

Architecture for Scalable, Self-human-centric, Intelligent,

Secure, and Tactile next generation IoT

D3.5 ASSIST-IoT Architecture Definition

– Initial

Deliverable No. D3.5 Due Date 30-APR-2021

Type Report Dissemination Level Public

Version 1.0 WP WP3

Description Initial specification of the ASSIST-IoT technical architecture and its components.

This project has received funding from the European’s Union Horizon

2020 research innovation programme under Grant Agreement No. 957258

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 2 of 63

Copyright

Copyright © 2020 the ASSIST-IoT Consortium. All rights reserved.

The ASSIST-IoT consortium consists of the following 15 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Spain

PRODEVELOP S.L. Spain

SYSTEMS RESEARCH INSTITUTE POLISH ACADEMY OF SCIENCES IBS PAN Poland

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS Greece

TERMINAL LINK SAS France

INFOLYSIS P.C. Greece

CENTRALNY INSTYUT OCHRONY PRACY Poland

MOSTOSTAL WARSZAWA S.A. Poland

NEWAYS TECHNOLOGIES BV Netherlands

INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS Greece

KONECRANES FINLAND OY Finland

FORD-WERKE GMBH Germany

GRUPO S 21SEC GESTION SA Spain

TWOTRONIC GMBH Germany

ORANGE POLSKA SPOLKA AKCYJNA Poland

Disclaimer
This document contains material, which is the copyright of certain ASSIST-IoT consortium parties, and may

not be reproduced or copied without permission. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the ASSIST-IoT

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 3 of 63

Authors
Name Partner e-mail

Alejandro Fornés P01 UPV alforlea@upv.es

Ignacio Lacalle P01 UPV iglaub@upv.es

César López P01 UPV csalpepi@upv.es

Carlos E. Palau P01 UPV cpalau@dcom.upv.es

Eduardo Garro P02 PRO egarro@prodevelop.es

Maria Ganzha P03 IBSPAN maria.ganzha@ibspan.waw.pl

Paweł Szmeja P03 IBSPAN pawel.szmeja@ibspan.waw.pl

Piotr Lewandowski P03 IBSPAN piotr.lewandowski@ibspan.waw.pl

Georgios Stavropoulos P04 CERTH stavrop@iti.gr

Iordanis Papoutsoglou P04 CERTH ipapoutsoglou@iti.gr

Theoni Dounia P06 INFOLYSIS tdounia@infolysis.gr

Nick Vrionis P06 INFOLYSIS nvrionis@infolysis.gr

Alex van den Heuvel P09 NEWAYS alex.van.den.heuvel@newayselectronics.com

Ron Schram P09 NEWAYS ron.schram@newayselectronics.com

Konstantinos Naskou P11 ICCS konstantinos.naskou@iccs.gr

Óscar López P13 S21SEC olopez@s21sec.com

Zbigniew Kopertowski P15 OPL Zbigniew.Kopertowski@orange.com

History
Date Version Change

26-Feb-2021 0.1 ToC presented

4- Mar-2021 0.2 ToC updated and assignments of sections after discussion in 2nd Plenary

17-Mar-2021 0.3 Merged first round of contributions

30-Mar-2021 0.4 Merged second round of contributions

9-Apr-2021 0.5 Version sent for Internal Review

27-Apr-2021 0.6-7-8 Iterative versions during review processes

28-Apr-2021 0.9 Version sent to PIC for last check

30-Apr-2021 1.0 Final version submitted to EC

Key Data
Keywords Reference architecture, enablers

Lead Editor P01 UPV - Ignacio Lacalle

Internal Reviewer(s) P04 CERTH, P12 FORD-WERKE

mailto:alforlea@upv.es
mailto:iglaub@upv.es
mailto:csalpepi@upv.es
mailto:cpalau@dcom.upv.es
mailto:egarro@prodevelop.es
mailto:maria.ganzha@ibspan.waw.pl
mailto:pawel.szmeja@ibspan.waw.pl
mailto:piotr.lewandowski@ibspan.waw.pl
mailto:stavrop@iti.gr
mailto:ipapoutsoglou@iti.gr
mailto:tdounia@infolysis.gr
mailto:nvrionis@infolysis.gr
mailto:alex.van.den.heuvel@newayselectronics.com
mailto:ron.schram@newayselectronics.com
mailto:konstantinos.naskou@iccs.gr
mailto:olopez@s21sec.coms
mailto:Zbigniew.Kopertowski@orange.com

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 4 of 63

Executive Summary
This deliverable is written in the framework of WP3 – Requirements, Specification and Architecture of

ASSIST-IoT project under Grant Agreement No. 957258. The document is the first of a series that are devoted

to formalising ASSIST-IoT technological architecture. This document aims at outlining the guiding principles

of ASSIST-IoT architecture, altogether with the identification of main elements (Views) and enablers to be part

of it.

Next Generation Internet of Things field is urgently requiring the creation of a robust, formal, valid, useful

reference architecture to build deployments upon. Several initiatives are detected, as well as classic concepts of

architecture definition are varyingly meeting requirements. However, the blueprint is yet to come.

This deliverable reports the works done towards defining ASSIST-IoT architecture guiding principles and key

considerations for its deployment, which has redounded in a two-dimensional structure divided in planes and

verticals within which the actual technological assets will be included. These assets have been defined (novel

approach) as enablers, which aim at encapsulating the innovative functionalities that ASSIST-IoT’s provides.

Throughout the core sections of the document, there can be found the motivated decisions that will guide the

architecture in ASSIST-IoT: the selection of service-based philosophy, the use of containerisation and the

rationale behind the selection of Functional, Node and Deployment View, among others.

In addition, deep study of each plane and vertical has been included. The results of the research have allowed

to describe the key enablers, digging into their objective and candidate technologies (e.g., custom components

on Apache Kafka, Scala, Akka, Apache Jena to create the Semantic translation enabler in the Data Management

plane).

In order to establish a language for a common understanding of the terms, a Glossary has been created and

accompanies this document as appendix.

This document aims at being the starting point for further improvements and refinements that will come later

during the project. Thus, to finalise it, a clear roadmap of forthcoming actions is included, altogether with some

early conclusions obtained.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 5 of 63

Table of contents

Table of contents ... 5

List of tables .. 6

List of figures .. 6

List of acronyms .. 7

1. About this document .. 10

1.1. Deliverable context .. 10

1.2. The rationale behind the structure .. 10

2. Reference Architecture Design Principles ... 11

2.1. Concepts ... 11

2.2. Architecture paradigms .. 12

3. ASSIST-IoT Approach .. 17

3.1. Design Principles ... 17

3.2. ASSIST-IoT Conceptual Architecture ... 19

3.2.1. Functional architecture .. 20

3.3. Relation with other IoT-related RAs .. 21

3.4. Enablers .. 24

3.5. Methodology .. 25

4. Vertical Capabilities .. 27

4.1. Self-* .. 27

4.2. Interoperability ... 29

4.3. Security, Privacy and Trust .. 30

4.4. Scalability... 34

4.5. Manageability ... 36

5. Functional View .. 38

5.1. Device and Edge Plane .. 38

5.2. Smart network and Control Plane .. 40

5.3. Data Management Plane .. 44

5.4. Application and Services Plane .. 46

6. Node View ... 48

7. Deployment View .. 50

8. Future Work... 53

9. Conclusion ... 54

10. References .. 55

Appendix A - Glossary .. 57

Appendix B - Enabler template ... 61

Appendix C - Node template ... 63

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 6 of 63

List of tables

Table 1. Comparative among architecture paradigms ... 16
Table 2. Containers benefits versus Virtual Machines benefits .. 17
Table 3. Preliminary list of potential enablers targeting Self-* capabilities .. 28
Table 4. Preliminary list of potential enablers targeting Security ... 31
Table 5. Preliminary list of potential enablers targeting Privacy and Trust .. 34
Table 6. Preliminary list of potential enablers targeting Manageability vertical ... 37
Table 7. Functional blocks of the Device and Edge plane .. 39
Table 8. Preliminary list of potential enablers targeting the Smart Network and Control plane 44
Table 9. Preliminary list of enablers on the Data Management plane ... 46
Table 10. Preliminary list of enablers on the Applications and Services plane... 48
Table 11. Architectural terms .. 57
Table 12. Autonomic computing terms ... 58
Table 13. General terms .. 59

