table summarises the main concepts of 

the architectures described in this section. 

Table 1. Comparative among architecture paradigms 

 Monolithic SOA Microservices 

Suitable Small team or simple 

applications. 

Low initially spending 

resources. 

Web-services.  

Widely used in 

distributed computing, 

SAAS based cloud 

computing models 

Websites with small components. 

Corporate data centres with well-defined 

boundaries. 

Development teams that are spread out, often 

across the globe. 

Not 

suitable 

Applications that require 

scalability. 

Not suitable for applications that 

require complex development 

before executing. 

Not easy to adapt in applications 

that require changes. 

Not ideal for small 

applications as they 

do not require 

middleware 

messaging 

components. 

The services must be largely independent or 

else interaction can cause the cloud to 

become imbalanced. 

Websites with complex components that 

compromise performance. For instance, too 

many microservices can cause that parts of 

the web page appear much later than others. 

As a lead paragraph towards the next section, and before digging deeper into ASSIST-IoT paradigm selection, 

it is worth reflecting on the information provided by the previous table.  

Per definition, (Next-Generation) IoT deployments must be ready to adapt to changes, either in terms of adding 

new devices to the installation, applying new services over the data provided by those or changing the security 

policy for managing them, among others. Besides, scalability is also key in such deployments. With ever-

increasing computing capacity in always-smaller miniaturised devices, the structure of an IoT deployment must 

from now on be ready to spot processing and capabilities throughout a wider range of elements/network spots.  

Finally, an off-topic but relevant aspect is to keep in mind the COVID-19 pandemic has contributed to a major 

shift towards the teleworking paradigm [22]. This will, most likely, mean that for the future years (when NGIoT 

will finally take off globally) the development, integration and maintenance staff teams will be distributed 

throughout the globe. Therefore, a proper NGIoT blueprint architecture should allow an easy DevOps flow 

targeting such working teams. 
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3. ASSIST-IoT Approach  

3.1. Design Principles 
If the traditional monolith software architecture style was selected for ASSIST-IoT, the development and 

deployment of NGIoT applications would become consequently a burden and a blocker for even the most crucial 

fixes. The main reason most monoliths are susceptible to scalability problems is that their nature does not 

address partitioning (i.e., each task can be broken up into smaller pieces) and concurrency (i.e., is not only 

broken up into small pieces but can be processed in parallel). For instance, a software upgrade scalability 

requires scaling of the entire application rather than parts of it. Hence, in this section are detailed the design 

principles that will govern ASSIST-IoT architecture and solutions, namely (i) the use of microservices, (ii) their 

instantiation in containers, (iii) their grouping into “enablers”, that will be introduced in this section and further 

described in Section 3.4, (iv) and their further orchestration using Kubernetes technology.  

Microservices 

To cope with these anticipated challenges, ASSIST-IoT architecture proposes to follow a microservice 

software architecture, which pursues building applications as suites of services. Following this approach, it 

will allow beyond the fact that microservices can be independently deployable and scalable, to also provide a 

firm module boundary, allowing for different services being written in different programming languages, and 

being managed by different project partners. The goal of the microservice architecture of ASSIST-IoT will be 

to build a set of small applications (called enablers) that are each responsible for executing one function (as 

opposed to the monolithic way of building one application that executes everything), and to let each 

microservice be autonomous, independent, and self-contained. 

Containerisationg 

As IoT deployments become more numerous, scalable architectural solutions are crucial for meeting and 

sustaining the demand of large, expanding, and elastic device networks. While former IoT applications simply 

control and analyse signal data from edge devices in a centralised manner, NGIoT applications are moving 

towards smart analytical applications, requiring horizontal scalability of device additions, including a reduction 

of instantiation times, or migrating the actual computing and intelligence towards the edge.   

To promote rapid onboarding, ASSIST-IoT foresees a NGIoT architecture that ensures that the instantiation of 

the first service (called enabler) will be as simple as the instantiation and addition of the 1000th. To enable this 

seamless scalability in NGIoT infrastructure deployments, ASSIST-IoT proposes to employ a containerised 

approach that will allow developers to create each microservice over the most fitting OS and language.  

Like virtual machines, containers allow to package for and decouple applications from the environment in which 

they will be running. This decoupling will allow container-based ASSIST-IoT microservices to be deployed 

easily and consistently, regardless of the target environment. However, containers offer several benefits with 

respect to VMs. Instead of virtualising the hardware stack (as VMs), containers virtualise at the OS level, i.e., 

multiple containers can be running over the OS kernel directly. Hence, containers are far more lightweight than 

VMs, as they can be run much faster, and use a fraction of the memory. Other benefits are listed in the Table 2 

below: 

Table 2. Containers benefits versus Virtual Machines benefits2 

 Container benefits VMs benefits 

Consistent runtime environment ✓ ✓ 

Application sandboxing ✓ ✓ 

Small size on disk ✓  

Low overhead ✓  

 
2 https://cloud.google.com/containers  

https://cloud.google.com/containers
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As all components on the edge appliance will be containerised, it will allow to search and infer which equipment 

can handle which containers, and enables applications to be dynamically deployed and moved, and their 

resource utilisation to be monitored. 

Enablers 

Since ASSIST-IoT targets software products for covering many different functional domains, the project 

introduces the abstraction term “enablers”, which will consist of a group of microservices, each of them served 

over a container, acting towards a single goal (i.e., to provide a specific functionality) in the architecture. Each 

enabler provides a single point of entry (interface) to communicate with it, without exposing the internal 

communication mechanisms between its components, thus having an “encapsulation” of microservices. As a 

result, the security of the software is improved by design, and in addition, potential software deployments and 

upgrades are facilitated by (i) grouping microservices according to the provided functionality, and by (ii) 

reducing the level of granularity offered by using just standalone microservices, without losing the advantages 

provided by microservices (e.g. distributed computation). In such ways, ASSIST-IoT ends up presenting an 

architecture that, although based on microservices, has a granularity that falls in the middle of a “pure” 

microservice architecture and a SOA. In some cases, this kind of architectures is also referred to as Service-

based, although according to different sources this may not be fully correct if presented as an opposite to 

microservices or SOA, as described in Section 2.2. Additional information regarding enablers is presented in 

Section 3.4. 

Kubernetes 

Kubernetes3, Docker Swarm4 and Apache Mesos5 are examples of technologies for service virtualisation and 

container orchestration. They facilitate the execution of different tasks related to deploying and managing 

applications, and are specially needed for managing systems with a large number of containers instantiated in 

different servers (e.g., a cluster environment). These solutions are in charge of (i) managing the creation of 

containers, (ii) verifying their operation, and (iii) offering correct management of errors. In ASSIST-IoT, 

Kubernetes has been selected as the main technology for containers orchestration, and, therefore, for 

enablers orchestration. The main motivation for choosing this option lies in its large adoption in current trends 

in cloud native systems in contrast to other alternatives [23]. In addition, there are modified distributions of 

Kubernetes that target constrain devices, which are part of the Device and Edge plane of ASSIST-IoT as will 

be explained later in this document. 

Kubernetes, also referred to as k8s, automates rollouts and rollbacks, monitors the health of software 

microservices to prevent bad rollouts before things go bad. It also enables to continuously run health checks 

against deployed services, restarting containers that fail. Additionally, Kubernetes will automatically scale 

services up or down based on utilisation, ensuring they are only running what the owner needs.  

 

Figure 7. Services exposed (left) and scalability approach (right) for container orchestration with Kubernetes6 

 
3 https://kubernetes.io/ 
4 https://docs.docker.com/engine/swarm/ 
5 http://mesos.apache.org/ 
6 https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/  

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/
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Still, k8s initial suites were not suitable for small form-factor devices, such as the ones initially considered in a 

current and NGIoT deployment. In particular, NGIoT deployments at the edge typically are expected to work 

with smaller footprint of devices that do not have enough capacity to run Kubernetes effectively, such as sensors. 

Additionally, connectivity issues related with e.g., latency, bandwidth limitations or disconnection shall be 

solved in an automated way. Because of these and other requirements related to public or private access to the 

Internet, or cybersecurity, containers orchestration at the edge in general, and Kubernetes modifications 

are started to get the attention of NGIoT alliances and open-source communities and will become the basis of 

scalability solutions of ASSIST-IoT. Recent projects include K3s7, microk8s8, or FLEDGE [24], among others.  

3.2. ASSIST-IoT Conceptual Architecture 
The ASSIST-IoT conceptual architecture is a reference to a high level of abstraction, on which more concrete 

designs may be implemented, and specific applications realised. The architecture is rooted in a 

multidimensional, conceptual approach, in which architectural layers (called “Planes”, see Appendix A - ) are 

intersected by vertical blocks (“Verticals”) presented in Figure 8. This approach captures horizontal and vertical 

functions of an IoT system, as well as the intersections between them and allows for higher level of modularity 

and adaptability in compliant systems. 

 

Figure 8. ASSIST-IoT Conceptual Architecture 

The horizontal Planes represent collections of functions that can be logically layered on top of one another. For 

example, observation data originating from a sensor must pass through the Smart Network and Control plane 

and be processed on the Data Management plane, before being presented to an end-user in a GUI application 

on the Applications and Services plane. Not all information must always pass through all planes – in fact, one 

common function of an edge device is to filter out only necessary data, or to aggregate data, so that only relevant 

information is passed on. In principle, however, software (and hardware) on any level can rely on, and abstract 

away, any functions performed on planes below. It is worth mentioning that ASSIST-IoT concept of Planes 

must not be confused with the traditional (OSI-like) approach of protocol stack, but rather as a smart 

classification of logical functions that fall under the scope of diverse plane domains. 

Verticals, on the other hand, represent functions targeting NGIoT properties that exist either independently on 

different planes or require the cooperation of elements from multiple planes. For example, although one may 

implement a fully secure networking solution, the property of being secure could also be extended to any system 

that uses such networking, provided that security measures are also implemented on other planes. Cooperation 

 
7 https://k3s.io/ 
8 https://microk8s.io/ 

https://k3s.io/
https://microk8s.io/
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of plane functions may be required to secure e.g., data access with biometrics measured by IoT devices – if 

access to data (from the Data Management plane) depends on signals from a device (Device and Edge plane) 

analysed on the Applications and Services plane, then system security must consider all those planes.  

Since it is not possible to capture all the functional features in a single model, the ASSIST-IoT architecture will 

result in different Views and a set of Verticals (addressing properties and cross-cutting concerns). In Sections 

4 and 5, these Verticals and Views (Functional, Node and Deployment) are introduced, considering that their 

number and extent may change along with further iterations of the architecture.  

3.2.1. Functional architecture 

 

Figure 9. ASSIST-IoT Functional Architecture 

A high-level Functional View of the ASSIST-IoT is presented on Figure 9. This View will be extended in 

Section 5. While the Vertical functions are described in detail in Section 4, the Planes of the ASSIST-IoT 

architecture are as follows: 

Device and Edge plane describes the collection of functions that can be logically appointed to physical 

components of IoT, including, but not limited to, smart devices, sensors and actuators, wearables, edge nodes, 

as well as network hardware, such as hubs, switches and routers. Note that this plane, like all the others, 

represents a Functional View. So even though e.g., functions related to self-contained network could be naturally 

associated with network devices, there is a group of functions that can be identified and separated into functional 

blocks that belong squarely on the Device and Edge plane. The aforementioned functions include any physical 

connectivity and interfaces (e.g., Ethernet), low-level security functions (e.g., firewalling). This plane directly 

interfaces the hardware capable of executing specific functions designed on higher planes. 
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Smart Network and Control plane manages virtual and wireless aspects of network connectivity. The key 

functions handled on this plane are encompassed by technologies that deliver software-related and virtualised 

networks, such as SDN (SD-WAN), NFV, MANO, and anything related to virtualised or self-contained 

networking. Any direct and logical connection in the communication infrastructure is provided on this plane. 

The functions on this plane follow the access-network-agnostic approach, in which the network connections are 

highly flexible. Features, such as dynamic configuration, routing and addressing, and high-level intelligent 

firewalling help deliver the required flexibility. 

Data Management plane handles all functions related to a virtual shared data ecosystem, in which data are 

acquired, delivered and processed to provide key data-related functions. Those include data interoperability, 

provenance, fusion and aggregation, but also content-independent functions, such as resilience (e.g., 

redundancy). Security functions for access grants and trust management also belong to this plane. Moreover, 

this plane is empowered by semantics and might be supported by judiciously selected DLT.  

Application and Services plane crowns the Functional View with end-user and administrative functions and 

services. It delivers a layer of abstraction that manages functions offered by lower planes. Moreover, it combines 

them to provide synergistic value for the whole system. Its functions, aided by the Verticals, aim to offer a 

unified point of access, and provide system-wide intelligence and configuration capabilities. Because of the 

high level of abstraction, this plane enables the creation of advanced and intelligent applications, including 

configurable autonomous systems, that benefit from the lower planes, and their interconnection. 

3.3. Relation with other IoT-related RAs  
ASSIST-IoT Conceptual Architecture has not been created from scratch, but rather designed considering 

multiple inputs including (i) the current trends towards integration between IoT-related technologies with NGI 

technologies (such as Edge Computing, Artificial Intelligence and SDN/NFV Paradigms), (ii) the expertise of 

the Consortium partners in different technological areas, (iii) the outcomes of previous and concurrent projects, 

as well as of Standards Developing Organisations (SDOs), and an (iv) extensive research of innovative concepts 

to improve current performance and scalability of IoT architectures or integrate novel functionalities.  

As presented in D3.1, the number of Reference Architectures (RAs) related to IoT is quite large, and hence 

starting a completely new architecture without evaluating or considering the results and insights provided by (at 

least some of) them would not be the right decision. Considering those facts, ASSIST-IoT is influenced mostly 

by two RAs, namely the ones provided by the IoT European Large-Scale Pilots (LSP) programme [25] and the 

OpenFog consortium [26]. 

LSP architecture 

The 3D architecture presented within the framework of the LSP programme is composed of 8 layers, with 8 

cross-cutting functions and 8 properties. The “Layer” dimension supports the Functional View of the system in 

a technology-agnostic way, while the “Cross-Cutting Functions” dimension considers transversal technologies 

to different layers, whereas “Properties” addresses the global properties of the IoT system that are (or not) 

provided by a proper implementation of combination between layer-level and cross-cutting functions. In 

ASSIST-IoT, we have considered a similar layered concept, which differs in grouping them into four main 

horizontal Planes to facilitate further developments and implementations. ASSIST-IoT Conceptual Architecture 

maps the LSP RA as shown in Figure 10. Regarding the provided cross-cutting functions and system 

properties, in ASSIST-IoT they are considered in a single dimension (Verticals) since both concepts are 

transversal to the horizontal Planes of ASSIST-IoT, and as with most available RAs, no strong reason to add a 

third dimension was found. 

Mapping LSP layers and ASSIST-IoT planes is quite straightforward. “Edge devices” is included in ASSIST-

IoT’s Device and Edge Plane, since it is the plane in direct contact with elements of the edge (including in the 

latter Smart IoT Devices, which in the case of LSP are outside the scope of the architecture). The following two 

LSP layers can be mapped to both lower layers of ASSIST-IoT: (i) “Connectivity” responds to the physical 

gateways and forwarding devices (e.g., switches), which in ASSIST-IoT are located in the lower plane, and 

routing decisions as well as other virtualised networking functionalities which are managed by the Smart 

Network and Control plane; (ii) “Edge Computing” can be applied in elements of the Device and Edge plane, 

however, virtualised computing capabilities are orchestrated by the second plane. Lastly, the two layers devoted 
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to data within LSP match the Data Management plane of ASSIST-IoT, whereas the three upper layers devoted 

to Services, Applications and Business Processes can be included in the upper plane of ASSIST-IoT.  

ASSIST-IoT Verticals can gather the functionalities stated in the other two dimensions of the LSP architecture. 

The vertical related to Security, Privacy and Trust can be mapped to the cross-cutting functions related to 

“Identifiability”, “Trustworthiness”, “Security”, “Safety” and “Privacy” as well as with the property of 

“Dependability”, which is related to trust and resilience of system and applications. The resilient aspect of 

“Dependability” could be included also with Self-* vertical, since this one includes functionalities related to 

guarantee “Reliability”, “Resilience”, “Availability” and, most importantly, “Intelligence” to ensure all the 

former properties and cross-cutting functions in an autonomous way. Interoperability vertical, apart from its 

homonymous property in LSP RA, can be related to the “Integrability” property and “Connectivity” cross-

cutting functions (for instance, facilitating the connectivity of external devices, sensors or network elements, 

either physical or virtual). Manageability vertical can be mapped to its homonymous property in LSP 

architecture and also to Composability one, whereas Scalability is mapped one to one. In summary, despite 

being split within sixteen properties and cross-cutting functions, the transversal functionalities included by them 

can be gathered within the five ASSIST-IoT Verticals. 

 

Figure 10. Comparative between ASSIST-IoT Conceptual Architecture and LSP 3D Architecture 

OpenFog architecture 

OpenFog RA is defined by its authors as a medium- to high-level view of system architectures for fog nodes 

and networks. Its conceptual architecture is presented in a two-dimensional model, consisting of “Layers” and 

“Perspectives”. Despite not plotting a third dimension, OpenFog RA is driven by a set of principles named 

“Pillars”: Security, Scalability, Open, Autonomy, RAS (from Reliability, Availability and Serviceability), 

Agility, Hierarchy and Programmability. Hence, although most of these pillars are not directly addressed within 

a specific perspective or functionality, they represent a set of properties that should be inherently present in an 

OpenFog RA instantiation. The mapping between ASSIST-IoT and OpenFog’s Architecture Description is 

illustrated in Figure 11. 

Comparing OpenFog’s perspectives with ASSIST-IoT Verticals is quite straightforward. “Manageability”, 

“Security” and “Scale” are quite self-explanatory, so despite some of the included functionalities within 

OpenFog’s perspectives vary in comparison to their homonymous ASSIST-IoT’s Verticals, the core ones are 

shared. The latter is included within the perspective named “Performance & Scale”, dealing mostly with 

scalability and isolation aspects. “Data Analytics and Control” has been mapped with Self-* vertical since both 

are responsible for extracting knowledge for performing actions, mostly at node level, although in OpenFog it 

goes beyond the extent of a single node to also send results to higher ones for further business or operation-
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specific analysis. “IT Business & Cross-fog Applications” is understood in OpenFog as the flexibility of 

distributing data or knowledge among different nodes, mostly in multi-vendor ecosystems. Although mapped 

to the Interoperability vertical, the latter expands to other domains. In any case, ASSIST-IoT project has 

provisioned a task for cross-context federated enablers, so the concerns of that particular OpenFog’s perspective 

will be also covered. 

 

Figure 11. Comparative between ASSIST-IoT Conceptual Architecture and OpenFog Architecture Description 

Regarding OpenFog layers, the lower ones (from “Sensors, Actuators & Control” to “Hardware security”) have 

been related to ASSIST-IoT’s Device and Edge plane. This mapping is direct as they refer to this group of layers 

as “Node View”. In any case, ASSIST-IoT’s lower plane covers not only fog (in our case, edge) nodes, but also 

innovations framed close to the physical network elements (routers, switches, etc.) as well as potential Smart 

IoT Devices (i.e., devices with certain processing capabilities). The following layers, related to virtualisation 

and software to facilitate node-to-node communications (e.g., “Software Backplane” includes Operative 

Systems, software virtualisation, containerisation) have been also mapped to the lower layers, since apart from 

hardware elements, ASISST-IoT edge nodes will need software container orchestration systems to be fully 

functional. “Application support” has been split between the two upper layers of ASSIST-IoT because data-

related services belong to the third plane, although non-related ones would lie within the upper one (related also 

to OpenFog’s “Application services” layer).  

The larger divergence comes with ASSIST-IoT’s Smart Network and Control plane. On the one hand, ASSIST-

IoT has a plane devoted to network services and management influenced by the SDN/NFV paradigm, hence 

representing a system rather than a node. On the other hand, OpenFog’s description is a blueprint that could be 

instantiated in any fog node (with its hardware, hardware and software virtualisation, hidden and exposed 

applications and services), and no further specification is given regarding how to address the orchestration of 

Network Services nor the system’s network. 

Other Architectures 

Although ASSIST-IoT Conceptual Architecture is inspired mostly by the two former RAs, some aspects have 

been modified based on other existing architectures. For instance, most RAs do not specify the number of 

horizontal Planes or layers, since it may hinder further implementations rather than facilitating it. For this reason, 

ASSIST-IoT groups their related functionalities in 4 main domains, being more inspired from pre-normative 

activities and standards issued by entities like ITU-T Rec. Y.2060 [27] (which defines Device, Network, Service 

and Application Support, and Application layer) and AIOTI HLA [28] (Network, IoT and Application, omitting 

the Device layer as also done in different software architectures), as well as edge-centric RAs like ECC RA 2.0 

[29] (Edge Computing Node, Connectivity and Computing Fabric, Service Fabric and Smart Service). In those 

IoT/edge-centric RAs, the scopes of the layers vary to a greater or lesser extent when compared to ASSIST-IoT, 
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and especially in the layer between network/connectivity and application. Although the number and 

functionalities included in the Verticals (and mentioned properties) change, Management and Security are 

common to all of them. Also, despite not being depicted in the conceptual representation of the architecture, 

ASSIST-IoT also considers possible hierarchy levels in the Edge Continuum, as Edge Computing RAs such as 

RAMEC [30] or OpenFog.  

3.4. Enablers  
Section 3.1 presented the concept of “enablers”, which are the cornerstone of ASSIST-IoT architecture. These 

pieces aim at encapsulating (containerised) microservices to achieve a functionality of the system. The 

introduction of the “enablers abstraction” responds to the “realisation of a modular architecture to deliver the 

functions promised by ASSIST-IoT innovations and future capabilities”. In essence, an enabler is a collection 

of software (and possibly hardware) components - running on nodes - that work together to deliver a specific 

functionality of a system. Although an enabler can be abstracted away as a distinct module (and must be 

logically separable from the rest of the system in which it is deployed), enablers may depend on one another to 

deliver what they promise (see Section 7). 

In ASSIST-IoT the functionalities of enablers are divided into Verticals and Planes (see Figure 8), which also 

presents a natural way to categorise enablers. For example, one may talk about a “semantic interoperability 

enabler”, if the enabler delivers functionalities that fall under the “semantics” functional block, and 

Interoperability vertical. 

Although ASSIST-IoT delivers concrete enablers that will be deployed in specific pilot implementations, its 

architecture is defined on multiple levels, each more formal and lower in the abstraction level. Following this 

approach, the complexity of an enabler, as an architectural concept, is not mandated, and depends on the function 

that it delivers. For example, a geofencing AR system that analyses and displays area information on AR 

goggles, may be designed as a single enabler. It may also be built out of several enablers, e.g., one that gathers 

geographical data and delivers it to some persistent storage, and a separate one, that displays any geocoded 

information on AR goggles. The AR solution, whether implemented as one, or many enablers, may be used by 

yet another enabler to deliver information about restricted areas, or persons without proper authorisation.  

Enablers are not atomic but presented as a set of interconnected components. An enabler component is a 

software or hardware artifact that can be viewed as an internal part of an enabler, and that performs some action 

necessary to deliver the functionality of an enabler as a whole. 

An enabler component may be logically assigned to a functional block from a specific plane. For example, any 

data persistence solution (e.g., a database instance) “lives” on the Data Management plane. This property is 

inherited by any enabler that uses such component as their own. In effect, such enabler can also be logically 

placed on the Data Management plane. Because enablers may deliver complex functionalities, they may include 

components from multiple planes, i.e., enablers can be transversal. 

In short, a critical part in describing any enabler is the functionality, that it enables. In order to deliver the 

functionality, an enabler employs components. Multiple enablers may be used in a system to deliver a complex 

application or service, exhibiting features of all components included in those enablers. 

 
Figure 12. ASSIST-IoT enabler diagram 
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High variance in scope and weight of the functions that enablers may deliver, implies, that some enablers are 

optional, and should be deployed when needed, and others are critical delivering the full scope of ASSIST-IoT. 

Following this idea, enablers in ASSIST-IoT may be “obligatory” i.e., required for any ASSIST-IoT to be fully 

compliant with the architecture, while others are “complimentary” and deliver optional functions. Enablers, 

such as the SDN orchestrator form the “skeleton” of the architecture, and must be present in any ASSIST-IoT 

deployment. On the other hand, the geofencing enabler described in previous paragraphs is optional and can be 

added later, if a use-case requires it. 

Another important property of an enabler is its deployability. As seen in Figure 12, an enabler may be described 

as a set of components, and categorised with Verticals, Planes, and functional blocks. In a real, physical system, 

however, the components of an enabler may be physically separated i.e., deployed on different premises 

(hardware components), or different machines/virtual containers (in the case of software components). 

This means, that an enabler must define and control communication between its components. ASSIST-IoT does 

not mandate any particular interface of communication between enabler components in order to allow for 

flexible implementations, depending on the needs for performance and throughput of the communication. The 

communication between enabler components, and enablers, however, should be separated. In fact, one of the 

most important design principles that distinguish components from enablers, is that enablers should not directly 

communicate with components of other enablers, unless explicitly allowed by the enabler, to which they belong. 

Concrete deployments of components should also not be shared between enablers. That means, that even if two 

enablers use the same database software, they should not use the same database instances as their components. 

Under the ASSIST-IoT approach, if a shared database is needed, it should be offered as an enabler. Any 

communication between enablers should take place using the dedicated interfaces that an enabler exposes, 

which are separate from internal inter-component communication. This separation delivers the property of 

encapsulation. By architectural definition, ASSIST-IoT enablers are encapsulated. 

Appendix B - provides the template for describing an enabler. This descriptor has been designed to represent 

functionally (and ultimately technologically) the different elements and properties of an enabler. 

3.5. Methodology  
The ASSIST-IoT architecture design is based on several inputs. On the one hand, the perspectives and objectives 

of the NGIoT must be met. On the other hand, the requirements of early-adopters/stakeholders must be 

considered. At the same time, the different points of view and particularities of the core technological blocks 

call for further analysis and consideration towards shaping the final specification of the ASSIST-IoT blueprint 

architecture. 

First, the purposes of the reference architecture of ASSIST-IoT are mainly guided by the official proposal as 

set out in the Grant Agreement (GA). However, the definitions outlined in the GA are not precise enough to 

completely drive the definition of a NGIoT architecture. Further research has been conducted in the context 

of Task 3.5 in order to elaborate the ASSIST-IoT architectural framework and guiding principles that are 

described in this document. 

Second, as the ASSIST-IoT architecture will be a human-centric and user-friendly architecture that must be 

effective and straightforward at the same time, its definition must rely on enabling the successful deployment 

of real-world pilots. This can only be achieved by mapping the stakeholders’ concerns (i.e., essentially their 

requirements at this point) to the abstract concepts of the reference architecture specification. As Tasks 3.2, 3.3 

and 3.5 are running concurrently and both Deliverables 3.2 and 3.5 are due on Month 6 of the project, an iterative 

approach has been followed in order to translate the evolving user stories, business scenarios and stakeholders’ 

requirements into architectural elements. In order to make all the information elicited from the stakeholders 

available and transparent to the entire ASSIST-IoT consortium during the evolution of use cases and gathering 

of requirements, Miro9 was used as an online whiteboard for visual collaboration. At this moment, stakeholders 

include final users from ASSIST-IoT pilots, software architects and developers, as well as production 

engineers and assessors (overseeing system’s conformance to standards and regulations). 

 
9 https://miro.com/app/ 

https://miro.com/app/
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Third, the technological blocks of ASSIST-IoT (corresponding to Planes or Verticals) will have a mutually 

dependant relationship with the architecture definition, as one will serve to shape the other. The different 

enablers (encapsulating the capacity of the architecture to provide certain functionalities) will be both guided 

by the architecture principles and by the objectives and particularities of each technology. In ASSIST-IoT, the 

work to be conducted in WP4 and WP5 will need to be aligned with the architecture, so certain interaction rules 

must be set. In order to facilitate and formalise the basic communication among them, the architecture principles 

(set out in this document) establish a common template to be followed by WP4 and WP5 activities (enabler 

template) that will serve to improve the architecture if needed. 

 

Figure 13. Inputs needed for formally describing the ASSIST-IoT architecture 

Formally, the definition of ASSIST-IoT architecture must be conducted within the period between Month 3 and 

Month 21 of the project (corresponding to January 2021-July 2022). During that 18-month span, the mentioned 

inputs will be feeding the architecture introducing new functionalities that will need to be timely incorporated.  

Therefore, to align the evolution of the architecture definition with the pace of inputs provision, a careful 

analysis has been done. The approach will be to “freeze” the first version of the architecture description with 

this deliverable (D3.5). The next version will be ready in Month 15; in the meantime, core and transversal 

enablers will have been initially defined and the requirements will be further evolved including elaborate 

considerations on legal aspects and regulatory constraints. By Month 19, all the requirements will have been 

taken into account and the architecture will be ready to be introduced to Open Call participants (see Figure 14). 

 

 

Figure 14. Timing and methodology for evolution of the architecture definition 
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4. Vertical Capabilities  

The Next Generation Internet of Things is a term that has been used to refer to the new wave of functionalities, 

properties, traits and features that forthcoming IoT deployments will need to support. The volume of initiatives 

targeting IoT is ever-growing, with many technologies, ideas and fields playing their role. While the challenge 

of overcoming the current barriers is enormous, ASSIST-IoT is being designed to support the upcoming needs. 

Apart from the capabilities associated with specific “classic domains”, the NGIoT will need to be characterised 

by a series of wide features targeting cross-domain aspects. While the former (horizontal) capabilities aim at 

covering the basic, functional aspects of an IoT deployment (network, communication, devices interaction, 

application, human interfaces, data processing, data storage, services, etc.), the latter (called “Vertical” in the 

ASSIST-IoT world) address all-encompassing concerns, properties and transversal functionalities such as 

Security, Interoperability or Manageability among others. The most prominent characteristic of these Verticals 

is that all of them may apply (individually or jointly) to different horizontal domains (or “Planes”). For instance, 

interoperability can be understood as an “edge/device layer” asset when allowing diverse sensors and gateways 

to co-exist in the same deployment, whereas interoperability at the application layer may mean allowing the 

user to execute services using the same UI and framework although leveraging various underlying platforms 

(e.g., Watson IoT10, OneM2M11, UniversAAL12). 

Since the proposal stage, five Verticals have been identified to be driving ASSIST-IoT in this matter: (i) Self-* 

capabilities, (ii) Interoperability, (iii) Security, Privacy and Trust, (iv) Scalability and (v) Manageability. 