List of figures

Figure 1. Conceptual model of an architectural description defined in ISO/IEC/IEEE 42010 [2] 11
Figure 2. Three-tier architecture .. 12
Figure 3. Modular monolith with single database (left) and decomposed database (right) 14
Figure 4. SOA architecture .. 14
Figure 5. Elements of microservice architecture ... 15
Figure 6. Monolithic vs SOA vs Microservices architecture .. 15
Figure 7. Services exposed (left) and scalability approach (right) for container orchestration with Kubernetes

 ... 18
Figure 8. ASSIST-IoT Conceptual Architecture ... 19
Figure 9. ASSIST-IoT Functional Architecture .. 20
Figure 10. Comparative between ASSIST-IoT Conceptual Architecture and LSP 3D Architecture 22
Figure 11. Comparative between ASSIST-IoT Conceptual Architecture and OpenFog Architecture Description

 ... 23
Figure 12. ASSIST-IoT enabler diagram .. 24
Figure 13. Inputs needed for formally describing the ASSIST-IoT architecture .. 26
Figure 14. Timing and methodology for evolution of the architecture definition ... 26
Figure 15. Security enablers for ASSIST-IoT architecture ... 31
Figure 16. Structure and mechanisms for security monitoring enablers ... 31
Figure 17. Harmonisation of DLT and Security enablers in ASSIST-IoT .. 32
Figure 18. Inherent enabler of Manageability vertical .. 37
Figure 19. General node functions .. 39
Figure 20. Functional View of the Smart Network and Control plane .. 40
Figure 21. General overview of SDN Controller [35] ... 41
Figure 22. Interaction between ASSIST-IoT components .. 43
Figure 23. ASSIST-IoT Data Management plane draft interconnections diagram ... 45
Figure 24. ASSIST-IoT Applications and Services functional model... 47
Figure 25. Node View in ASSIST-IoT architecture .. 49
Figure 26. Deployment View of ASSIST-IoT architecture ... 50
Figure 27. Example of service deployment in ASSIST-IoT.. 52

https://upvedues-my.sharepoint.com/personal/iglaub_upv_edu_es/Documents/Nacho%20UPV%20SATRD/ASSIST-IoT/4%20-%20EXECUTION/Deliverables/D3.5/ASSIST-IoT_D3.5_Architecture_Definition_Initial_v0.9.docx#_Toc70661465

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 7 of 63

List of acronyms

Acronym Explanation

3D Three Dimensional

5GC 5G Core

AI Artificial Intelligence

AIOTI Alliance for the Internet of Things Innovation

API Application Programming Interface

AR Augmented Reality

BSS Business Support Systems

CLI Command Line Interface

CNF Cloud-Native Network Functions

CPU Central Processing Unit

CSS Cascading Style Sheets

DAG Directed Acyclic Graph

DHCP Dynamic Host Configuration Protocol

DLT Distributed Ledger Technology

ECC Edge Computing Consortium

ETSI European Telecommunications Standards Institute

FL Federated Learning

FPGA Field Programmable Gate Arrays

GA Grant Agreement

GKE Google Kubernetes Engine

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

HLA High Level Architecture

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBN Intent-Based Networking

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

ISO International Organization for Standardization

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 8 of 63

ITU International Telecommunication Union

KNF Kubernetes-based VNFs

KPI Key Performance Indicator

LIDAR Light Detection and Ranging

LSP Large-Scale Pilots

LTE Long Term Evolution

MANO Management and Network Orchestration

MPLS Multi-Protocol Label Switching

MR Mixed Reality

NFV Network Function Virtualisation

NFVI Network Function Virtualisation Infrastructure

NFVO Network Function Virtualisation Orchestrator

NGIoT Next Generation Internet of Things

NS Network Service

OHS Occupational Health and Safety

ONAP Open Network Automation Platform

OPNFV Open Platform for NFV

OS Operative System

OSS Operations Support Systems

OSI Open Systems Interconnection

OSM Open Source MANO

PAP Policy Administration Point

PDP Policy Decision Point

PIP Policy Information Point

PLC Programmable Logic Controller

PNF Physical Network Function

PoP Point of Presence

QoE Quality of Experience

QoS Quality of Service

RA Reference Architecture

RAMEC Reference Architecture Model Edge Computing

REST Representational State Transfer

RPM Revolutions per Minute

SaaS Software-as-a-Service

SDN Software-Defined Networking

SDO Standards Developing Organisations

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 9 of 63

SOA Service Oriented Architecture

SD-WAN Software-Defined Wide Area Network

TCP Transmission Control Protocol

TSN Time-Sensitive Networking

TPU Tensor Processing Unit

UI User Interface

UML Unified Modelling Language

USB Universal Serial Bus

VHDL Very High-Speed Integrated Circuit (VHSIC) Hardware Description Language

VIM Virtualised Infrastructure Manager

VM Virtual Machine

VNF Virtualised Network Function

VNFM Virtualised Network Function Manager

VoIP Voice over Internet Protocol

VPN Virtual Private Network

VR Virtual Reality

WAN Wide Area Network

WIM WAN Infrastructure Manager

WP Work Package

XaaS Anything-as-a-Service

XACML eXtensible Access Control Markup Language

YAML Yaml Ain't Markup Language

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 10 of 63

1. About this document

The main objective of this document is to set the foundations of the ASSIST-IoT architecture. Considering

that the most prominent outcome of the project will be its blueprint architecture, this deliverable must be key

for understanding the rest of technical content of ASSIST-IoT. More specifically, D3.5 aims at being a first step

in the description of the architecture. While deep understanding of the diverse elements of the ASSIST-IoT

architecture will need further elaboration and joint interpretation with WP4, WP5 and WP6, this deliverable

(D3.5) depicts the guiding principles, the base structure, and the main elements (with their role and fit) of the

architecture. In other words, the backbone of the technical provision of the project is defined in this deliverable.

1.1. Deliverable context

Keywords Lead Editor

Objectives O1: D3.5 is the first definition of the architecture, that is the outcome of objective 1.

O2: Smart network’s Functional View is provided with overview of its core enablers.

O3: Security and Privacy vertical capabilities are described with overview of main enablers.

O4: Federation of smart AI enablers is preliminary outlined.