As mentioned, ASSIST-IoT architecture must support the introduction of functionalities framed within these 5 

vertical categories. Following the design principles of ASSIST-IoT architecture, the conceptual abstraction that 

must be internalised is the following: ASSIST-IoT architecture will allow (and put the means) to define enablers 

and describe properties targeting vertical capabilities in an IoT deployment. Additionally, a specific set of 

enablers are defined as inherent, meaning that those will be present in any ASSIST-IoT deployment in order to 

provide a determined suite of ASISST-IoT essential innovations. 

Therefore, the objective in this section is three-fold: 

• To define what each of the verticals means. This entails describing the overall concept, showcasing 

relevant examples and outlining the potential for NGIoT deployments that those capabilities cater. 

• To describe the inherent enablers or the cross-cutting properties that will be needed per each vertical. 

This explanation aims at crystallising the abstraction of each vertical into particular implications when 

devising an ASSIST-IoT deployment. 

• To propose an initial list of potential enablers to be created. This part will consider the different 

expectations during ASSIST-IoT in terms of pilots, tasks’ scope, particular needs, etc. 

4.1. Self-*  
Self-* System is a system that is autonomous or semi-autonomous alongside some dimension. Autonomous in 

this context means that there is no need for constant overview from human operators. In order to realise Self-* 

capabilities, the functionalities with focus on Self-*- system defined in terms of ASSIST-IoT architecture must 

be realised. To do that, the State-of-the-Art analysis has been carried out, altogether with ASSIST-IoT’s Pilots 

(stakeholder concerns – see Section 2.1) and professional experiences. 

In the Figure 10 it can be seen that ASSIST-IoT’s Self-* correlates to “cross-product” of cross-cutting functions 

related to Resilience and Reliability with Intelligence and Availability which might help narrowing down the 

initial scope of Self-* enablers to those closely related to broadly understood DevOps and software reliability. 

After some thought, this conclusion is not that surprising – as one could argue that the basic feature of Self-* 

system is that of ensuring its reliable operation now and in future. 

 
10 https://www.ibm.com/es-es/cloud/watson-iot-platform 
11 https://onem2m.org/developers-corner/tools/open-source-projects 
12 https://www.universaal.info/ 

https://www.ibm.com/es-es/cloud/watson-iot-platform
https://onem2m.org/developers-corner/tools/open-source-projects
https://www.universaal.info/
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One of the most basic and important features of any network is reliability. First step towards that direction is 

for the system to be able to diagnose a fault. This is where self-diagnosis is introduced. Self-diagnosis is a 

capability of a system to detect erring behaviour within itself.  Counterpart to fault detection is fault localisation 

as usually it is not enough to say that a system has faulty components - it might be necessary to pinpoint which 

component (or a set of those) is responsible. 

Building on top of self-diagnosis, the next logical step is to enrich the system's ability to fix faulty elements 

(either a group of faulty elements, fix them partially to restore expected behaviour or as a last resort notify 

human operators). That capability is called self-healing. 

Another capability is called self-awareness. A system is self-aware when it is able to interpret its own state 

based on some internal domain knowledge. This implies that self-awareness is a very high-level term and might 

be realised in various forms (self-healing is one of them). Due to the broad scope of this term many 

classifications of those systems were introduced, pertaining to levels, scope, span and even type of objects, that 

the system works with. 

Self-organisation is the ability of a system to adapt to changing conditions and various problems that the system 

faces in a given moment. It is often realised by monitoring itself and reacting appropriately to signals to maintain 

usefulness. An example would be a swarm of robots coordinating work among each other to execute a complex 

task that would be impossible to realise by a single robot. 

Self-configuration allows the system to autonomously configure and reconfigure itself and its resources when 

faced with changing environments to maintain its functionalities. An example would be a personal fan which 

would decide RPMs based on environmental temperature. 

The previous characteristics (properties of the NGIoT deployment to be achieved by ASSIST-IoT) will redound 

on core enablers that may fall under various planes of the architecture. A thorough description of those will be 

provided in further versions of this deliverable (D3.6 and D3.7). 

Enablers of the Self-* vertical  

All aforementioned Self-* capabilities will be realised via enablers. At the initial stage of architecture definition, 

a final clear-cut list of Enablers targeting this vertical is unfeasible to be closed, but a general direction of where 

our works should be directed towards is given below. Two enablers have been identified as inherent of this 

vertical of the architecture, meaning that they should be present in every non-trivial ASSIST-IoT deployment: 

• Resource Provisioning and Coordination. 

• Automated Device Connection and Configuration. 

Besides, a list of enablers identified so far that will be potentially developed or adapted throughout the execution 

of ASSIST-IoT project to provide the functionalities expected for this vertical are listed in Table 3. This list is 

preliminary and thus it is expected to change with the refinement of requirements and in the process of realising 

the architecture. 

Table 3. Preliminary list of potential enablers targeting Self-* capabilities 

Enabler Name 
Self-* 

Capabilities 
Horizontal 

Plane Crossed 
Description 

Reliability and 

Communication 

Self-diagnosis, 

Self-healing 

Smart Network 

and Control 

Device and 

Edge 

All pilots and most practical problems lean on reliable 

communication between its nodes. Moreover, 

depending on consequences of the faulty behaviour, we 

will need to ensure that particular components work as 

intended (for example cranes providing its localisation 

reliably).  

This enabler could be extended with capability to either 

perform self-healing actions (for example: send a 

request to restart component) or notify human operator 

that human intervention is required. 



Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial 

 

Version 1.0   –   30-APR-2021   -  ASSIST-IoT© - Page 29 of 63 

Resource 

Provisioning and 

Coordination 

Self-Awareness 

Self-organisation 

Data 

Management 

Application and 

Services 

To tackle problems in a changing environment we might 

need to increase or decrease resourcing trying to solve 

them. Well-known example would be scaling up or 

down software component instances depending on the 

pressure put on the system.  

Additional feature might include provisioning resources 

before actual increased demand based on statistical 

predictions. 

(geo) Localisation  Self-awareness Device and 

Edge  

Data 

Management  

To solve challenges of pilots we need to localise 

physical objects (containers in ports, workers on 

construction sites), some devices should be aware of 

their position in relation to each other (aligning cranes 

and tractors). We might need to realise localisation 

using absolute coordinates (GPS) or relative 

(coordinates in a port). 

Another form of this enabler might be a logical 

localisation of data or data lineage. 

Monitoring and 

Notifying 

Self-awareness Device and 

Edge  

Application and 

Services 

This enabler could be viewed as a general purpose by 

representing it as a combination of high-level 

monitoring module (which would allow to monitor 

devices, logs, etc.) and notifying module that could send 

custom messages to predefined system components. 

For example, on construction sites we will monitor 

health signals of workers. Those signals should be 

monitored and in case of breaching some threshold 

notification should be sent and action might be taken. 

Automated Device 

Connection and 

Configuration 

Self-awareness, 

Self-configuration 

Device and 

Edge  

Smart Network 

and Control  

Various devices will be joining networks (cranes, 

tractors, wristbands). After joining this network, the 

process of configuring and assigning work to a device 

should be automated. 

4.2. Interoperability  
Interoperability is the ability of equipment from different manufacturers (or different systems) to communicate 

together on the same infrastructure (same system), or on another while roaming. The implementation of the 

project is about to take place in three different pilots. Considering this, interoperability will play an especially 

important role in the fruitful completion of each of the pilots, regardless the systems used in each separate case. 

Interoperability will be undertaken at three levels: 

• Technical interoperability – means the ability of two or more information and communication 

technology applications, to accept data from each other and perform a given task in an appropriate and 

satisfactory manner without the need for extra operator intervention. 

• Syntactic interoperability – allows two or more systems to communicate and exchange data in case 

that the interface and programming languages are different (e.g. by using of a standardisation of the 

communication between a software client and a server). 

• Semantic interoperability – is the highest level of interoperability which denotes the ability of 

different applications/artefacts/systems/… to understand exchanged data in a similar way, implying a 

precise and unambiguous meaning of the exchanged information. 

On the software perspective, the term interoperability is used to describe the technical capability of different 

programs to exchange data via a common set of exchange formats, to read and write the same file formats, and 

to use the same protocols. 
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Interoperability will be addressed in terms of scalability, security, privacy and heterogeneity of data sources. 

ASSIST-IoT will support data interoperability by proposing a semantic data governance toolset, offering data 

sharing, privacy, security and trust enablers. Another possibility to support the interoperability approaches in 

ASSIST-IoT is the adoption of DLT. Recognizing the promises that DLT brings to the table, associated enablers 

will be investigated for the project, especially on which benefits (vis-á-vis interoperability) may Smart Contracts 

bring. As the technology has passed its novelty phase, hurdles have surfaced during the adoption of DLT in 

projects. Considering the previous fact, certain components within the DLT scope seem appropriate to be 

potentially leveraged (after consideration and only to the most essential areas that will harness the benefits of 

DLT) towards achieving interoperability. In particular, semantic enablers might be supported in ASSIST-IoT 

by judicious use of DLT-based provenance management gand included in pertinent (established on the basis of 

requirements analysis) components of the architecture. Hence, DLT may be used (after study and investigation) 

as a supporting mechanism for enabling semantic interoperability between different IoT networks/platforms.. 

Interoperability will be a property of the ASSIST-IoT architecture that will be more thoroughly addressed in 

the next iteration of this document (D3.6). This feature will be tightly related with the development of the first 

enablers in WP4 and WP5, as well as with the adoption of the design principles outlined in this deliverable. 

4.3. Security, Privacy and Trust  

Security: 

Security applied in NGIoT architectures is highlighted in different building blocks, as already mentioned in 

ASSIST-IoT deliverable D3.1 (State of the Art). More specifically, references architectures such as IoT-A 

Project [31] and OpenFog [26] have great influence over the one proposed by ASSIST-IoT.  

In general, an NGIoT architecture like ASSIST-IoT’s, requires a multilevel and multi-plane approach when it 

comes to security. Not only all the security, privacy and trust requirements should be guaranteed by the 

mechanisms provided by this vertical, but they have to act within the horizontal planes and be part of transversal 

enablers. These specific enables will enforce security, privacy and trust on all the planes of the architecture.  

More specifically, the Security, Privacy and Trust vertical will provide the following functionalities along the 

ASSIST-IoT architecture: 

• Authorised registration of the IoT devices joining the network. 

• Security, privacy, and trust on access and when sharing data for multiple domains. 

• Security and privacy for data storage. 

• Security monitoring and incident response to avoid cyberthreats. 

Access control mechanisms are core security mechanisms for implementing security features that require 

identification with proper authentication and authorisation. The following terms describe different entities and 

actions that take part in access control processes. 

• Access: is an operation that allows an entity to view or modify information resources. 

• Resources: any service, knowledge, or information which is published, shared, or registered. 

• Resource provider: any entity or organisation which provide resources in a connected environment. 

• Client: any user or organisation which request a specific resource provided by a resource provider. 

• Client profile: the identity of a client which provides information about the client and the purpose of 

requesting a specific resource. 

• Permission: a special authorisation rule which govern how a resource is being accessed by the client. 

• Capability: a mechanism that contains resource access permissions which is entitled to each profile. 

• Authentication: is a process by which the credentials provided by an identified entity are compared with 

those memorised/created in the system to ensure that it is effectively who or what it claims to be. 

• Authorisation is a process of granting, or automatically verifying, permission to an entity to access to 

the requested information after the entity has been authenticated. 
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Enablers of the Security part of the vertical: 

In order to fulfil the aforementioned requirements within the ASSIST-IoT architecture, the following inherent 

key enablers have been identified so far: 

• Identity Manager enabler. 

• Authorisation enabler. 

• A collection of monitoring and incident response enablers (see Table 4 below). 

• Distributed Ledger Technology DLT related enablers (see the reasoning in the Trust and Privacy part 

and the list in Table 4). 

 

Figure 15. Security enablers for ASSIST-IoT architecture 

ASSIST-IoT architecture will require a multilevel security monitoring solution that will need to adapt to 

different services and server instances in all the horizontal planes. One of the major difficulties will be the 

different objects to manage, and the capacity of those to generate more pieces of information. Security 

monitoring mechanisms, which basic architecture is shown in Figure 16, will provide security awareness and 

infrastructure monitoring for threat detection and incident response to the architecture deployed. 

 

Figure 16. Structure and mechanisms for security monitoring enablers 

A tentative list of enablers of this vertical targeting security is presented in Table 4. It should be highlighted that 

this is a preliminary list and it is expected to change during the execution of the project. 

Table 4. Preliminary list of potential enablers targeting Security 

Enabler name Description Planes involved 

Candidate 

technological 

components 

Identity 

Manager 

enabler  

Identity manager enabler will be responsible for 

identifying and authenticating to have access to the 

resources by associating user rights with established 

identities. Identity manager enabler will perform 

authentication phase of access control process. Identity 

manager will process and validate the identity for later 

control the access to the resources by the authorisation 

enabler. 

Data Management  

Application and 

Services 

OAuth2, 

Federated 

identity, W3C 

VCs 

Authorisation 

enabler  

Authorisation enabler. Identity manager enabler is 

focused on authentication while access management is 

aimed at authorisation. Both processes compose the 

access control workflow and process. Authorisation 

enabler is based on XACML standard [32] security 

Data Management  

Application and 

Services  

Software 

implementations 

for XACML 

existing 

components to be 
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policies, results on obligations actions to be deployed after 

the evaluation process  

• PAP (Policy Administration Point). Offers the 

interface for the security policy definition. 

• PDP (Policy Decision Point) 

• PIP (Policy Information Point) 

evaluated or 

other modules 

developed ad-

hoc. 

Security agent 

enabler 

Perform functions of an endpoint detection and response 

system, monitoring and collecting activity from end points 

that could indicate a threat 

All horizontal 

planes 

 

Wazuh agent 

(Wazuh) 

Security 

monitoring and 

threat detection 

enabler 

Security monitoring enabler for threat detection and 

incident response. Provides security awareness and 

visibility and infrastructure monitoring. 

All horizontal 

planes 

 

Wazuh (Wazuh) 

Collector 

enabler 

Collector enabler will perform data shipper function and 

will enable transference and collection of logs and 

metrics.  Software component based on lightweight agents 

and send data from machines 

All horizontal 

planes 

 

Beats (Elastic) 

Storage and 

search analytics 

enabler 

Search engine and distributed storage for data collected 

form the infrastructure under study 

All horizontal 

planes 

 

Elasticsearch 

(Elastic) 

Log 

management 

enabler 

Log collection and log aggregation enabler to further 

analysis and process 

All horizontal 

planes 

 

Logstash 

(Elastic) 

Visualisation 

enabler 

Analytics and visualisation platform All horizontal 

planes 

Kibana (Elastic) 

 

Privacy and trust. 

In ASSIST-IoT, privacy and trust per design will be addressed by the introduction of DLT-related enablers. 

DLT is a novel technology that has numerous uses. DLT is known for the opportunity to decentralise procedures, 

resilience to changes, anonymity, and immutability to data. The implementation of carefully selected DLT 

mechanisms within ASSIST-IoT will be tackled from various viewpoints, both purely technological (for the 

architecture) and dependent on the use cases.  

However, privacy and trust are somehow inter-twinned. After an initial research in the literature, a basic 

structure figure has been envisioned to harmonise the adoption of traditional security elements (see previous 

Security part) with a DLT infrastructure. 