Work plan

Milestones This deliverable does not mark any specific milestone completion; however it contributes

towards MS5 – Final architecture defined, that will be achieved by submitting D3.7.

Deliverables This deliverable is fed by the elaboration of D3.2 (use-cases and requirements) and will

serve as the basis for the forthcoming updates of the architecture in D3.6 and D3.7. It will

also be feeding developments in WP4 and WP5, inspiring the production of D4.1 and D5.1.

1.2. The rationale behind the structure
As mentioned in the previous section, deliverable D3.5 aims at laying the first grounds in the description of the

ASSIST-IoT architecture. This deliverable D3.5 will be updated in D3.6 and D3.7, that will redound in a formal

Reference Architecture (RA) definition document. Therefore, it has been adopted a structure aligned with usual

formal description of a RA, including the definition of guiding principles and views of the architecture.

Section 2 serves as an overview of RA design, comparing the different approaches. Section 3 starts by mapping

those approaches with ASSIST-IoT, defining the principles adopted and the overall structure of ASSIST-IoT

architecture and explaining the essential cornerstone elements (enablers). In Section 4, the different transversal

NGIoT concerns devised for ASSIST-IoT are tackled, including the description of main enablers. Sections 5, 6

and 7 are devoted to explaining the four different views existing in ASSIST-IoT: Functional View (including

main enablers), Node View and Deployment View.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 11 of 63

2. Reference Architecture Design Principles

For the ASSIST-IoT architecture to be built upon, key principles of established Reference Architectures (RA)

will be leveraged. This section’s main objective is to provide an overview of the main concepts exploited to

conceive RAs, as well as to introduce the main architecture paradigms, available in the market, for building

systems intended for different scenarios. The selected design choices, abstractions and methodology of the

concepts and approaches upon which ASSIST-IoT will be built are presented in detail in Section 3, while the

main outcomes lie in the subsequent sections.

2.1. Concepts
Applied to the IoT ecosystem, a RA can be described as a useful model that can serve as a set of guidelines to

implement an IoT system. Their objective consists of assessing a set of requirements in order to provide a set

of functionalities, information structures and mechanisms [1], serving as a blueprint for developing and

implementing IoT architectures. Reference Architectures usually have a high level of abstraction, so they can

be applied for different domains or application, setting the ground for discussing under a common vocabulary.

The standard ISO/IEC/IEEE 42010 [2], which is leveraged in many modern RAs as was reviewed in deliverable

D3.1, specifies a conceptual model to aid in the description of architectures:

Figure 1. Conceptual model of an architectural description defined in ISO/IEC/IEEE 42010 [2]

The most vital concepts in defining an architecture from the standard are summarised below:

• A stakeholder in the architecture of a system is an individual, team, organisation, or classes thereof,

having an interest in a system [2]. Interests also referred to as concerns are defined the next point. The

architect must ensure that there is adequate stakeholder representation across the board, including

nontechnology stakeholders (such as acquirers and users) and technology-focused ones (such as

developers, system administrators, and maintainers). Stakeholders can range from developers, testers

and maintainers to support staff, administrators, product engineers and end users, among others [3].

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 12 of 63

• A concern is a topic of interest to one or more stakeholders belonging to an architecture [4]. A concern

could be manifest in many forms, such as in relation to one or more stakeholder’s needs, goals,

expectations, responsibilities, requirements, design constraints, assumptions, dependencies, quality

attributes, architecture decisions, risks or other issues pertaining to the system [2].

• A viewpoint is a work product establishing the conventions for the construction, interpretation and use

of architecture Views to frame specific system concerns [2]. It defines the stakeholders whose concerns

are reflected in the viewpoint and the guidelines, principles, and template models for constructing its

views [3]. The functional viewpoint is always present in architecture descriptions (which describes the

functional elements of a system, along with their responsibilities, interfaces, and main interactions).

Because of the wide range of opinion, standards do not require a specific set of viewpoints, they expect

that they are selected appropriately depending on the system-of-interest.

• A view is a work product expressing the architecture of a system from the perspective of specific system

concerns [2], illustrating how the architecture addresses them. An architecture description shall include

exactly one architecture view for each architecture viewpoint used. According to [3], the core views of

an architecture are the Functional, the Information, the Concurrency, The Development, the

Deployment and the Operational views.

• A perspective is a collection of activities, tactics, and guidelines that are used to ensure that a system

exhibits a particular set of related quality properties that require consideration across a number of the

system’s architectural views [3]. Although not formally defined by the aforementioned standards, this

reference is included in [2] as a note. In some architectures, perspectives are referred to as system

characteristics, however, in ASSIST-IoT the term “Vertical” will be used instead since apart from

inherent properties, specific software will be included under its scope to meet or solve specific cross-

cutting concerns.

2.2. Architecture paradigms
Almost every software application written today can be broken into three elements: a front-end or client-side, a

backend, and some type of database. While requests are made to the developed application via the frontend

interface, the backend code does all the heavy lifting, and any relevant data that needs to be stored or accessed

is sent to or retrieved from the database (see Figure 2).

Figure 2. Three-tier architecture

In the early deployment stages, IoT applications were simple, and the number of IoT elements involved were

small, so that IoT developers typically shared the burden of contributing to and maintaining the codebase. As

the Next Generation Internet of Things (NGIoT) grows, new features shall be added to the applications, leading

to (i) an increase in the operational workload, and (ii) a necessary horizontal and/or vertical scaling, requiring

that more servers host the application. The complexity of the NGIoT applications is growing steadily, and

hundreds of tests shall be carried out to guarantee that any minimum change made does not compromise the

integrity of the existing code.

To cope with the increase of the number of elements present and workload required in IoT systems, software

architectures are the starting point to design them and to solve a specific problem or adapt to a need. Some

approaches have been proposed to address the complexity, at different levels, of software architectures. The

asset of plans that form the software architecture guide the management of the information infrastructure to

enable the desired state. Architectural patterns define how to organise system components when building a

complete system and meeting the requirements set by an activity [5]. Architecture is not just about design, it

also involves coding, abstraction, standards, formal training (of software architects), and style. The architecture

deals with the interactions and constraints on those elements.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 13 of 63

The variety on architectural styles and patterns available in the software industry makes it necessary to

understand the particularities that suit in each situation. The most relevant software architectures and

patterns1 are listed below [6]:

• Layered architecture pattern closely matches the traditional IT communication, organised in

horizontal layers. Each layer (commonly: User-Business-Infrastructure) has a specific role within the

application and can communicate with each other through defined interfaces and different topologies

(e.g.: OSI model).

• Microkernel (plug-in architecture pattern) is a natural pattern for implementing product-based

applications, that are packaged and made available for download in versions as a typical third-party

product. The core component contains the minimal functionality required to make the system

functional, and plug-in modules contain specialised processing (e.g. Eclipse and extra compilers).

• Event-driven architecture is a distributed asynchronous pattern that manages data processing timeouts

by building a central unit that accepts all data and then delegates it to the decoupled components that

asynchronously receive and process events. Consists of two main topologies: the mediator (used when

need to orchestrate multiple steps within an event through a central mediator) and the broker (used when

you want to chain events together without the use of a central mediator - e.g., JavaScript web page).

• Space-based architecture is specifically designed to address and solve scalability and concurrency

issues, being a better architectural approach than trying to scale a database or adapt caching technologies

to a non-scalable architecture. It is suitable for applications that have variable and unpredictable

concurrent user volumes. The space-based pattern works around the idea of distributed shared memory,

and try to minimise the factors that limit application scaling. There are two main components within

this architecture pattern: a processing unit and virtualised middleware. (e.g. cloud).

• Serverless architecture is a cloud computing approach to building and running apps and services

without the need for infrastructure management [7]. In serverless applications, code execution is

managed by a server, allowing developers to implement code setting without taking care of server

maintenance, while a third-party cloud service takes full responsibility. This configuration eliminates

the need for extra resources, application scaling, server maintenance, and database and storage systems.

• The architecture paradigm based on services is focused on performing functions that break complex

problems into a series of simpler ones [8], executing tasks through a communication protocol over a

network. Services are designed to be separately deployable, allowing to build highly scalable and

resilient systems, in order to respond to hardware events, or listening for data requests from other

software [9]. Service-based architectures vary in terms of services characteristics, service taxonomy

and granularity [10]. There are two main approaches of the architecture paradigm based on services:

o Monolithic architecture is a traditional software model that aims to build a single-tiered

software application in which different components are combined into an indivisible program

or platform formed by a code base with several modules [11].

o Service-oriented architectures (SOA) can be seen as a natural evolution of monolithic pattern

by decoupling an application into smaller modules. All the services would then work with an

aggregation layer which can be termed as bus. This architecture can still be seen as a monolith

from the deployment perspective, while microservices lead towards independent deploys.

o Microservices architecture style structures a robust solution as a set of lightly coupled small

services which are isolated in small coherent and autonomous units, to solve the problem of

complex architecture and code redundancies

Architectures based on services:

Since ASSIST-IoT will follow one of the architecture paradigms based on services, here we delve into them to

motivate the choice made in the next section. Monolithic architectures are the first approach of architectures

based on services, grouping systems that are implemented as single unit of deployment. It has been the

benchmark operating model for many years and countless applications have been successfully built. Its

simplicity allows avoiding many of the problems associated with distributed systems, resulting in simpler

developer workflows, monitoring and testing. The most common point of view about monolithic architectures

1 https://techbeacon.com/app-dev-testing/top-5-software-architecture-patterns-how-make-right-choice

https://techbeacon.com/app-dev-testing/top-5-software-architecture-patterns-how-make-right-choice

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 14 of 63

refers to single process monolith, where all the code is packed into a single process. However, it may be the

case in which a series of modules function as a single indivisible system, summarising monoliths as architectures

where all functionalities in the system have to be deployed together [12].

The opposite approach to monolithic architectures would be to divide this complex structure into smaller

services. In SOA, application components provide services to other components through communication

protocols, usually over a network [8]. The architecture includes a messaging middleware component that allows

mediation and routing, message enhancement, message transformation and protocol transformation [10].

Service-oriented architecture principles are independent of any product, vendor or technology, enabling

interoperability between systems, services and applications [13], [14]. The service bus acts as an orchestrator

for complex event interactions, while the integration hub handles protocols and other transformations. The

enterprise services must call code to implement their behaviour based on business processes [15].

Figure 4. SOA architecture

To simplify services development, an architectural style that focuses on the design and development of software

systems as a set of small independent services has emerged [10]. Microservices also bring some complexity in

understanding the call chain that will happen for any given request, and the performance implications of all the

additional network calls [16], [17]. A single microservice can be small and easy to understand, both in terms of

business domain and performance [18], in contrast to a constellation of microservices.

The microservices architecture pattern does not support the messaging middleware concept, so it typically has

an API layer between services and the consumers [10], using less elaborate and simple messaging systems and

lightweight protocols as HTTP, REST or thrift APIs [19]. Microservices architecture makes scaling and adding

new capabilities much easier, being suitable to develop a large application with multiple modules and user

Figure 3. Modular monolith with single database (left) and decomposed database (right)

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 15 of 63

journeys [18]. Also, each microservice can be reused as a part of a different application. The granularity on the

design results in a performance negative side effect of the distributed nature of microservices, as network calls

and security verification at every endpoint adds additional processing time [20], [21].

The architecture of a microservice is not that different from the standard three-tier application architecture of

Figure 2, as each microservice will be formed by three components: a frontend, some backend code, and a way

to store or retrieve any relevant data in a database. However, there are some differences, as shown in Figure 5:

Figure 5. Elements of microservice architecture

1. The frontend of a microservice will be an API with static endpoints that will allow microservices to

easily and effectively interact and send requests to the relevant API endpoint(s). For example, a common

type of API endpoints for microservices is via HTTP over REST endpoints.

2. Although the API endpoints may be theoretically separated from the architectural point of view, in

practice, they live alongside and as part of all the backend code that processes every request.

3. Most microservices will store some type of data, either in memory or in an external database.

Figure 6. Monolithic vs SOA vs Microservices architecture

Usage comparison between architecture paradigms based on services.

Monolithic architectures are suitable for small team or simple applications that require a quick launch such as

activities that do not demand much business logic, superior scalability, or flexibility have no need to deal with

the complexity of the microservices architecture. If needed, a monolithic model is a choice that requires less

initially spending resources, allowing to develop and launch it as soon as possible.

On the other hand, distributed architectures try to maximise application service reusability, by avoiding

modifying the entire monolith when a systematic change is required. The more services are reused, the lower is

the cost of implementing software development and management, so SOA is an ideal architecture method for

large and complex business applications. It is the most suited architecture for environments that require

integration with many diverse applications.

SOA and microservices are architectures built on different component-sharing concepts. SOAs try to avoid

functionalities duplication by sharing as much as possible, generating tightly coupled components, which

increases their difficulty to be changed. On the contrary, microservices only expose a defined interface to

communicate its single closed units [10]. Minimal dependencies allow easier deployment and less risk while

changing modules or services. Microservices architectures are focused on decoupling, so a systematic change

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 16 of 63

implies creating a new service [18]. They require expertise, with the proper skills and knowledge, and it is

focused on teams’ collaboration and freedom of choice. The following table summarises the main concepts of

the architectures described in this section.

Table 1. Comparative among architecture paradigms

 Monolithic SOA Microservices

Suitable Small team or simple

applications.

Low initially spending

resources.

Web-services.

Widely used in

distributed computing,

SAAS based cloud

computing models

Websites with small components.

Corporate data centres with well-defined

boundaries.

Development teams that are spread out, often

across the globe.

Not

suitable

Applications that require

scalability.

Not suitable for applications that

require complex development

before executing.

Not easy to adapt in applications

that require changes.

Not ideal for small

applications as they

do not require

middleware

messaging

components.

The services must be largely independent or

else interaction can cause the cloud to

become imbalanced.

Websites with complex components that

compromise performance. For instance, too

many microservices can cause that parts of

the web page appear much later than others.

As a lead paragraph towards the next section, and before digging deeper into ASSIST-IoT paradigm selection,

it is worth reflecting on the information provided by the previous table.

Per definition, (Next-Generation) IoT deployments must be ready to adapt to changes, either in terms of adding

new devices to the installation, applying new services over the data provided by those or changing the security

policy for managing them, among others. Besides, scalability is also key in such deployments. With ever-

increasing computing capacity in always-smaller miniaturised devices, the structure of an IoT deployment must

from now on be ready to spot processing and capabilities throughout a wider range of elements/network spots.