 

Figure 17. Harmonisation of DLT and Security enablers in ASSIST-IoT 
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This initial concept is showcased in Figure 17, where the PAP policy (security-wise) can be central, controlled 

by an admin team and replicated in the DLT - probably using Smart Contracts. The DLT can be used to provide 

resistance to unauthorised changes to policies.  

The possibility of adopting DLT both as a dedicated enabler and as a component of other enablers to handle 

devices and software inside an enabler will be explored. Regardless of the approach chosen, judiciously applied 

DLT techniques will enhance the security in sharing data, enforce access control mechanisms, enhance data 

integrity verification, allow auditing, and support federated learning (to be conceptualised) with its 

decentralisation. 

To sum up, the DLT adoption is envisioned to offer the opportunity for protecting the data along with their 

transmission by contributing to access control, data integrity verification, and auditing. 

Enablers of Privacy and Trust part of the vertical: 

About secured data sharing in ASSIST-IoT, blockchain and/or DLT-related enablers (e.g., Directed Acyclic 

Graph -DAG- and/or Blockchain – to be investigated) will be used to guarantee data sharing among 

heterogeneous devices. A set of enablers within ASSIST-IoT architecture that could be acting as data producers 

and consumers will be identified and authenticated using DLT-based mechanisms (e.g., using certificates tied 

with Hyperledger Fabric Certificate Authorities) or Verifiable Credentials (VCs) generated in accordance with 

W3C specific standards), (see also Identity Manager in the security part of the Section). These mechanisms 

might be inter-twinned with the distributed broker identified in the Data Management plane of the ASSIST-IoT 

architecture.  

DLT in ASSIST-IoT will allow IoT devices at the Devices and Edge plane to establish secure communication 

channels and exchange verifiable credentials that act as means of their certification by a root of trust (see also 

Identity Manager in the security part of the Section). At Data Management plane level, data providers and 

consumers (potential DLT component to be studied) might have appropriate applications to authenticate 

themselves using certificates or attribute-provisioning services allowing a control of with whom their data will 

be shared.  

Access control mechanisms in an NGIoT deployment system must be conceived from two perspectives. On 

the one hand, the security viewpoint was addressed in the previous part of the section. On the other hand, privacy 

and trust also play a role in their definition. Data access mechanisms based on Smart Contracts deployed on a 

Peer-to-Peer permissioned network (e.g., Hyperledger Fabric) may further enhance the secure data sharing by 

controlling the access to (refined) sets of data. Moreover, the usage of Smart Contracts can enable translation 

of conventional agreements into automated transactions, providing transparency, assurance and provenance, 

and as such a better and more trusted collaboration among the entities that exchange data. 

Another relevant aspect in the Privacy and Trust vertical of ASSIST-IoT will be the data integrity verification. 

DLT-based technologies enable immutability of data kept on the ledger. Proper data integrity verification 

mechanisms employed in ASSIST-IoT architecture will allow data consumers to verify the integrity of the 

exchanged data. 

Furthermore, the specific property of the immutability of the data kept on the ledger can be leveraged for logging 

and auditing selected data sharing transactions in an immutable way allowing for transparency, auditing, 

non-repudiation and accountability of actions during the data exchange related actions from the part of the 

involved stakeholders, i.e., for the enablers of the ASSIST-IoT architecture that are involved in data exchanges. 

Besides, an intriguing aspect that this vertical (in the Privacy and Trust part) could cover is securing 

decentralised intelligence. Decentralisation and federation (Federated Learning – FL) are interesting key novel 

concepts in the ASSIST-IoT technological proposition, therefore the architecture should research most 

appropriate ways and include enough provisions to allow the “conceptualization and testing” of DLT-powered 

Federated Learning in the project. 

With regards to ASSIST-IoT, the DLT-based FL techniques will be implemented within the architecture for 

representative scenarios. This approach could enhance the privacy of data exchanged among the edge nodes 

when they execute AI functions to extract knowledge from contextual and streaming data within the ASSIST-

IoT architecture. More specifically, ASSIST-IoT architecture will foster the use of DLT-related components to 
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exchange the local, on-device models (or model gradients) in a decentralised way avoiding single point of 

failures acting as a component to manage AI contextual information in an immutable form, and avoiding as well 

alteration to the data. 

In general, it should be noted that usage of DLT imposes scalability and performance overheads which may 

cause hurdles in the use case related requirements for (near) real-time provision of results. 

Table 5. Preliminary list of potential enablers targeting Privacy and Trust 

Enabler name* Description Planes involved Preliminary candidates 

Logging and 

Auditing enabler 

Allow the documentation of 

data usage and data usage 

billing, when applicable 

Data Management  IDS (Blockchain-based) Clearing House, 

Hyperledger Fabric Chaincode (Smart 

Contracts), cryptographic techniques. 

Data integrity 

Verification 

enabler 

Provide mechanism for Data 

Integrity Verification 

Data Management  Hyperledger Fabric Chaincode, 

cryptographic techniques. 

Distributed 

Broker service 

enabler 

Support immutability and 

non-repudiation of selected 

aspects of connections 

between enablers 

All horizontal 

planes 

 

IDS Clearing House, Hyperledger Fabric 

Chaincode, cryptographic techniques. 

DLT-based 

Federated 

Learning enabler 

Facilitates exchanges of 

parameters of on-device local 

data models in an immutable 

and decentralised way 

Device and Edge  Hyperledger Fabric clients - light nodes, 

openDSU), DAG (IoTa), cryptographic 

techniques. 

*Please, note that this table is quite preliminary. DLT-based enablers are prone (more than others in ASSIST-IoT 

architecture) to be changed/re-focused due to their dependency on forthcoming design principles. Extensive discussions 

are on-going between task leaders, architecture designers and also stakeholder representatives to fine-tune the approach of 

these (and further) enablers. 

4.4. Scalability  
Scalability vertical in ASSIST-IoT is a property of the system that is present due to (i) the design principles 

followed, (ii) the container orchestration technologies leveraged, and (iii) the functionalities covered by the 

Planes and other verticals of the architecture. This means that no specific enablers are provided to guarantee 

this property, but rather comes implicitly from all the former.  

The Scalability vertical addresses the dynamic technical and business needs behind NGIoT deployments in 

general, and ASSIST-IoT in particular. Because of the variability of edge/fog continuum scenarios for the 

NGIoT, the ASSIST-IoT architecture envisions to enable elastic scaling deployments ranging from modest 

barely local operations up to large heterogeneous deployments based on demand features and functionalities. 

This scalability is essential for in order to adapt to different workloads, performance, costs, and other business 

needs. From ASSIST-IoT, and following OpenFog RA [26], Scalability will involve three main dimensions: 

software, hardware and communication capabilities. 

Scalable hardware  

It involves the ability to add and modify the configuration of the internal elements (either sensors, actuators, or 

edge/fog nodes) of an NGIoT deployment, as well as the numbers of and relationships between them, including:  

• Computation scalability: from single core CPUs on PLCs to specialised GPUs with thousands of cores 

required for AI model training.  

• Network interfaces scalability: from a single wireless (or wired) interface to large arrays of wireless (or 

wired) interfaces with aggregate capacities of many Gbps.  

• Storage scalability: from simple flash memory chips to large arrays of cluster disks. 

This particular scalability dimension will be provided mostly by the capabilities of ASSIST-IoT Nodes and 

Smart IoT Devices, which final extent will be determined during their specification and design stage. The 
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provisioning of new sensors, actuators, interfaces, etc. will be acknowledged by the system, requiring the 

participation of functionalities from the Application and the Network planes. 

Scalable software  

It will be of paramount importance, as it will not only include applications, but also the infrastructure to run 

them, as well as optimal management of those resources.  

• The management infrastructure of ASSIST-IoT must scale to enable the efficient deployment and 

ongoing operation of tens/hundreds of computing/processing nodes in support of thousands of smart 

and connected things. To do so, a scalable orchestration will manage the partitioning, balance, and 

allocation of resources across the ASSIST-IoT network. As business data analytics algorithms will 

handle data of several orders of magnitude, it will also have a particularly aggressive scalability target. 

To do so, composability and modularity are key aspects of software scalability, where individual 

hardware and software components are assembled into a NGIoT node optimised to run the specific 

applications required (e.g., microservices running over basic containers). 

To cope with this scalability dimension, Kubernetes and related technologies for container orchestration 

at the edge will be leveraged to schedule and monitor containers in ASSIST-IoT, as explained in Section 3.1. 

They try to provide these functionalities so developers can focus only on running in the most reliable and safe 

manner their NGIoT applications. However, although Kubernetes is great at offering a common layer of 

abstraction across different environments, many companies are looking at it mostly for its extensibility, 

portability and scalability. Three k8s architectural patterns will be considered, which application will depend 

on the constrains and available hardware in a particular ASSIST-IoT scenario: 

1. Kubernetes Clusters at the edge: instead of deploying a high availability cluster, a minimal version of 

k8s in a single-server machine shall be used. Then, platforms to manage and orchestrate container 

workloads on multiple clusters may be used. 

2. Kubernetes Nodes at the edge: For those cases where the type of infrastructure is limited at the edge, 

so that it is not possible to consider the installation of a cluster, a minimal version of k8s node at the 

edge can be deployed, while the main k8s cluster can be placed at a cloud provider or in a colocation 

data center. Networking may become even more important, so that the k8s control plane can reside in 

the cloud and k8s nodes, or even in devices at the edge, with an agent to interact with the k8s API. 

3. Kubernetes Devices at the edge: The open-source Akri project allows registering native k8s resources 

leaf devices such as IP cameras and USB devices at the edge. It is a similar pattern as the previous one 

(a k8s node at the edge is still needed), but it does not need to install Kubernetes on a device. 

The use of container orchestration systems is not the only way that addresses software scalability in ASSIST-

IoT. Both microservices architecture and containerisation design principles contribute to it, bringing the 

benefits specified in Section 3.1 in comparison to the use of Virtual Machines or the adoption of SOA or 

monolithic architectures.  

Scalable communication capabilities 

It involves the ability to modify the configuration of the network elements, including among others: 

• Nodes scalability: that allows changes in size as more applications, or objects are added or removed 

from the network (see Section 6). To do so, it is envisioned that the scalability can range from adding 

capacity to individual nodes by adding hardware like equipment, or by adding software and/or pay-as-

you-grow licensing (e.g., X-as-a-service – XaaS). 

• Performance scalability: that enables growth of capabilities in response to application performance 

demands (e.g., reducing round-trip-time latencies between sensors and actuator). 

• Reliability scalability: that permits the inclusion of optional redundant capabilities to manage faults or 

overloads, as well as to ensure an integrity and reliability at scale.  

• Security scalability: achieved through the addition of security modules (HW and/or SW) to a basic node 

based on the stringent security needs (scalable rights access, crypto processing capabilities, or 

autonomous security features). See Section 4.3 for more details.  
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As aforementioned, Scalability is a property of ASSIST-IoT that is addressed by the inherent characteristics of 

enablers from other planes and the design principles adopted. For instance, scalability related to both 

communication reliability and performance are guaranteed by the joint effort of (i) specific Self-* enablers to 

be developed/adapted, (ii) the utilisation of SDN paradigm, and (iii) specific data enablers such as the Edge data 

broker (to be presented in Section 5.3). 

4.5. Manageability 
ASSIST-IoT will consider the introduction of certain components that involve autonomous decision making 

(see previous verticals). These components may rely on complex observations (human-centric, image) that 

require advance management characteristics. Additionally, drawing from the decentralisation approach of 

ASSIST-IoT, special manageability traits must be researched so that the control of this autonomy and 

reconfiguration can be done in a distributed way. Besides, the different outcomes of the enablers may feed other 

enablers’ parameters located at diverse locations. All the previous drives the need of introducing manageability 

features beyond the classic centralised approach (controlling the deployment from a single, cloud data centre). 

The purpose of the Manageability vertical in ASSIST-IoT goes beyond the classic management lifecycle of the 

nodes in an IoT deployment. Manageability in ASSIST-IoT refers to managing nodes and every configuration 

option over any enabler running in a particular deployment of the architecture.  

Manageability enablers will be developed in ASSIST-IoT architecture to cover the following functionalities: 

• Allowing cross-cutting coordination and orchestration between enablers. This may be introduced by 

enablers whose components help reduce complexity and improve configuration capabilities. 

• Enhancing the management of enablers’ outputs (e.g. AI methods results) towards self-autonomy and 

self-awareness. This will mean providing for (semi-)autonomous actions undertaken by the ecosystem 

always with the intervention of the human in the process (via these Manageability enablers).  

• Creating end-to-end workflows involving all pertinent sub-systems. This will mean the creation of 

enablers (aligned with other verticals such as Security, Interoperability and Scalability) for re-deploying 

the architecture depending on enablers’ outcomes throughout the Edge-cloud Continuum approach. 

This will also mean the potential creation of flow orchestrator enablers coordinating the exchange of 

information, messages and alerts between enablers (aligned with DLT instructions) and services (see 

Section 7). Workflow orchestration will be strongly related to decentralisation mechanisms, as those 

must consider management across multiple nodes (located at various tiers – Section 7) and devices. 

• Supporting dynamic ecosystem re-configurability (possibly without the need for a restart, or only local 

restart) available to users, but also supporting Self-* enablers. Re-configuration (in the ASSIST-IoT 

context) will take place based on the needs of the different deployed enablers and the global system 

performance (enablers, nodes, network, etc.). 

The creation of enablers targeting this vertical will be mainly measured (in terms of benefit for a NGIoT 

deployment) in uptime. The fact of introducing Manageability vertical (responding to the previous aims) will 

optimise the uptime of the different enablers (other planes and verticals) running in the ASSIST-IoT 

deployment. This is directly related to the capacity of re-configuration and adaptability of the system. 

As an architectural decision, the first design mandate with regards to Manageability will be to force all enablers 

to include (in their interfaces) a baseline set of methods/attributes to ensure manageability. This will mean 

including a specific series of API functions that all enablers will need to comply with. 

Finally, any Manageability enabler to be deployed in an ASSIST-IoT instance must consider the plurality of 

devices for interaction. This will mean not restricting the management from a central entity and a console, but 

taking into account different access methods (UI, APIs) from different devices (smartphone) connecting to 

different nodes of the architecture. 

Enablers of the Manageability vertical  

The inherent enabler for Manageability in ASSIST-IoT will be the orchestrator of enablers deployment. 

While this enabler will be a matter of study within the DevSecOps procedure, it is clearly targeting 

manageability features in the architecture, therefore will become the crucial element of this vertical. 
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DevSecOps will be aimed at designing the end-to-end flow of deployment in ASSIST-IoT, considering security, 

agile integration and methodological concerns. However, the orchestration enabler (of study here) consists of 

the software mechanism through which one user of the system will actually be able to analyse the Deployment 

View and order the creation/edition/removal of enablers (where, how, when, with which resources, etc.). 

Additionally, this inherent enabler of the architecture may automatically re-configure the enablers deployed 

based on a series of rules, events, KPIs, user-settings, etc.  

This enabler will be formed of various “enabler components”, which could be a combination of different 

technologies or be instantiated by a single building piece. This decision will mostly depend on the will of the 

system owner of each ASSIS-IoT deployment. Initially, the schema of this enabler might be as follows (to be 

fine-tuned): 

 

Figure 18. Inherent enabler of Manageability vertical 

Particularisation of this enabler, as well as selecting preferred technologies (one per component) will be a matter 

of study for the next version of this deliverable (D3.6). The enabler template will also be completed by then. 