Finally, an off-topic but relevant aspect is to keep in mind the COVID-19 pandemic has contributed to a major

shift towards the teleworking paradigm [22]. This will, most likely, mean that for the future years (when NGIoT

will finally take off globally) the development, integration and maintenance staff teams will be distributed

throughout the globe. Therefore, a proper NGIoT blueprint architecture should allow an easy DevOps flow

targeting such working teams.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 17 of 63

3. ASSIST-IoT Approach

3.1. Design Principles
If the traditional monolith software architecture style was selected for ASSIST-IoT, the development and

deployment of NGIoT applications would become consequently a burden and a blocker for even the most crucial

fixes. The main reason most monoliths are susceptible to scalability problems is that their nature does not

address partitioning (i.e., each task can be broken up into smaller pieces) and concurrency (i.e., is not only

broken up into small pieces but can be processed in parallel). For instance, a software upgrade scalability

requires scaling of the entire application rather than parts of it. Hence, in this section are detailed the design

principles that will govern ASSIST-IoT architecture and solutions, namely (i) the use of microservices, (ii) their

instantiation in containers, (iii) their grouping into “enablers”, that will be introduced in this section and further

described in Section 3.4, (iv) and their further orchestration using Kubernetes technology.

Microservices

To cope with these anticipated challenges, ASSIST-IoT architecture proposes to follow a microservice

software architecture, which pursues building applications as suites of services. Following this approach, it

will allow beyond the fact that microservices can be independently deployable and scalable, to also provide a

firm module boundary, allowing for different services being written in different programming languages, and

being managed by different project partners. The goal of the microservice architecture of ASSIST-IoT will be

to build a set of small applications (called enablers) that are each responsible for executing one function (as

opposed to the monolithic way of building one application that executes everything), and to let each

microservice be autonomous, independent, and self-contained.

Containerisationg

As IoT deployments become more numerous, scalable architectural solutions are crucial for meeting and

sustaining the demand of large, expanding, and elastic device networks. While former IoT applications simply

control and analyse signal data from edge devices in a centralised manner, NGIoT applications are moving

towards smart analytical applications, requiring horizontal scalability of device additions, including a reduction

of instantiation times, or migrating the actual computing and intelligence towards the edge.

To promote rapid onboarding, ASSIST-IoT foresees a NGIoT architecture that ensures that the instantiation of

the first service (called enabler) will be as simple as the instantiation and addition of the 1000th. To enable this

seamless scalability in NGIoT infrastructure deployments, ASSIST-IoT proposes to employ a containerised

approach that will allow developers to create each microservice over the most fitting OS and language.

Like virtual machines, containers allow to package for and decouple applications from the environment in which

they will be running. This decoupling will allow container-based ASSIST-IoT microservices to be deployed

easily and consistently, regardless of the target environment. However, containers offer several benefits with

respect to VMs. Instead of virtualising the hardware stack (as VMs), containers virtualise at the OS level, i.e.,

multiple containers can be running over the OS kernel directly. Hence, containers are far more lightweight than

VMs, as they can be run much faster, and use a fraction of the memory. Other benefits are listed in the Table 2

below:

Table 2. Containers benefits versus Virtual Machines benefits2

 Container benefits VMs benefits

Consistent runtime environment ✓ ✓

Application sandboxing ✓ ✓

Small size on disk ✓

Low overhead ✓

2 https://cloud.google.com/containers

https://cloud.google.com/containers

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 18 of 63

As all components on the edge appliance will be containerised, it will allow to search and infer which equipment

can handle which containers, and enables applications to be dynamically deployed and moved, and their

resource utilisation to be monitored.

Enablers

Since ASSIST-IoT targets software products for covering many different functional domains, the project

introduces the abstraction term “enablers”, which will consist of a group of microservices, each of them served

over a container, acting towards a single goal (i.e., to provide a specific functionality) in the architecture. Each

enabler provides a single point of entry (interface) to communicate with it, without exposing the internal

communication mechanisms between its components, thus having an “encapsulation” of microservices. As a

result, the security of the software is improved by design, and in addition, potential software deployments and

upgrades are facilitated by (i) grouping microservices according to the provided functionality, and by (ii)

reducing the level of granularity offered by using just standalone microservices, without losing the advantages

provided by microservices (e.g. distributed computation). In such ways, ASSIST-IoT ends up presenting an

architecture that, although based on microservices, has a granularity that falls in the middle of a “pure”

microservice architecture and a SOA. In some cases, this kind of architectures is also referred to as Service-

based, although according to different sources this may not be fully correct if presented as an opposite to

microservices or SOA, as described in Section 2.2. Additional information regarding enablers is presented in

Section 3.4.

Kubernetes

Kubernetes3, Docker Swarm4 and Apache Mesos5 are examples of technologies for service virtualisation and

container orchestration. They facilitate the execution of different tasks related to deploying and managing

applications, and are specially needed for managing systems with a large number of containers instantiated in

different servers (e.g., a cluster environment). These solutions are in charge of (i) managing the creation of

containers, (ii) verifying their operation, and (iii) offering correct management of errors. In ASSIST-IoT,

Kubernetes has been selected as the main technology for containers orchestration, and, therefore, for

enablers orchestration. The main motivation for choosing this option lies in its large adoption in current trends

in cloud native systems in contrast to other alternatives [23]. In addition, there are modified distributions of

Kubernetes that target constrain devices, which are part of the Device and Edge plane of ASSIST-IoT as will

be explained later in this document.

Kubernetes, also referred to as k8s, automates rollouts and rollbacks, monitors the health of software

microservices to prevent bad rollouts before things go bad. It also enables to continuously run health checks

against deployed services, restarting containers that fail. Additionally, Kubernetes will automatically scale

services up or down based on utilisation, ensuring they are only running what the owner needs.

Figure 7. Services exposed (left) and scalability approach (right) for container orchestration with Kubernetes6

3 https://kubernetes.io/
4 https://docs.docker.com/engine/swarm/
5 http://mesos.apache.org/
6 https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 19 of 63

Still, k8s initial suites were not suitable for small form-factor devices, such as the ones initially considered in a

current and NGIoT deployment. In particular, NGIoT deployments at the edge typically are expected to work

with smaller footprint of devices that do not have enough capacity to run Kubernetes effectively, such as sensors.

Additionally, connectivity issues related with e.g., latency, bandwidth limitations or disconnection shall be

solved in an automated way. Because of these and other requirements related to public or private access to the

Internet, or cybersecurity, containers orchestration at the edge in general, and Kubernetes modifications

are started to get the attention of NGIoT alliances and open-source communities and will become the basis of

scalability solutions of ASSIST-IoT. Recent projects include K3s7, microk8s8, or FLEDGE [24], among others.

3.2. ASSIST-IoT Conceptual Architecture
The ASSIST-IoT conceptual architecture is a reference to a high level of abstraction, on which more concrete

designs may be implemented, and specific applications realised. The architecture is rooted in a

multidimensional, conceptual approach, in which architectural layers (called “Planes”, see Appendix A -) are

intersected by vertical blocks (“Verticals”) presented in Figure 8. This approach captures horizontal and vertical

functions of an IoT system, as well as the intersections between them and allows for higher level of modularity

and adaptability in compliant systems.

Figure 8. ASSIST-IoT Conceptual Architecture

The horizontal Planes represent collections of functions that can be logically layered on top of one another. For

example, observation data originating from a sensor must pass through the Smart Network and Control plane

and be processed on the Data Management plane, before being presented to an end-user in a GUI application

on the Applications and Services plane. Not all information must always pass through all planes – in fact, one

common function of an edge device is to filter out only necessary data, or to aggregate data, so that only relevant

information is passed on. In principle, however, software (and hardware) on any level can rely on, and abstract

away, any functions performed on planes below. It is worth mentioning that ASSIST-IoT concept of Planes

must not be confused with the traditional (OSI-like) approach of protocol stack, but rather as a smart

classification of logical functions that fall under the scope of diverse plane domains.

Verticals, on the other hand, represent functions targeting NGIoT properties that exist either independently on

different planes or require the cooperation of elements from multiple planes. For example, although one may

implement a fully secure networking solution, the property of being secure could also be extended to any system

that uses such networking, provided that security measures are also implemented on other planes. Cooperation

7 https://k3s.io/
8 https://microk8s.io/

https://k3s.io/
https://microk8s.io/

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 20 of 63

of plane functions may be required to secure e.g., data access with biometrics measured by IoT devices – if

access to data (from the Data Management plane) depends on signals from a device (Device and Edge plane)

analysed on the Applications and Services plane, then system security must consider all those planes.

Since it is not possible to capture all the functional features in a single model, the ASSIST-IoT architecture will

result in different Views and a set of Verticals (addressing properties and cross-cutting concerns). In Sections

4 and 5, these Verticals and Views (Functional, Node and Deployment) are introduced, considering that their

number and extent may change along with further iterations of the architecture.

3.2.1. Functional architecture

Figure 9. ASSIST-IoT Functional Architecture

A high-level Functional View of the ASSIST-IoT is presented on Figure 9. This View will be extended in

Section 5. While the Vertical functions are described in detail in Section 4, the Planes of the ASSIST-IoT

architecture are as follows:

Device and Edge plane describes the collection of functions that can be logically appointed to physical

components of IoT, including, but not limited to, smart devices, sensors and actuators, wearables, edge nodes,

as well as network hardware, such as hubs, switches and routers. Note that this plane, like all the others,

represents a Functional View. So even though e.g., functions related to self-contained network could be naturally

associated with network devices, there is a group of functions that can be identified and separated into functional

blocks that belong squarely on the Device and Edge plane. The aforementioned functions include any physical

connectivity and interfaces (e.g., Ethernet), low-level security functions (e.g., firewalling). This plane directly

interfaces the hardware capable of executing specific functions designed on higher planes.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 21 of 63

Smart Network and Control plane manages virtual and wireless aspects of network connectivity. The key

functions handled on this plane are encompassed by technologies that deliver software-related and virtualised

networks, such as SDN (SD-WAN), NFV, MANO, and anything related to virtualised or self-contained

networking. Any direct and logical connection in the communication infrastructure is provided on this plane.

The functions on this plane follow the access-network-agnostic approach, in which the network connections are

highly flexible. Features, such as dynamic configuration, routing and addressing, and high-level intelligent

firewalling help deliver the required flexibility.

Data Management plane handles all functions related to a virtual shared data ecosystem, in which data are

acquired, delivered and processed to provide key data-related functions. Those include data interoperability,

provenance, fusion and aggregation, but also content-independent functions, such as resilience (e.g.,

redundancy). Security functions for access grants and trust management also belong to this plane. Moreover,

this plane is empowered by semantics and might be supported by judiciously selected DLT.

Application and Services plane crowns the Functional View with end-user and administrative functions and

services. It delivers a layer of abstraction that manages functions offered by lower planes. Moreover, it combines

them to provide synergistic value for the whole system. Its functions, aided by the Verticals, aim to offer a

unified point of access, and provide system-wide intelligence and configuration capabilities. Because of the

high level of abstraction, this plane enables the creation of advanced and intelligent applications, including

configurable autonomous systems, that benefit from the lower planes, and their interconnection.

3.3. Relation with other IoT-related RAs
ASSIST-IoT Conceptual Architecture has not been created from scratch, but rather designed considering

multiple inputs including (i) the current trends towards integration between IoT-related technologies with NGI

technologies (such as Edge Computing, Artificial Intelligence and SDN/NFV Paradigms), (ii) the expertise of

the Consortium partners in different technological areas, (iii) the outcomes of previous and concurrent projects,

as well as of Standards Developing Organisations (SDOs), and an (iv) extensive research of innovative concepts

to improve current performance and scalability of IoT architectures or integrate novel functionalities.

As presented in D3.1, the number of Reference Architectures (RAs) related to IoT is quite large, and hence

starting a completely new architecture without evaluating or considering the results and insights provided by (at

least some of) them would not be the right decision. Considering those facts, ASSIST-IoT is influenced mostly

by two RAs, namely the ones provided by the IoT European Large-Scale Pilots (LSP) programme [25] and the

OpenFog consortium [26].

LSP architecture

The 3D architecture presented within the framework of the LSP programme is composed of 8 layers, with 8

cross-cutting functions and 8 properties. The “Layer” dimension supports the Functional View of the system in

a technology-agnostic way, while the “Cross-Cutting Functions” dimension considers transversal technologies

to different layers, whereas “Properties” addresses the global properties of the IoT system that are (or not)

provided by a proper implementation of combination between layer-level and cross-cutting functions. In

ASSIST-IoT, we have considered a similar layered concept, which differs in grouping them into four main

horizontal Planes to facilitate further developments and implementations. ASSIST-IoT Conceptual Architecture

maps the LSP RA as shown in Figure 10. Regarding the provided cross-cutting functions and system

properties, in ASSIST-IoT they are considered in a single dimension (Verticals) since both concepts are

transversal to the horizontal Planes of ASSIST-IoT, and as with most available RAs, no strong reason to add a

third dimension was found.

Mapping LSP layers and ASSIST-IoT planes is quite straightforward. “Edge devices” is included in ASSIST-

IoT’s Device and Edge Plane, since it is the plane in direct contact with elements of the edge (including in the

latter Smart IoT Devices, which in the case of LSP are outside the scope of the architecture). The following two

LSP layers can be mapped to both lower layers of ASSIST-IoT: (i) “Connectivity” responds to the physical

gateways and forwarding devices (e.g., switches), which in ASSIST-IoT are located in the lower plane, and

routing decisions as well as other virtualised networking functionalities which are managed by the Smart

Network and Control plane; (ii) “Edge Computing” can be applied in elements of the Device and Edge plane,

however, virtualised computing capabilities are orchestrated by the second plane. Lastly, the two layers devoted

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 22 of 63

to data within LSP match the Data Management plane of ASSIST-IoT, whereas the three upper layers devoted

to Services, Applications and Business Processes can be included in the upper plane of ASSIST-IoT.

ASSIST-IoT Verticals can gather the functionalities stated in the other two dimensions of the LSP architecture.