Besides, a list of enablers identified so far that will be potentially developed or adapted throughout the execution 

of ASSIST-IoT project to provide the functionalities expected for this vertical are listed in Table 6. This list is 

preliminary and thus it is expected to change with the refinement of requirements and in the process of realising 

the architecture. 

Table 6. Preliminary list of potential enablers targeting Manageability vertical 

Enabler name Description Planes involved 

Candidate 

technological 

components 

Orchestration of 

enablers deployment 

User of the system able to create, edit and 

remove enablers. 

Smart Network 

Devices and Edge 

ISTIO, GKE, MANO, 

Others from T4.2. 

Enablers’ outputs 

management 

Management of the results of the different 

enablers. UI or tool for allowing the user 

forward/customise the use of those results. 

Data Management 

Application and 

Services  

- 

Workflow between 

enablers based on 

events, messaging 

exchange, or others 

UI-based tool for representing nodes, 

enablers and enabler components, allowing 

their interconnection (graph-like), 

following architecture principles. 

Devices and Edge 

Data Management 

Application and 

Services 

Argo, Apache Airflow, 

Plynx, Brigade, Dagster, 

Node-red, Custom enabler 

components over those. 

Devices management Enabler for monitoring devices and nodes 

in a deployment, allowing to monitor status 

and current work (in terms of enabler 

components). 

Devices and Edge 

 

Upswift, openBalena, 

Particle, DataV, 

QuickLink Others from 

T4.1 analysis. 



Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial 

 

Version 1.0   –   30-APR-2021   -  ASSIST-IoT© - Page 38 of 63 

5. Functional View  

As aforementioned, the Functional View, also sometimes referred to as Logical View, has the primary objective 

of showing the functionality required to fulfil the user needs and address the stakeholders’ concerns. It describes 

the main system’s functional elements, their responsibilities, interfaces, and primary interactions [3]. Apart from 

the main functional elements that have to be present within an ASSIST-IoT architecture, the project targets the 

design, development (or adaptation) and implementation of a set of “core” enablers to enhance the 

functionalities of the elements of the different planes of the architecture. Hence, the objective is three-fold: 

• To define the main functionalities that each plane has to provide in an ASSIST-IoT system, jointly with 

a functional diagram showing the main interactions between the different identified elements 

composing the plane.  

• To describe the inherent enablers that will be developed or adapted in each plane, aiming at enhancing 

the basic functionalities provided by the elements of the plane.  

• To propose an initial list of potential enablers to be created. This part will consider the different 

expectations during ASSIST-IoT in terms of pilots, tasks’ scope, particular needs, etc. 

In the following subsections, a functional decomposition is presented for each of the horizontal Planes of the 

conceptual architecture. It should be reminded that this is a first version of the architecture and it will be refined 

in two following iterations, so some interfaces may not be present in this document or may suffer changes during 

the execution of the project. 

5.1. Device and Edge Plane 
The Device and Edge plane is the logical abstraction of ASSIST-IoT for the functionalities that will interface 

with sensors and actuators along with network functions. The innovations to be carried out in the architecture 

of ASSIST-IoT associated with this plane will fall under four different functional blocks (see Section 3.2.1): (i) 

Analytics capabilities, (ii) AI capabilities (federated learning), (iii) enhancement of IoT devices smartness and 

(iv) communication capabilities.  

The functionalities of the Device and Edge plane are executed by nodes. Nodes provide the hardware bedrock 

for the NGIoT architecture and contain hardware and firmware (hardware-specific software) to support the 

containerisation of enablers. 

Nodes (see also Section 6). 

In general, a node contains the hardware bedrock on top of which ASSIST-IoT enablers run. To support 

containerisation, as described in section 3.1, the general architecture of a node consists of hardware, a hardware 

abstraction layer, an Operating system and a Container runtime (e.g. Docker) on top of which containerised 

enablers can be operated (see Figure 19). 

In ASSIST-IoT, a node can be connected to sensors and actuators (what is called a Far-Edge Node). Sensors 

might be very basic, like temperature and humidity sensors or might be very complex like LIDAR and cameras, 

which generate huge amounts of data. Actuators span from traffic lights, fans, etc. to high data consuming 

displays. The captured sensor data can be made available to the network (through the aforementioned nodes) by 

means of the communication capabilities and the physical network interface or can be stored in memory. In-

memory stored data is also used by the Analytics and AI capabilities. Memory can also be used to prevent data 

loss in case the network connection is lost (e.g., when a wireless communication interface is used). Sensors and 

Actuators can be interfaced to an Edge Node or could even be part of it (e.g. embedded sensors), extending the 

possibilities of the Edge Node. In addition, each node may manage one or several Smart IoT device interfaces. 

A smart IoT device has the same architecture as an Edge Node. A Smart IoT device can either be connected to 

an Edge Node or be connected to a network directly through the Physical network interface. The physical 

network interface can be a wired (e.g. Ethernet) or wireless (e.g. WiFi, Bluetooth, Lora, etc) interface. 
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Figure 19. General node functions 

An example of an IoT device smartness enabler can be the annotation of images for AR purposes. In this case, 

only annotated data needs to be communicated to the node instead of sending huge amounts of image data to 

the cloud to be annotated and sent back to the node. Analytics capabilities can analyse/filter/process data. The 

results can be communicated to the network, stored, can be used to control an actuator or can be used as input 

for the AI capabilities enabler e.g. for federated learning. 

Depending on the node application the node can be battery-powered. This means that the balance between 

energy consumption and compute power needs to be taken care of depending on the required autonomous 

operating time. Another potential enabler in this regard could be using AI for ensuring energy balance in Edge 

Nodes. 

Functional blocks 

Table 7 relates the four functional blocks that have been identified for this plane. The key concept here is that 

in an ASSIST-IoT deployment, enablers will be developed falling under one of the following building blocks, 

that serve as an abstraction of the functionalities/innovations of the NGIoT that can be included in this plane. 

Table 7. Functional blocks of the Device and Edge plane 

Building block Description Potential enablers 

Analytic 

capabilities 

Analyse data to make decisions based on 

captured data, vision, audio, text, etc. 

Custom-based Python enabler, FPGA and VHDL for 

latency optimisation. 

AI capabilities 

(Federated 

Learning) 

Framework to implement AI based 

models and federated learning. 

AI capable micro controller or processor from ST, 

NXP, Microchip, Renesas, etc. to implement compute 

power. Custom Python component(s) to implement 

algorithms. Akka for distributed systems. 

Enhancement of 

IoT devices 

smartness 

Application specific intelligence, data 

processing to enhance data that can be 

used by e.g. the AI capabilities. 

Image annotation, AR/VR engine, signal processing 

algorithms. 

Communication 

capabilities 

Interface with the network and/or Smart 

IoT device.  

Extension in the node for using the following 

protocols: Ethernet, WiFi, Bluetooth, ZigBee, 5G, 

RS232, RS485, DHCP, TCP/IP. 

At this point, no inherent enablers have been defined. Instead, during the first moths of the project, this plane is 

focusing on the design of Technological Components to carry such enablers. These the two Technology 

Components in the plane are: (i) a Gateway/Edge Node and (ii) a Smart IoT Device Node. It is the objective of 

the project to, apart from devising a set of innovative enablers in this plane, to create two novel nodes that will 

be, per design, compliant with ASSIST-IoT architecture: 
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• Novel Edge ASSIST-IoT Node. 

• Novel Smart IoT Device Node. 

These nodes will be prepared to connect with other nodes compliant with ASSIST-IoT and to directly execute 

enablers being scheduled and orchestrated by ASSIST-IoT structure. 

5.2. Smart network and Control Plane  
The Smart Network and Control plane is in charge of key aspects of the ASSIST-IoT architecture. On the one 

hand, it is responsible for the connectivity among network elements, aiming at ensuring low latency and 

resiliency. On the other hand, this plane covers as well the orchestration of virtualised functions, not only for 

network-related functions (e.g., VNFs for delivering services such as load balancing, firewall, packet inspection, 

etc.) but also for Next-Generation functions such as data governance, interoperability, privacy, security, and 

intelligence, among other functionalities. 

This plane has been designed following the SDN/NFV paradigm, considering auto-configuration capabilities to 

provide continuous support for real-time applications. To this end, the plane is composed of four functional 

blocks, namely (i) smart orchestrator, (ii) SDN controller, (iii) VNFs and (iv) self-contained network. The 

functionalities offered by each one of the functional blocks are explained hereinafter, which general components 

are presented in Figure 20. 

 

Figure 20. Functional View of the Smart Network and Control plane 

Smart Orchestrator 

The orchestrator is the central component of a system based on NFVs, being responsible of both resource and 

network service orchestration. It ensures that network services have their needed computational, memory, 

network and storage resources, and manages the lifecycle of the NSs deployed over the virtualised infrastructure 

(NFVI). ETSI has developed a standard for NFV Management and Orchestration, known as ETSI NFV MANO, 

being the most leveraged architectural framework for NFV orchestration. The NFV MANO (hereinafter referred 

to as just MANO) is composed of three main components: the NFV Orchestrator (NFVO), the VNF Manager 

(VNFM) and the Virtualised Infrastructure Manager (VIM).  

The NFVO is responsible for different functions, including (i) the onboarding of NSs and VNF packages, (ii) 

the management of NS lifecycles (from instantiation and scaling to performance measurements and termination) 

and (iii) global resource management, validation and authorisation of NFVI resource requests. The VNFM is in 

charge of the lifecycle of VNF instances (instantiation, in/out-scaling, updating and/or upgrading, and 

termination), and lastly the VIM controls and manages the NFVI resources, while collecting performance 

measurements and events. Additional functionalities of these components can be found in [33], although new 

ones are being presented in newer releases of the NFV reference framework. 

MANO solutions are usually composed of the NFVO and VNFM entities, thus controlling both VNFs and NSs 

onboarding and lifecycles, whereas VIMs technologies are installed independently. There are a plethora of 

solutions, including OSM, ONAP, Open Baton, OPNFV, Cloudify, Tacker, Open-O, etc. ASSIST-IoT will 

address this functional block not only by implementing it, but the project will develop specific enablers based 

on two principles. The principles are the smart auto-configuration capabilities, which aims at ensuring QoS 

demanded by end-user services, and agnosticism of the underlying orchestration solution.  
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ASSIST-IoT orchestrator will be initially based in MANO specifications, although keeping a close look towards 

current trends in case the NFV orchestration paradigm is shifted towards k8s-centric [23]. At the moment, 

following the general tendency towards containerisation, k8s and related technologies for low-resource devices 

(e.g., k3s) will be the primary selection for the instantiation of VNFs rather than their deployment on top of 

Virtual Machines (VMs), this is, leveraging Kubernetes technology as a VIM integrated in MANO.  

SDN Controller 

This network component is in charge of connecting different nodes of the infrastructure through dedicated 

switches, or routers, with SDN capabilities. Since SDN-related equipment has the control plane decoupled from 

the data plane, its functionalities (e.g., traffic prioritisation, output ports, etc.) are taken over by the Controller, 

which can configure them through dedicated interfaces after making decisions based on information gathered 

from the network. A general architecture of SDN controllers is presented in Figure 21. In summary, controllers 

are composed of a core, which contains the main functions related to network configuration and monitoring, 

and a set of interfaces, which are needed (i) to allow applications to interact will the controller and the data 

plane of devices (northbound interfaces), (ii) to configure and monitor physical and virtual network devices 

(southbound interface, typically with OpenFlow controller), and (iii) for communicating with other controllers 

or with legacy equipment (east/west bound interfaces). It should be highlighted that the exposed interfaces vary 

among the different controllers available, and that although most of them have the same basic functionalities, 

different network operations are integrated in them. 

Controllers can be applied in different parts of the NFV architecture shown in Figure 21. According to [34], the 

controllers can be positioned in: 

• The VIM, merged with it, 

• a virtualised VNF, 

• as a part of the NFVI (without being a VNF), 

• as part of the OSS/BSS, 

• the physical plane, realised as a PNF. 

 

Figure 21. General overview of SDN Controller [35] 

Regardless of the position as well as the number of Controllers within an ASSIST-IoT supported deployment, 

they must ensure connectivity not only among the VNFs deployed on a particular NFVI Point of Presence (PoP, 

for instance, an edge server with virtualisation capabilities), but also among different NFVI PoPs that may be 

available in the same site (i.e., among those nodes with virtualisation capabilities). An ASSIST-IoT SDN 

Controller must provide at least services (a) for routing data based on usual routing protocols, (b) for topology 

discovery and management, (c) for tracking of the elements, and (d) for capturing packets metrics to have 

information of the traffic of the network, having all this information stored within (e) a storage manager. 
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Regarding its interfaces, they must at least provide OpenFlow 1.3 as one of the southbound interfaces, and 

a REST northbound interface accessible through a command line interface (CLI) for facilitating the access of 

SDN applications. 

In ASSIST-IoT, apart from selecting and deploying an SDN Controller (or many), it will be supported by 

enablers to improve the performance of SDN-based networks, leveraging telemetry and historic 

information and/or network-specific AI models, in terms of routing, filtering, access, etc., targeting NGIoT 

deployments. Hence, a set of enablers will be developed to align ASSIST-IoT with the concepts of intent-based 

networking (IBN13). Besides, it should support decentralised topologies and high availability, so in case of 

failure of a Controller, its managed nodes can be controlled by another. The latter can be achieved in different 

ways, for instance, by either using a slave Controller instantiated in a different node which monitors the master 

Controller and take over only in case of failure, or by having a clustering of Controllers within the same node 

[36]. As with the MANO component, the necessity of an abstraction layer will be explored aiming at decoupling 

the actual selection of the SDN Controller from the provided technology. 

It should be highlighted that despite the fact that SD-WAN solutions also make use of a dedicated SDN 

Controller, they fall within the responsibility of the self-contained network functional block and hence it is 

outside of the scope of this building block.    

VNFs 

VNFs are the cornerstone of any NFV deployment, since the former are the logical result of the latter. VNFs 

execute particular network functionalities usually over generic virtualised hardware, functionalities that outside 

this paradigm have to be performed by dedicated hardware. Although they were originally envisaged to be 

instantiated on top of Virtual Machines, current trend is moving towards the use of containers. Thus, it is not 

unusual to refer to the later as Cloud-Native Network Functions (CNFs) or Kubernetes-based VNFs (KNFs). In 

any case, a Network Service can be composed of a combination of one or different types of virtualised functions, 

and even also Physical Network Functions (PNFs), which refer to classical dedicated hardware that performs a 

specific network function. In ASSIST-IoT, with the exception of PNFs, the rest of virtualised functions will be 

referred as VNFs. 

VNFs aims at providing various network functionalities such as load balancing, firewalling, WAN acceleration, 

packet inspection, etc. In any case, software solutions from non-network scopes can be virtualised, so VNFs for 

providing other functionalities such as data governance, scalability, security, intelligence, etc. will be integrated 

so they can be managed as well by the Smart Orchestrator of ASSIST-IoT. In any case, the latter functionalities 

will be provided by the different software enablers envisioned in ASSIST-IoT, and hence this section will be 

focused only in VNFs that provide network-related functionalities.  

In principle, any kind of network functionality falls under the scope of this building block, however, only a set 

of them will be implemented within the project, according primarily to their relevance in the considered pilots. 

These VNFs include: (i) WAN acceleration, which aims at optimising data transfer efficiency in Wide Area 

Networks; (ii) v5GC, to have a virtualised Core for private and custom 5G access networks; (iii), traffic 

classification, to categorise the network traffic into a number of application classes; (iv) virtual switching, to 

have the possibility of having not only physical but also virtual switches in the network; (v) load balancing, to 

distribute workloads according to the resources of the physical nodes of the Device and Edge plane and (vi) link 

aggregation functions, to combine different access networks for transmitting and receiving data. If additional 

functions are needed either for the particularities of the use cases or required for implementing the listed ones, 

they will be developed and indicated in the next version of the architecture (i.e., D3.6). 

Self-contained network 

This building block response to the necessity in some potential deployments of provisioning a private network 

that works over a public one, ensuring anonymisation and security of communication. Different technologies 

can be leveraged to realise this kind of private Wide Area Networks (WAN), which selection depends on the 

actual requirements of the deployment: Virtual Private Networks (VPNs) and Software-Defined WAN (SD-

WAN).  

 
13 https://www.cisco.com/c/en/us/solutions/intent-based-networking.html 

https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
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On the one hand, VPNs are secured networks that transmit data in an encrypted form between two network 

elements, usually to facilitate the connection of a device to a network different to the one it belongs to (remote 

access), although it can also be used to connect two networks (site-to site VPN). They can be implemented by 

means of technologies such as IPSec or SSL. On the other hand, SD-WAN is proposed to apply software-defined 

techniques in networking connections over wide geographic areas [37]. It simplifies the connections between 

different physical sites, while providing centralised monitoring and control with flexibility and low cost. The 

main advantages of this network are that (i) similarly to SDN, if allows defining network policies and manage 

traffic from a centralised location without having to configure each device, thus simplifying network 

management tasks, (ii) it considers application-level requirements to guarantee QoE for particular users, 

locations or applications [37] and, in addition, (iii) it can manage different underlying networks (e.g., MPLS, 

LTE, Internet, satellite…) as well as aggregating all the link bandwidth to increase the total throughput. 

ASSIST-IoT will comprise both types of technologies: VPN and SD-WAN. The VPN connections are to grant 

access of external nodes to an ASSIST-IoT deployment, while SD-WAN technology will allow connectivity 

between different sites and enabling the orchestration of NSs with VNFs located in different PoP of the NFVI. 

To realise the latter, ETSI MANO specifies an additional component named WAN Infrastructure Manager 

(WIM). It can interact with the NFVO to control its dedicated SDN Controller, which will prepare the NFVI 

PoP network gateways of the different sites to allow their connectivity. The WIM component will be part of 

ASSIST-IoT, interacting with the rest of components of the plane as can be seen in Figure 22 below. Initially it 

is plan to leverage Internet for the realisation of SD-WAN within ASSIST-IoT, however, it should be extended 

to support other underlying networks such as the aforementioned. 

 

Figure 22. Interaction between ASSIST-IoT components  

Enablers of the Smart Network and Control Plane  

According to the layered approach in ASSIST-IoT architecture, the main features of this plane will be covered 

with the following inherent key enablers, which will be aided with a set of VNFs for providing specific network 

functionalities: 

• Smart Orchestration enabler. 

• SDN Controller. 

• Auto-configurable network enabler. 

Other enablers have been identified to be developed, however, they are not inherent to any ASSIST-IoT 

deployment since they use depend on the particular network topology of a deployment scenario (for instance, 

enablers related to WAN or VPN only make sense in multi-site environments, or a link aggregator enabler is 

only needed if there are multiple access networks and applications needs it). These other identified enablers are 

listed jointly with the inherent ones in Table 8, aiming at providing the functionalities expected from this plane. 

This list is preliminary and thus it is expected to change with the refinement of requirements and in the process 

of realising the architecture. 
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Table 8. Preliminary list of potential enablers targeting the Smart Network and Control plane 

Enabler name Description 
Candidate technological 

components 

Smart orchestration 

enabler 

This enabler will facilitate the interaction with MANO 

components (NFVO and VIM). It will provide functionalities 

as VNFD and NSD validation while serving also as abstraction 

layer (decoupling actual MANO selection from ASSIST-IoT 

architecture). 

OSM, ONAP, OpenVIM, 

Openstack, custom 

components. 

SDN Controller This enabler will manage the forwarding plane of the physical 

and virtual switches of the ASSIST-IoT architecture, based on 

the business logic applied through its northbound APIs. 

OpenDayLight, ONOS 

Auto-configurable 

network enabler 

Enabler to generate and apply policies for the SDN controller 

to improve and optimise the network performance, based on AI 

mechanism, for support QoS in multi-application traffic 

scenarios. 

Tensorflow, Keras (AI 

platform), AI network 

models. 

Traffic classification 

enabler 

Enabler to classify network traffic into a number of application 

classes (video, VoIP, etc.), based on ML algorithms. 

ETSI ENI specification, 

custom classifier, AI 

platform 

Multi-link enabler This enabler aims at selecting among the available wireless 

access network technologies (cellular, WiFi, fluidmesh, etc.) 

for transmitting data based on the target application.   

Additionally, this enabler will provide reliability mechanisms, 

so in case one access technology stop working it would switch 

to another 

Custom component 

SD-WAN enabler Enabler to provide access between nodes or devices from 

different sites based on SD-WAN technology. It will consist of 

three elements, a dedicated node (SD-WAN edge), an SD-

WAN controller and a configuration server.  

FlexiWAN, Nante-WAN, 

Custom WIM component, 

SDN Controller (does not 

have to be the same as the 

one considered as enabler) 

WAN acceleration 

enabler 

Enabler to increase the efficiency of data transfer in Wide Area 

Network. It will leverage different techniques such as 

compression, latency optimisation and traffic shaping, among 

others. 

Custom component 

VPN enabler Enabler to provide access to a node or device from a different 

site considering VPN technologies in a secure and seamless 

way, outside the scope of the SD-WAN enabler. It will consist 

of a server and a client. 

Wireguard 

5.3. Data Management Plane  
The Data Management plane encompasses any process, in which data is processed to deliver features concerning 

data interoperability, annotation, security, acquisition, provenance, aggregation, fusion, etc. 

The functionalities of this plane very often have a supporting role for other processes or applications. For 

example, data communication channels in a heterogeneous fog environment have additional properties or 

constraints that need to be observed. They pertain to the dynamically changing needs, but also momentary 

capabilities of delivering and consuming data. This dynamic process of data supply and demand introduces new 

challenges, in delivering data, where and when it is needed, taking into account security, network performance, 

processing capabilities of the receivers, and even predicting demand, before it is explicitly reported. This series 

of challenges are addressed by a data broker enabler. 

A separate concern is data interoperability i.e. the capability of the data to be understood by multiple cooperating 

systems. ASSIST-IoT approaches data interoperability with the semantic approach. It addresses the steps needed 

to produce and consume so-called self-describing data, such as semantic annotation, translation and 
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harmonisation. In controlled systems, semantic annotation can, by itself, introduce interoperability by enriching 

data with commonly understood and shared schemas, ASSIST-IoT goes a step further in using a broader 

approach of semantic translation, in which data can be made interoperable, even if annotated with different 

schemas. A number of supporting solutions, such as a repository of ontologies, is also planned. 

The Data Management plane also contemplates leveraging DLT enablers (see 4.3) to enhance data security 

mechanisms. DLT possesses characteristics that could assist the secure storing, transfer, and handling of IoT. 

In more details, DLT can allow the decentralisation of the data management and can secure the data as the 

immutability of data is one of the DLT characteristics. This immutability property will be applied to a set of 

data integrity verification DLT-based mechanisms as well as to a set of DLT-based communication, among 

different architectural layers, auditing mechanisms. Semantic data interoperability between the different layers 

of the assist-IoT architecture may be supported by a DLT-based mechanism. Besides, the decentralisation of 

the data has the potential to support federated learning, for example a distributed ledger can accommodate 

hashes that points to the data that are stored in devices. The immutability of the data in DLT ensures that the 

data have not been tampered with. Moreover, there is the opportunity to manage and control the ownership of 

the data in a DLT environment. In a previous section dedicated to Interoperability, mechanisms leveraging 

selected DLT technologies have been described to showcase the support of those enablers to data 

interoperability in ASSIST-IoT. 

 

Figure 23. ASSIST-IoT Data Management plane draft interconnections diagram 

Additionally, the rules for processing of data on this plane will be prepared as a supporting work for processing 

heterogeneous data of varying degree of confidentiality. Although this action will not result in a technological 

(software or hardware) enabler, it will deliver guidelines and descriptions of pitfalls and rules, that must be 

observed and attended to, when handling sensitive and non-public data. 

Enablers of the Data Management plane in ASSIST-IoT: 

The main functions of this plane will be covered with the following inherent enablers, with key support from 

security functions provided by enablers in the Security, Privacy and Trust vertical, in particular the authorisation 

and authentication enablers: 

• Long-term data storage enabler 

• Semantic translation enabler 

• Edge data broker 
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In Table 9, the initial list of enablers to be developed or adapted to provide the functionalities expected from 

this plane are listed (see also Figure 23). Similarly to the lists presented for the former planes and verticals, this 

list is preliminary and thus it is expected to change with the refinement of requirements and in the process of 

realising the architecture. 

Table 9. Preliminary list of enablers on the Data Management plane 

Enabler name Description 

Candidate 

technological 

components 

Semantic repository 

enabler 

A database of data models and ontologies offered publicly. This enabler 

provides access to data models as a service. The key features include 

versioning (different versions of data models), ownership (only the data 

model owner may update a data model), provision & search (data models 

are public and searchable) and documentation (documentation provided 

by data model owner is served with the data model itself). This enabler 

supports data interoperability through shared data models and semantics.  

Custom component 

on CMS/Django, 

reSpec 

Semantic 

translation enabler 

An intermediary in communication capable of translating streaming 

messages or batch data, preserving their semantics. It enables semantic 

interoperability, even in a system without a central shared data model. 

Custom component 

on Apache Kafka, 

Scala, Akka, Apache 

Jena 

Semantic 

annotation enabler 

An enabler that annotates data with data model or ontology information, 

in order to bring it to the semantic level. It has a supporting role in data 

interoperability, and is dedicated to data that wants to benefit from 

semantic technologies, but is not yet represented in a semantic (i.e. self-

describing) way. 

Custom component 

on Scala, Apache 

Jena 

DLT 

communication 

enabler 

Will contemplate how to leverage DLT-enablers distributed across many 

nodes, in order to enhance data integrity verification, as well as 

communication auditing mechanisms. The use of DLT in this enabler is 

meant to provide mechanisms that can detect data tampering in any 

context – whether changing or sending a sensitive piece of data, or 

logging data access and resource requests. Moreover, supporting 

Semantic Interoperability mechanisms could be incorporated into this 

enabler. 

Hyperledger fabric, 

OpenDSU 

Long-term data 

storage enabler 

Provides dedicated storage space for users, services and other enablers. 

The role of this enabler is to serve as a secure and resilient storage, 

offering different storage sizes, individual storage space for separate 

users, and the promise, that the data will be kept safe, in face of various 

kinds of unauthorised access requests, or hardware failures. 

Custom component 

on MongoDB, Neo4j 

Edge data broker Enables the efficient management of data demand and data supply 

from/to the Edge Nodes. It optimally distributes data where it is needed 

for application, services and further analysis. Data distribution is based 

on reported demand and available resources at the Edge Nodes. It 

provides: subscriptions and messages between the broker and the Edge 

Nodes; management of message scheduling, routing and delivery; 

common interfaces for searching and finding information. 

Custom component 

on RabbitMQ, 

Apache Camel 

5.4. Application and Services Plane 
The three ASSIST-IoT horizontal Planes discussed above facilitate the collection of real-time data from 

massively distributed sets of sensors and heterogeneous networks. However, all these data shall be exposed in 

a human-centric approach to NGIoT end users.  

The ASSIST-IoT Application and Services plane is intended to provide access to data via human-centric 

configuration enablers. These enablers can be seen as the App Entities envisioned in the AIOTI HLA [28], i.e., 

features to provide application logic, which may include data visualisation and user interaction services, data 
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analytics capabilities, various kinds of data processing capabilities, data protection support and/or data 

management logic14. To do so, ASSIST-IoT will develop and deploy software platforms for helping human 

decision-makers to coordinate operations with special focus on sharing visibility of what is happening in various 

parts of the NGIoT deployments. In particular, three main working lines are envisioned in this horizontal plane: 

• The development of client-side applications, also called frontend applications or dashboards, will enable 

users to see and interact with content in a user-friendly interface, including the support of business 

analytics that makes use of Intelligent Decision-Making services. To do so, a mixture of HTML, CSS, 

JavaScript, and ancillary libraries is foreseen. 

• ASSIST-IoT will not only address web-based or mobile-based dashboard applications, but the project 

will also evaluate innovative interaction mechanisms like AR/MR interfaces, considering real time 

requirements and human-centricity. This type of interfaces has the potential to make an immense impact 

on how people work and interact in the future, boosting operational performance efficiency (such as 

cranes remote operating stations), or guaranteeing workers’ safety (such as identification of 

abnormalities in workers’ physiological parameters by OHS managers), as well as end-users’ safety 

(such as augmented vehicle maintenance support). 

• Finally, as an open platform, ASSIST-IoT system will expose its applications capabilities via open APIs 

to boost open experimentation. Therefore, the ASSIST-IoT Applications and Services plane will also 

provide open APIs, over which more advanced external functionalities coming from third parties can 

be onboarded, demonstrated and validated in pilot facilities. 

 
Figure 24. ASSIST-IoT Applications and Services functional model. 

Enablers of the Application and Services plane in ASSIST-IoT: 

In this particular plane, classifying an enabler as inherent is a challenging task since the presence of them is 

strongly dependent on the actual use case. In any case, the following enablers have been identified as such, 

following the principles of (i) monitoring being a key functionality that should be present in any novel NGIoT 

environment, and (ii) human-centricity being one of the cornerstones of ASSIST-IoT: 

• Business KPIs reporting enabler. 

• Performance and usage diagnosis enabler. 

• AR/VR/MR enabler. 

The full list of enablers identified so far for this plane is listed in Table 10. This list is preliminary and it is prone 

to changes during the execution of the project, based on the evolution of requirements and in the actual 

realisation of the architecture. 

 
14 In addition, the App Entities may include support for cybersecurity and trust. 
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Table 10. Preliminary list of enablers on the Applications and Services plane 

Enabler name Description 
Candidate technological 

components 

Business KPIs reporting 

enabler 

All valuable metrics and figures for the industrial 

stakeholder/end user to be available for 

representation in dashboards, reports, etc. 

Grafana, Freeboard, Mozaïk, 

Kibana, Tipboard, Smashing, 

Dashing, ELK stack, MS Power BI, 

Microstrategy, Tableau 

Performance and usage 

diagnosis enabler 

Performance and diagnosis numbers to be 

collected, so the system could highlight some 

problems and act in accordance (notify to the 

admin, automated recovery, fine tuning machine 

resources). 

Grafana, Freeboard, Mozaïk, 

Kibana, Tipboard, Smashing, 

Dashing, ELK stack, MS Power BI, 

Microstrategy, Tableau, 

Prometheus 

AR/VR/MR enablers An AR vision and 3D rendering engine that will 

mix the virtual content with the real world 

(including localising the AR device relative to the 

real-world reference, and represent digital 

augmented scenes). 

Holo Lens SDK, Unreal Engine, 

Unity3D, Google ARCore, AR.js, 

ARToolKit+, DrokidAR, Vuforia 

OpenAPI Management The open call experimenters should subscribe to the 

different Open APIs (like API creation, publication, 

securing, and monitoring) via an API manager. 