The vertical related to Security, Privacy and Trust can be mapped to the cross-cutting functions related to

“Identifiability”, “Trustworthiness”, “Security”, “Safety” and “Privacy” as well as with the property of

“Dependability”, which is related to trust and resilience of system and applications. The resilient aspect of

“Dependability” could be included also with Self-* vertical, since this one includes functionalities related to

guarantee “Reliability”, “Resilience”, “Availability” and, most importantly, “Intelligence” to ensure all the

former properties and cross-cutting functions in an autonomous way. Interoperability vertical, apart from its

homonymous property in LSP RA, can be related to the “Integrability” property and “Connectivity” cross-

cutting functions (for instance, facilitating the connectivity of external devices, sensors or network elements,

either physical or virtual). Manageability vertical can be mapped to its homonymous property in LSP

architecture and also to Composability one, whereas Scalability is mapped one to one. In summary, despite

being split within sixteen properties and cross-cutting functions, the transversal functionalities included by them

can be gathered within the five ASSIST-IoT Verticals.

Figure 10. Comparative between ASSIST-IoT Conceptual Architecture and LSP 3D Architecture

OpenFog architecture

OpenFog RA is defined by its authors as a medium- to high-level view of system architectures for fog nodes

and networks. Its conceptual architecture is presented in a two-dimensional model, consisting of “Layers” and

“Perspectives”. Despite not plotting a third dimension, OpenFog RA is driven by a set of principles named

“Pillars”: Security, Scalability, Open, Autonomy, RAS (from Reliability, Availability and Serviceability),

Agility, Hierarchy and Programmability. Hence, although most of these pillars are not directly addressed within

a specific perspective or functionality, they represent a set of properties that should be inherently present in an

OpenFog RA instantiation. The mapping between ASSIST-IoT and OpenFog’s Architecture Description is

illustrated in Figure 11.

Comparing OpenFog’s perspectives with ASSIST-IoT Verticals is quite straightforward. “Manageability”,

“Security” and “Scale” are quite self-explanatory, so despite some of the included functionalities within

OpenFog’s perspectives vary in comparison to their homonymous ASSIST-IoT’s Verticals, the core ones are

shared. The latter is included within the perspective named “Performance & Scale”, dealing mostly with

scalability and isolation aspects. “Data Analytics and Control” has been mapped with Self-* vertical since both

are responsible for extracting knowledge for performing actions, mostly at node level, although in OpenFog it

goes beyond the extent of a single node to also send results to higher ones for further business or operation-

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 23 of 63

specific analysis. “IT Business & Cross-fog Applications” is understood in OpenFog as the flexibility of

distributing data or knowledge among different nodes, mostly in multi-vendor ecosystems. Although mapped

to the Interoperability vertical, the latter expands to other domains. In any case, ASSIST-IoT project has

provisioned a task for cross-context federated enablers, so the concerns of that particular OpenFog’s perspective

will be also covered.

Figure 11. Comparative between ASSIST-IoT Conceptual Architecture and OpenFog Architecture Description

Regarding OpenFog layers, the lower ones (from “Sensors, Actuators & Control” to “Hardware security”) have

been related to ASSIST-IoT’s Device and Edge plane. This mapping is direct as they refer to this group of layers

as “Node View”. In any case, ASSIST-IoT’s lower plane covers not only fog (in our case, edge) nodes, but also

innovations framed close to the physical network elements (routers, switches, etc.) as well as potential Smart

IoT Devices (i.e., devices with certain processing capabilities). The following layers, related to virtualisation

and software to facilitate node-to-node communications (e.g., “Software Backplane” includes Operative

Systems, software virtualisation, containerisation) have been also mapped to the lower layers, since apart from

hardware elements, ASISST-IoT edge nodes will need software container orchestration systems to be fully

functional. “Application support” has been split between the two upper layers of ASSIST-IoT because data-

related services belong to the third plane, although non-related ones would lie within the upper one (related also

to OpenFog’s “Application services” layer).

The larger divergence comes with ASSIST-IoT’s Smart Network and Control plane. On the one hand, ASSIST-

IoT has a plane devoted to network services and management influenced by the SDN/NFV paradigm, hence

representing a system rather than a node. On the other hand, OpenFog’s description is a blueprint that could be

instantiated in any fog node (with its hardware, hardware and software virtualisation, hidden and exposed

applications and services), and no further specification is given regarding how to address the orchestration of

Network Services nor the system’s network.

Other Architectures

Although ASSIST-IoT Conceptual Architecture is inspired mostly by the two former RAs, some aspects have

been modified based on other existing architectures. For instance, most RAs do not specify the number of

horizontal Planes or layers, since it may hinder further implementations rather than facilitating it. For this reason,

ASSIST-IoT groups their related functionalities in 4 main domains, being more inspired from pre-normative

activities and standards issued by entities like ITU-T Rec. Y.2060 [27] (which defines Device, Network, Service

and Application Support, and Application layer) and AIOTI HLA [28] (Network, IoT and Application, omitting

the Device layer as also done in different software architectures), as well as edge-centric RAs like ECC RA 2.0

[29] (Edge Computing Node, Connectivity and Computing Fabric, Service Fabric and Smart Service). In those

IoT/edge-centric RAs, the scopes of the layers vary to a greater or lesser extent when compared to ASSIST-IoT,

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 24 of 63

and especially in the layer between network/connectivity and application. Although the number and

functionalities included in the Verticals (and mentioned properties) change, Management and Security are

common to all of them. Also, despite not being depicted in the conceptual representation of the architecture,

ASSIST-IoT also considers possible hierarchy levels in the Edge Continuum, as Edge Computing RAs such as

RAMEC [30] or OpenFog.

3.4. Enablers
Section 3.1 presented the concept of “enablers”, which are the cornerstone of ASSIST-IoT architecture. These

pieces aim at encapsulating (containerised) microservices to achieve a functionality of the system. The

introduction of the “enablers abstraction” responds to the “realisation of a modular architecture to deliver the

functions promised by ASSIST-IoT innovations and future capabilities”. In essence, an enabler is a collection

of software (and possibly hardware) components - running on nodes - that work together to deliver a specific

functionality of a system. Although an enabler can be abstracted away as a distinct module (and must be

logically separable from the rest of the system in which it is deployed), enablers may depend on one another to

deliver what they promise (see Section 7).

In ASSIST-IoT the functionalities of enablers are divided into Verticals and Planes (see Figure 8), which also

presents a natural way to categorise enablers. For example, one may talk about a “semantic interoperability

enabler”, if the enabler delivers functionalities that fall under the “semantics” functional block, and

Interoperability vertical.

Although ASSIST-IoT delivers concrete enablers that will be deployed in specific pilot implementations, its

architecture is defined on multiple levels, each more formal and lower in the abstraction level. Following this

approach, the complexity of an enabler, as an architectural concept, is not mandated, and depends on the function

that it delivers. For example, a geofencing AR system that analyses and displays area information on AR

goggles, may be designed as a single enabler. It may also be built out of several enablers, e.g., one that gathers

geographical data and delivers it to some persistent storage, and a separate one, that displays any geocoded

information on AR goggles. The AR solution, whether implemented as one, or many enablers, may be used by

yet another enabler to deliver information about restricted areas, or persons without proper authorisation.

Enablers are not atomic but presented as a set of interconnected components. An enabler component is a

software or hardware artifact that can be viewed as an internal part of an enabler, and that performs some action

necessary to deliver the functionality of an enabler as a whole.