Apigee, 3scale, IBM API 

management, Akana, Kone, 

MuleSoft, MS Azure API 

management, Postman, WSO2 

6. Node View  

The View of the Node in ASSIST-IoT responds to a structural aspect of the architecture. Per definition (see 

in Section 3.2), one enabler of ASSIST-IoT instances its enabler components in one or various nodes of the 

infrastructure of the deployment. This chapter aims at describing and characterising what exactly conforms a 

node, how it is expressed in the architecture and its role in the whole play. 

Simply put, an ASSIST-IoT node is a hardware element within the deployment network that can provide 

computation capabilities by running some ASSIST-IoT enabler execution. These nodes might vary on 

geographical location (close to the source, same building, same city, remote…), on topological spot (see Far-

Edge, different Edge tiers, etc. in Figure 26 in the next section) on processing capabilities (datasheets, 

restrictions, technical specifications) and on application domain (applying only a certain subset of potential 

enablers, for instance, to an SDN-enabled switch, a Smart Gateway realised by a Raspberry Pi or a full-fledged 

server able to train complex AI models). 

The main role of the nodes in ASSIST-IoT architecture consists of running (executing) enabler components. 

These components may also be quite varied (e.g., databases, specific server endpoints) and will base their 

application on the node characteristics. Typically, the nodes closer to data sources (e.g., Smart IoT devices) will 

focus on I/O processes for monitoring and actuation, whereas remote nodes (e.g., cloud server in a data centre) 

will focus on centralised, massive computing components (e.g., inference engines, Big Data storage).  

On the other hand, being the essential piece of ASSIST-IoT communication, the nodes in the architecture will 

need to be able to interact hierarchically (north-south) and laterally (east-west) with other nodes. The latter 

will be the cornerstone for building decentralisation of the system upon. This communication (in ASSIST-IoT) 

will be realised via REST API mechanisms, through which the different nodes will share status and components’ 

data to allow enablers properly function. As a matter of fact, the functioning of enablers in an ASSIST-IoT 

deployment may set this interaction as their essential feature. As outlined before, these communications (north-

south and east-west) will take place providing that the instantiation of ASSIST-IoT already possesses sufficient 

network connections. The Node View takes the underlying network connectivity for granted. 

The Node View is represented in ASSIST-IoT using the following abstraction. Figure 25 represents the basic 

capabilities that are considered in the Node View. This schema covers the communication, processing, storage 

and virtualisation properties that are needed for characterising a Node and for spotting it within the system. 
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First, the two blocks at the bottom of the figure aim at depicting the southbound communication capabilities of 

a Node and the direct connections with the physical world, correspondingly. These will be especially relevant 

in low-tier nodes (such as Smart IoT devices and Far-Edge nodes) for monitoring IoT devices and acting over 

them.  

 

 

Figure 25. Node View in ASSIST-IoT architecture 

Scaling up in the abstraction, the most relevant properties of a node will be its network capacities (network 

connections, IP address, etc.), its accelerators (number and type of GPUs, TPUs, FPGAs, etc.), computing 

capabilities (CPUs, cores) and its storage capacity. This information will be the baseline to build the enabler 

components. Depending of these capacities, a Node will have different roles and will be able to support a certain 

number of enablers. 

At the top of the schema, it represents the operative system and/or virtualisation/containerisation option selected. 

Any node in ASSIST-IoT will have (most likely) its own operative system (Linux OS, Windows, other) or its 

own virtualised/containerised environment (VMWare, OpenStack, Kubernetes) allowing them to be sub-

divided in smaller computing entities. This representation will be very useful from ASSIST-IoT perspective as 

this will highly drive the different techniques/enablers that will be able to be used for that node. In 

particular (see Section 5), ASSIST-IoT will base the enabler deployments on the containerisation of “enabler 

components” and its distribution as a Kubernetes service among nodes. Following this approach, ASSIST-IoT 

nodes will function as K8s nodes (acting either as master or slave nodes). Therefore, K8s will need to run over 

the current OS of the node. In the case that this would not be feasible (operative restrictions, logistic restrictions, 

low resources availability, etc.), the system will need to know which environment exists in that node to provide 

an alternative mechanism for running “enabler components” upon it.  

The previous form the “static” View of one Node in ASSIST-IoT. Apart from those, each Node will have 

general attributes for identifying and handling them within an ASSIST-IoT deployment. These will be an 

identification number, hostname, spot, current location, and the type of node per each (see Appendix B). These 

data will be used by different enablers to manage the nodes, including manageability features and operative 

processes enabling the execution/scheduling of “enabler components” on them. 

Additionally, Nodes will also need to be dynamically monitored by and interacted with enablers. With that 

purpose, an additional set of abstract properties have been defined. It has been considered that, at any moment, 

one Node will be running a series of enabler components (normally more than one). Some traits of ASSIST-

IoT architecture are self-reconfigurability, manageability and adaptation. To materialise those, the owner of the 

deployment (and the system itself) will need to know exactly which “enabler components” are being executed 

in each node. This also opens the possibility to monitor system’s performance and facilitates 

starting/stopping/interacting with those enabler components. It has been designed that every node must keep a 

constant record of those and must make that record accessible. 

For describing all the previous, one Node will be continuously described within ASSIST-IoT using the 

template that is provided in the Appendix B - of this document. 
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7. Deployment View 

At this point, all basic elements of the ASSIST-IoT architecture have been explained. On the one hand, the 

enablers (framed within Planes, functional blocks, Verticals, etc.) form the key asset the other elements orbit 

around. On the other hand, the nodes (HW) hold the computing load in the architecture. However, a crucial 

aspect is missing for gluing all the previous together. The way that nodes and enablers are scattered through a 

specific infrastructure in the deployment form the Deployment View.  

The Deployment View of the architecture aims at presenting how an ASSIST-IoT architecture is deployed to 

address the specific uses cases and business scenarios. It consists, from one side, of a set of different ASSIST-

IoT nodes (presented in the previous section), distributed within different edge tiers, which are connected to 

other physical elements to create an interconnected system. Systems can range from small embedded to 

large fully connected ones, responding to the specific scenarios and use cases that the system aims at addressing. 

Figure 26 represents an edge deployment of different tiers, considering Far-Edge nodes, Edge Nodes and Cloud 

nodes. From the other side, it covers the aspects of the architecture relevant for building, testing and 

maintaining services in the system. The different enablers active in an ASSIST-IoT deployment will target 

specific objectives/functionalities. However, the architecture foresees the combination of enablers to build 

services. Here (for ASSIST-IoT), the concept of service refers to a specific application offered by the 

technology providing measurable actions/functionalities to the final user. Services (in this context) must not be 

confused with the Application and Services plane division (see section 5.4). While the Application and Services 

plane is a Functional View of the traits of ASSIST-IoT spotted in the higher layer of the IoT, one service in the 

Deployment View may consist of the combination of, for instance, three enablers spotted in the Device and 

Edge plane and Data Management plane. 

The Deployment View is mainly addressed to the “system owners/developers” actors. This View will allow all 

of the actors to have an all-encompassing sight of a particular service: which enablers it is consisted of; which 

nodes are being used, how the enablers are interacting among them, etc. However, this View is also useful for 

an end user to observe at. For a stakeholder (that just wishes to obtain a functionality from the IoT system), this 

View provides a “snapshot” of where and how is ASSIST-IoT being instantiated on their infrastructure. As a 

joint of both, the information managed in a Service Development View will allows those actors to take specific 

actions such as maintenance, introduction of new equipment, resizing, etc. From a bird’s eye, this View will 

consist of a set of software and hardware pieces that are used by ASSIST-IoT. These pieces will be completely 

adjusted (and restricted) to the network infrastructure that each deployment can provide. Finally, this View will 

also allow those two actors build on two directions: (i) analysing the introduction of new services (e.g. 

monitoring of sensor data and applying AI models over it), and (ii) hardware technologies (e.g. AR Glasses, 

new network elements adjusted to improve latency, bandwidth, etc. or to connect to external systems). 

 

Figure 26. Deployment View of ASSIST-IoT architecture 
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The Deployment View represents a typical hierarchical deployment of nodes of the Edge Continuum paradigm. 

However, some considerations have to be explained to avoid potential misleading in the interpretation of this 

View. The characteristics and design criteria of an ASSIST-IoT deployment are driven by the following: 

• ASSIST-IoT aims at extending the capabilities of decentralised, distributed architectures: it must 

support specific use cases that fall under the scope of just IoT Devices and Far-Edge tiers, without 

involving upper tiers or even a central one. 

• Many of the (software) enablers provided by ASSIST-IoT can be part of not only decentralised but also 

centralised topologies, and for this reason the Deployment View represents this possibility. 

• Regarding the hierarchy, a central node might be part of the physical site (e.g., higher edge tier) or be 

part of a cloud infrastructure (which would prevent it to be directly involved in low-latency 

communications).  

• The number of tiers and nodes is dictated by the requirements of a particular scenario. To design 

it, it is needed (i) to know the hardware capabilities of the available nodes, (ii) to evaluate the workload 

that will be executed in each tier, (iii) to evaluate the number of devices involved, (iv) to define the 

workloads to be executed by each tier, and (v) to have the requirements in terms of latency between 

nodes and with IoT devices [26]. 

• Communication among nodes of the same tier is considered to support a larger number of use cases 

(e.g., through northbound or dedicated east-west bound interfaces for distributed ones). 

• Communication between the different nodes of ASSIST-IoT will be realised through SDN physical or 

virtual devices (mostly switches) and different access networks (5G, WiFi, TSN, etc.). 

• One service is the combination of (at least, one) various enablers. One service may use enablers targeted 

to different layers (from a Functional View perspective). 

• Each enabler has its own “scope” that contains its components, possibly spread out across different 

places of deployment (devices, Edge Nodes, cloud, etc.). 

• The communication between “enabler components” and any other element of ASSIST-IoT architecture 

will also take place via the enabler interface. 

• One “enabler component” might be used by different enablers. The mechanisms for allowing this 

“share” of components will be a matter of design and discussion (for deliverable – D3.6). 

A real topology depends on the vertical industry in which it is expected to be instantiated, since the system 

topology is strongly influenced by the physical location and the actual requirements of the use cases and 

scenarios considered. In an ASSIST-IoT hierarchical system, the nodes of each tier have different scopes: (i) 

Smart IoT Devices, which are differentiated from “dummy” IoT sensors and actuators as they are designed 

considering enough computing capabilities to assist in decision making and data filtering and processing tasks; 

(ii) Edge Nodes of the first tier, also referred to as Far-Edge Nodes, which are responsible primarily for data 

gathering, real time processing and first location of intelligence; (iii) nodes in upper tiers are responsible for the 

orchestration of services, the coordination of distributed and/or federated operations, and for applying 

intelligence based on inputs from different nodes of the lower tier (e.g., applications that require inputs from 

nodes that manage different types of devices); and lastly, in those use cases that require it, (iv) a cloud backend 

is in charge of  deep analysis of the captured data to extract knowledge as well as for long-term storage. 

Figure 27 represents an example of the deployment of one service. In this example, one relevant actor is 

designing a service that combines five enablers distributed among a wide variety of nodes, targeting various 

functional blocks, and making use of diverse components. 

The design, in which enablers are treated as modules, whose internals do not need to be of concern to other 

enablers, is called encapsulation. Any encapsulated enabler should also be secure, which requires that all 

communication channels between its components are secured, and components are not directly accessed from 

outside. Encapsulation principle proposed by ASSIST-IoT enables features that are important in the IoT domain, 

such as modularisation and virtualisation, and aims to deliver more abstract features, such as security by design. 

It also provides a fruitful ground for separation of scopes for enablers, that aim to deliver functionalities 

promised by ASSIST-IoT. 
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Figure 27. Example of service deployment in ASSIST-IoT 
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8. Future Work  

As advanced in Section 3.5, the architecture of ASSIST-IoT will be delivered via several iterations aligned with 

different milestones of the project. This document (see Conclusions –9) has provided the starting point that will 

be used in forthcoming deliveries to build upon. 

Although some thorough definitions area already put in place in D3.5 (e.g., architectural decisions such as 

enablers approach or Views specification), much work is still to be done from different perspectives. This 

section aims at outlining the following advances expected over the architecture that will be materialised on 

updated content in deliverables D3.6 and D3.7. 

• Refinement of Views: The basic Views of ASSIST-IoT architecture have been described in this 

deliverable (Functional, Node, Deployment). Those descriptions will be enhanced drawing from the 

research in WP4 and WP5, as well as from the requirements (D3.2 and T3.4 advances). Additionally, 

T3.5 team envisions potential additions in form of new Views. To mention one, there is the plan of 

introducing a Data View that will represent the architecture from the viewpoint of end-to-end data flow: 

from its generation, how it leaves the IoT device, how passes through different nodes and the processing 

to which is exposed at each step. 

• Enhancement of currently identified enablers: In D3.5, the key (inherent) enablers per plane have 

been identified. In addition, some useful (already planned) enablers have been described. However, 

those explanations have been done from a merely theoretical/intentional point of view. As developments 

in further tasks advance, the descriptions will be refined, including problems found at their 

development, additional considerations, among other. 

• Inclusion of new enablers per plane and new enablers associated to verticals: Extension of the 

tables presented in the sub-sections of Sections 4 and 5. 

• Settlement of architectural decisions, clearly indicating the mechanisms and selected technologies 

that will be guiding the materialisation of ASSIST-IoT architecture in pilots (and future deployments) 

o Deployment of enablers: Specification of the mechanisms (e.g., using service YAML 

descriptors) for deploying the enablers. Establishment of the tool to “run up” enablers and 

selection of: K8s, K8s in combination with K3s, Akri, FLEDGE, others…  

o Federated Learning and whole decentralisation approach. Some options seem valid at this point 

(on how to distribute and orchestrate such intelligence) that are under discussion within 

ASSIST-IoT technical team. 

o Introduction of global approach to Tactile Internet as structural part of ASSIST-IoT 

architecture. Although specific tactile applications are a matter of design under the Application 

and Service plane, there has been observed the need to introduce certain considerations in the 

architecture for allowing such technologies (that have strong, explicit infrastructure and 

performance requirements) to run under ASSIST-IoT structure. 

o Transversal introduction of DLT throughout the architecture: Security, Privacy and Trust is a 

defined vertical in ASSIST-IoT architecture. However, its influence as “operative, practical 

consideration” reaches beyond the usual scope of delivering enablers. Software Architects of 

ASSIST-IoT are already in discussions on how the different DLT-related mechanisms should 

be tackled as structural inclusions (e.g., within each enabler components, as separated enablers, 

leveraging a somehow centralised facility, relying on replication, etc.). 

• Depict a mapping of requirements (set out in T3.4) to the different architecture properties, traits and 

to different enablers (depending on the case). 

• Inclusion of additional formal specifications to align the “architecture asset” with pre-normative 

activities and procedures documentation. These specifications may include (among others) UML-based 

diagrams of software engineering. 
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9. Conclusion 

This document presents the initial definition of ASSIST-IoT architecture, being the first of a series of three 

iterations and hence to be further refined during the next versions. The architecture responds to the perspectives 

and objectives identified for the Next Generation IoT and it is based on the expertise of the technical partners 

of the project as well as on the initial requirements of the stakeholders involved. Although the main objective 

of this document is setting the foundations of the ASSIST-IoT architecture, it also aims at providing insights 

with respect to the technical outcomes to be produced later on in WP4, WP5 and WP6 (what will be actually 

delivered, and under which principles). 

After presenting a brief overview of the main concepts and architecture paradigms available in the market for 

building systems, this document exposes (i) the main design principles, (ii) the conceptual architecture and (iii) 

the methodology that guide the definition of the architecture. Conceptually, ASSIST-IoT architecture is a 

multidimensional architecture which consists of horizontal layers called “Planes”, which represent collections 

of functionalities that can be logically layered on top of one another, and “Verticals”, which represent cross-

cutting functions and properties of NGIoT that exist on different planes or require coordination among them. 

Besides, the architecture introduces the abstract term “enabler”, which aims at delivering the functions promised 

by ASSIST-IoT innovations and future capabilities within the different Planes and Verticals. In essence, an 

enabler is a collection of software (and possibly hardware) components, running on one or different nodes, that 

work together to deliver a specific functionality of a system. 

Dedicated sections for the Verticals and for the Functional View of the Planes have been included, along with 

the enablers expected to be delivered during the execution of the project. On the one hand, the 5 Verticals of 

ASSIST-IoT comprise (i) Self-*, (ii) Interoperability, (iii) Security, Privacy and Trust, (iv) Scalability and (v) 

Manageability. On the other hand, the Planes of ASSIST-IoT are (a) Device and Edge, (b) Smart Network and 

Control, (c) Data Management, and (d) Application and Services. In order to address additional concerns of 

stakeholders of a Next Generation IoT architecture, two additional Views have been included, namely “Node” 

and “Deployment”, aiming at identifying those aspects related to the characteristics of nodes and devices, as 

well as actual implementations of an ASSIST-IoT architecture. 

It is important to remind that the goal of this document is to deliver a blueprint, thus presenting a set of 

characteristics and functionalities that should be present in a Next Generation IoT system, but providing a degree 

of freedom with respect to technological choices and deployment strategy. Lastly, highlighting that this is an 

initial definition, meaning that further refinement is expected and hence the presented views, the functionalities 

and enablers identified will potentially change, both in number and description, in the following versions. 
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Appendix A -  Glossary 
This section contains the summary of important terminology used to describe the ASSIST-IoT architecture. 

Table 11. Architectural terms 

Term Description Examples 

Plane Abstract concept that logically groups system 

parts working in similar contexts and 

environments. A plane corresponds to a 

horizontal layer. 

ASSIST-IoT defines 4 Planes: 

• Application and Services 

• Data Management 

• Smart Network and Control 

• Device and Edge 

Transversal 

(adjective) 

Intersecting more than one plane, or involving 

more than one plane. 

 

Vertical 

(noun) 

A concept that groups together logically 

connected features and functionalities of a 

system, regardless of the plane on which they 

may be implemented. 

ASSIST-IoT defines 5 Verticals: 

• Manageability 

• Scalability 

• Security, Privacy and Trust 

• Interoperability 

• Self-* (autonomy) 

Vertical 

capability and 

feature 

Every vertical involves capabilities. A 

concretisation of a capability is called a feature. 

Capabilities and features are further 

subdivisions of the categories defined by 

Verticals. Although, in principle, a feature is a 

part of a capability, not every capability is 

required to be subdivided into features. 

Capabilities (and features) are abstractions that 

are independent from Planes. The collections of 

Planes on which features are delivered depends 

on a given enabler. 

Example capabilities and features: 

• User management capability (Security, Privacy 

and Trust vertical) 

• Authentication and authorisation feature 

• Self-healing capability (Self-* vertical) 

• Auto-recovering, fault resistant communication 

network 

• Semantic interoperability capability 

(Interoperability vertical) 

• Semantic translation 

• Compliance with standard data model 

Functional 

block 

A logical part of a plane. It represents a 

separable family of functionalities, that fit 

directly into one plane. 

• Semantics (Data Management plane) 

• Self-contained networking (Smart Network and 

Control plane) 

Enabler A configurable and deployable collection of 

software and/or hardware that enables a 

specific set of features (or functionalities) of an 

IoT system, and can be interfaced with. An 

enabler should be separable from the rest of the 

system, in which it is deployed (including other 

enablers), but does not need to be independent. 

It may require other enablers to deliver a 

promised feature. Enablers can be unmanaged 

(fully autonomous), semi-autonomous, or fully 

managed. 

Enablers must provide a system feature. A 

computer vision ML algorithm is not an 

enabler, but it may be a component of a security 

enabler that employs face recognition. 

• Secure storage enabler on the Data 

Management plane (Security, Privacy and Trust 

vertical) - provides a data storage interface for 

the whole system. May require an authorisation 

and authentication enabler to deliver security. 

• Self-healing network enabler on the Smart 

Network and Control plane (Self-* vertical) - 

employs multiple network components that 

autonomously try to recover any lost 

connection, (e.g., find alternative network 

routes, use different protocols etc). 

• Resource scaling enabler on the Device and 

Edge plane (Scalability and Self-* verticals) - 

enables autonomous facilitation of scalable 

number of hardware resources to best support 

workloads without unnecessary resource usage. 
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Enablers may require specific software or 

hardware components to function (e.g., a 

secure storage enabler may require a database 

component). 

Enablers should abstract their operations, so 

that they may be viewed as coherently 

delivering a specific functionality, without 

unnecessary technical details. 

In ASSIST-IoT the enabled features are 

grouped into Verticals. An enabler is 

transversal, if it involves components on more 

than one plane. 

• Resilient communication enabler on the Smart 

network and Control, and Data Management 

planes (Security, Self-* verticals) - provides 

data and communication channel redundancy, 

to automatically recover from data corruption. 

• Core ontology semantic translation enabler on 

the Applications and Services, and Data 

Management plane (Interoperability vertical) - 

provides a semantic annotation; semantic 

repository; and translation services (that use a 

“core ontology” translation model). 

Enabler 

component 

A piece of software or hardware that is a part 

of an enabler, and is required for an enabler to 

function and deliver a feature. A component 

may have a number of descriptive properties 

(e.g., an instance of an ACID-compliant 

database) and belong to a functional block (and 

therefore also to a plane). 

Enablers are, in principle, not enabler 

components, but components may be reused 

between enablers. 

• A specific ML algorithm implementation 

• A specific ML model 

• An ontology 

• A LoRa-enabled edge device 

• An encryption algorithm 

• An internet camera 

• A computer vision software delivered as SaaS 

• A database instance 

• A user registry 

 
Table 12. Autonomic computing terms 

Term Description Examples 

Self-* A property of a system that makes it 

autonomous, i.e., capable of identifying 

problems or tasks, and solving or carrying 

them out on its own. Self-* systems may also 

be semi-autonomous; in which case they 

require some instructions or supervision. If a 

system requires supervision of every step, or 

complete instructions, it is not autonomous. 

In ASSIST-IoT autonomic systems can 

exhibit properties in the following categories: 

self-healing, self-protection, self-awareness, 

self-organisation, self-synchronisation, self-

configuration.  

Delivery of specific self-* properties may 

involve multiple self-* categories, or other 

properties. In particular self-awareness and 

context-awareness are often helpful or 

required for other self-* properties. 

 

Self-healing Self-healing systems are reliable, highly 

available and dependable. This is achieved 

through the ability to monitor and analyse 

data about self to autonomously predict, 

detect, prevent and heal faults. 

It seems to be important to define 

(non)functional requirements of self-healing 

solution (where we can apply self-healing, 

what to do in case of and how to measure the 

self-healing ability). 

• A network tool that uses redundant, parallel 

channels, caching, and intelligent prediction 

to ensure recovery of any network faults 

outside of long-term full connectivity loss 

(e.g., due to physical damage to all network 

interfaces). 

• An autonomous robot capable of returning to 

upright position (almost) always (e.g., Boston 

Dynamics “Spot”). 
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Self-protection A system is self-protecting, if it continuously 

(actively or passively) maintains a safety 

property and defends itself in the presence of 

potential threats by applying privacy policies, 

trust mechanisms, and threat detection to 

secure itself and its data. 

• A physical FDR device (flight data recorder) 

that protects itself from data loss or physical 

damage. 

• A system, that uses an ML-powered semantic 

data parser to redact any sensitive or protected 

information from all outgoing 

communication. 

Self-awareness Context-awareness, where the context 

pertains to the state of the autonomic system 

itself. It involves the ability of a system to 

interpret its state by monitoring and analysis 

based on given domain knowledge. 

• A physical robot that has information about its 

position in space relative to any object in the 

surrounding area. 

• A ML training software that is aware of 

different kinds of models, that it can train, 

currently trained model, as well as purpose 

and shape of training, verification and testing 

data. 

Self-organisation The collective ability of a system to maintain, 

improve, or restore components in a 

persistent way under appropriate conditions. 

It is often characterised by the ability to 

continuously perceive its own state and the 

state of its environment (self- and context-

awareness) and react to certain events in 

order to maintain a high degree of usefulness 

without a human in the loop. 

• A drone swarm capable to pick (provision) 

and position specific machines to carry out a 

given task (e.g., move a heavy object). 

• A bit-torrent network that uses throttling and 

spoiler isolation (shadow ban/ shadow 

greylisting) to ensure fairness of resource 

distribution. 

Self-configuration The ability of a system to (re)configure its 

parameters and resource assignments to 

maintain the quality of performance metrics 

based on requirements or to adapt to changing 

conditions. 

• A software container that automatically 

deploys itself on any system and configures 

itself to work within it (e.g., a virus). 

• A music software that applies relevant 

copyright laws based on location information. 

 
Table 13. General terms 

Term Description Examples 

Artifact A catch-all term to describe any kind of non-living, 

tangible or intangible element. 

Artifacts are usually either parts of a bigger whole, or 

outputs of some actions. 

• An IoT device 

• An architecture 

• A diagram 

• A song 

Context-

awareness 

A property of any system that has access to 

information about the context, in which it operates. 

Context-awareness is practically never full. The 

degree of awareness varies and is usually limited to 

information required to deliver some functionality 

without compromising security. E.g., a web server 

operates in a context of an operating system, but for 

security reasons is not aware of every process in the 

system, or system-wide resource usage. 

• A physical robot that has information 

about spatial position of any object in 

the immediate surrounding area. 

• A load balancer aware of resource 

usage on managed nodes (e.g., naive 

round-robin balancer is not context-

aware). 

• Context awareness is broad term 

used in FIWARE environments. 

Tactile A property of any system, controller or HMI, which 

makes its user able to interact with the physical world, 

either directly by controlling physical actuators, or 

indirectly, by changing the state of software through 

the means of a physical controller. The interaction may 

be two way: from the user to actuators (control), or 

from the actuators to the user (feedback). 

• Touch screen. 

• Virtual glove with gesture transfer to 

physical actuators. 

• Haptic feedback controller. 
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Tactile internet A communication network enabling low-latency 

tactile applications. 
• A network enabling real time virtual 

building tour via wireless VR glasses 

with head position and orientation 

support. 

• Wireless touch controller for vehicle 

diagnostics in a specialised facility, 

with real time AR glasses feedback. 

Methodology A system of practices, techniques, procedures and 

rules used by those who work in a discipline. Applying 

different principles, themes, frameworks, processes 

and standards to help provide structure to the way we 

deliver projects. Methodology can be represented as: 

documentation (guidelines, best practices), modelled 

processes, templates. A methodology often defines 

some design patterns. 

• Methodology for requirements 

gathering. 

• Methodology for algorithm 

adaptation to be executed on an edge 

device. 

• Steps methodology for delivering the 

architecture jointly with other assets 

of the project (e.g. requirements). 

• Methodology for new enabler 

development and deployment. 

• “How to” style. 

Design pattern General reusable recipe for solving a commonly 

occurring problem. 
• Publisher-subscriber communication 

pattern. 

• Purely functional programs. 

• Relational data modelling. 

• Interoperability patterns. 

DevOps A set of practices that work to automate and integrate 

the processes between software development and IT 

teams, so that they can build, test, and release software 

faster and more reliably. 

• Providing CD/CI infrastructure. 

• Versioning. 

• Resources management. 

DevSecOps An extension of DevOps, in which security decisions 

are distributed among participating entities, and made 

by those, that hold the highest level of context without 

sacrificing safety. 

DevSecOps aims to achieve security and privacy by 

design. To this end security is an aspect at every level 

of the design and development process and is not 

delegated or encapsulated as a separate and 

independent feature. 

• DevSecOps pipeline: code review, 

automatic security testing, 

vulnerability scanning. 

• The pipeline has to be linked with 

DevOps. 
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Appendix B -  Enabler template 
B.1 -  General information of the enabler 

Enabler Name of the enabler (follow glossary guidelines to name it) 

id Short unique identifier/acronym 

Owner and support Lead and supporting beneficiaries 

Description and main 

functionalities 

Functional description of the enabler (description paragraph and bullet points for 

describing its functionalities) 

Plane/s involved Horizontal plane or planes in which it acts 

Vertical To specify to which vertical it belongs to (mostly for transversal enablers) 

Relation with other 

enablers 
List of enablers (core or vertical) that interact with this one 

Requirements mapping List of the IDs of the requirements addressed or considered 

B.2 -  Basic visual diagram  
Including arrows of the enabler, with its components, and ids of internal (between its components) and external 

interfaces. 

 

B.3 -  Enabler endpoints  

The enabler should have a primary interface for communicating with other enablers or applications (its 

components communicate through internal communication mechanisms). REST API is assumed for the 

template, may be others.  

Method URL 
Payload (if 

needed) 
Description Response format 

GET/POST/ 

PUT/DELETE 
/{something}/…   
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B.4 -  Description of its enabler components 

For each component of the enabler: 

Enabler component Name of the enabler component 

id Short unique identifier 

Rationale Necessity of the component in the enabler 

Node type/s* Physical device in which it can be installed (edge node, smart IoT, gateway, cloud…) 

Implementation 

technologies 
Technologies to implement it 

HW Requirements Memory, storage and computation power needed 

SW Requirements Execution environment and/or other project/third-party requirements 
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Appendix C -  Node template 
C.1 -  General information of the node 

Node Name of the node (e.g. Node1TL) 

id Short unique identifier/acronym 

Hostname Hostname of the node (virtual or phy.) 

Type IoT Gateway, Cloud, Edge (selectable) 

Operative System Auto-explanatory 

MAC address Auto-explanatory 

IP address Auto-explanatory 

 

C.2 -  Specific information of the HW, computing resources 

and network capacities of the Node 

Field Explanation 

HW interfaces Network and communication interfaces (serial, ethernet, usb)… 

CPU Auto-explanatory 

GPU Auto-explanatory 

Cores Auto-explanatory 

HW model and year (only of application if it is a complete phy HW bare metal being used) 

Storage capabilities Auto-explanatory 

Acceleration capabilities Auto-explanatory 

Southbound protocols 

accepted (node to device) 

Access Layer Protocols (e.g. Bluetooth, Serial, WiFi, LoraWAN) 

Application Layer Protocols (e.g. MQTT, HTTP, CoAP) 

East-West protocols 

accepted (node to node) 
(e.g. RESTful, HTTP/COAP, MQTT/AMQP/RTS…) 

Can it be further 

virtualised? 
Yes/No 

 

C.3 -  Dynamic fields about status of the node 

Field Explanation 

System tier Spot in the Deployment View of the architecture in which this node currently is. 

List of components being executed in this node 

Id_component Component_name Technology Id_enabler Enabler Created 
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