An enabler component may be logically assigned to a functional block from a specific plane. For example, any

data persistence solution (e.g., a database instance) “lives” on the Data Management plane. This property is

inherited by any enabler that uses such component as their own. In effect, such enabler can also be logically

placed on the Data Management plane. Because enablers may deliver complex functionalities, they may include

components from multiple planes, i.e., enablers can be transversal.

In short, a critical part in describing any enabler is the functionality, that it enables. In order to deliver the

functionality, an enabler employs components. Multiple enablers may be used in a system to deliver a complex

application or service, exhibiting features of all components included in those enablers.

Figure 12. ASSIST-IoT enabler diagram

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 25 of 63

High variance in scope and weight of the functions that enablers may deliver, implies, that some enablers are

optional, and should be deployed when needed, and others are critical delivering the full scope of ASSIST-IoT.

Following this idea, enablers in ASSIST-IoT may be “obligatory” i.e., required for any ASSIST-IoT to be fully

compliant with the architecture, while others are “complimentary” and deliver optional functions. Enablers,

such as the SDN orchestrator form the “skeleton” of the architecture, and must be present in any ASSIST-IoT

deployment. On the other hand, the geofencing enabler described in previous paragraphs is optional and can be

added later, if a use-case requires it.

Another important property of an enabler is its deployability. As seen in Figure 12, an enabler may be described

as a set of components, and categorised with Verticals, Planes, and functional blocks. In a real, physical system,

however, the components of an enabler may be physically separated i.e., deployed on different premises

(hardware components), or different machines/virtual containers (in the case of software components).

This means, that an enabler must define and control communication between its components. ASSIST-IoT does

not mandate any particular interface of communication between enabler components in order to allow for

flexible implementations, depending on the needs for performance and throughput of the communication. The

communication between enabler components, and enablers, however, should be separated. In fact, one of the

most important design principles that distinguish components from enablers, is that enablers should not directly

communicate with components of other enablers, unless explicitly allowed by the enabler, to which they belong.

Concrete deployments of components should also not be shared between enablers. That means, that even if two

enablers use the same database software, they should not use the same database instances as their components.

Under the ASSIST-IoT approach, if a shared database is needed, it should be offered as an enabler. Any

communication between enablers should take place using the dedicated interfaces that an enabler exposes,

which are separate from internal inter-component communication. This separation delivers the property of

encapsulation. By architectural definition, ASSIST-IoT enablers are encapsulated.

Appendix B - provides the template for describing an enabler. This descriptor has been designed to represent

functionally (and ultimately technologically) the different elements and properties of an enabler.

3.5. Methodology
The ASSIST-IoT architecture design is based on several inputs. On the one hand, the perspectives and objectives

of the NGIoT must be met. On the other hand, the requirements of early-adopters/stakeholders must be

considered. At the same time, the different points of view and particularities of the core technological blocks

call for further analysis and consideration towards shaping the final specification of the ASSIST-IoT blueprint

architecture.

First, the purposes of the reference architecture of ASSIST-IoT are mainly guided by the official proposal as

set out in the Grant Agreement (GA). However, the definitions outlined in the GA are not precise enough to

completely drive the definition of a NGIoT architecture. Further research has been conducted in the context

of Task 3.5 in order to elaborate the ASSIST-IoT architectural framework and guiding principles that are

described in this document.

Second, as the ASSIST-IoT architecture will be a human-centric and user-friendly architecture that must be

effective and straightforward at the same time, its definition must rely on enabling the successful deployment

of real-world pilots. This can only be achieved by mapping the stakeholders’ concerns (i.e., essentially their

requirements at this point) to the abstract concepts of the reference architecture specification. As Tasks 3.2, 3.3

and 3.5 are running concurrently and both Deliverables 3.2 and 3.5 are due on Month 6 of the project, an iterative

approach has been followed in order to translate the evolving user stories, business scenarios and stakeholders’

requirements into architectural elements. In order to make all the information elicited from the stakeholders

available and transparent to the entire ASSIST-IoT consortium during the evolution of use cases and gathering

of requirements, Miro9 was used as an online whiteboard for visual collaboration. At this moment, stakeholders

include final users from ASSIST-IoT pilots, software architects and developers, as well as production

engineers and assessors (overseeing system’s conformance to standards and regulations).

9 https://miro.com/app/

https://miro.com/app/

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 26 of 63

Third, the technological blocks of ASSIST-IoT (corresponding to Planes or Verticals) will have a mutually

dependant relationship with the architecture definition, as one will serve to shape the other. The different

enablers (encapsulating the capacity of the architecture to provide certain functionalities) will be both guided

by the architecture principles and by the objectives and particularities of each technology. In ASSIST-IoT, the

work to be conducted in WP4 and WP5 will need to be aligned with the architecture, so certain interaction rules

must be set. In order to facilitate and formalise the basic communication among them, the architecture principles

(set out in this document) establish a common template to be followed by WP4 and WP5 activities (enabler

template) that will serve to improve the architecture if needed.

Figure 13. Inputs needed for formally describing the ASSIST-IoT architecture

Formally, the definition of ASSIST-IoT architecture must be conducted within the period between Month 3 and

Month 21 of the project (corresponding to January 2021-July 2022). During that 18-month span, the mentioned

inputs will be feeding the architecture introducing new functionalities that will need to be timely incorporated.

Therefore, to align the evolution of the architecture definition with the pace of inputs provision, a careful

analysis has been done. The approach will be to “freeze” the first version of the architecture description with

this deliverable (D3.5). The next version will be ready in Month 15; in the meantime, core and transversal

enablers will have been initially defined and the requirements will be further evolved including elaborate

considerations on legal aspects and regulatory constraints. By Month 19, all the requirements will have been

taken into account and the architecture will be ready to be introduced to Open Call participants (see Figure 14).

Figure 14. Timing and methodology for evolution of the architecture definition

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 27 of 63

4. Vertical Capabilities

The Next Generation Internet of Things is a term that has been used to refer to the new wave of functionalities,

properties, traits and features that forthcoming IoT deployments will need to support. The volume of initiatives

targeting IoT is ever-growing, with many technologies, ideas and fields playing their role. While the challenge

of overcoming the current barriers is enormous, ASSIST-IoT is being designed to support the upcoming needs.

Apart from the capabilities associated with specific “classic domains”, the NGIoT will need to be characterised

by a series of wide features targeting cross-domain aspects. While the former (horizontal) capabilities aim at

covering the basic, functional aspects of an IoT deployment (network, communication, devices interaction,

application, human interfaces, data processing, data storage, services, etc.), the latter (called “Vertical” in the

ASSIST-IoT world) address all-encompassing concerns, properties and transversal functionalities such as

Security, Interoperability or Manageability among others. The most prominent characteristic of these Verticals

is that all of them may apply (individually or jointly) to different horizontal domains (or “Planes”). For instance,

interoperability can be understood as an “edge/device layer” asset when allowing diverse sensors and gateways

to co-exist in the same deployment, whereas interoperability at the application layer may mean allowing the

user to execute services using the same UI and framework although leveraging various underlying platforms

(e.g., Watson IoT10, OneM2M11, UniversAAL12).

Since the proposal stage, five Verticals have been identified to be driving ASSIST-IoT in this matter: (i) Self-*

capabilities, (ii) Interoperability, (iii) Security, Privacy and Trust, (iv) Scalability and (v) Manageability.

As mentioned, ASSIST-IoT architecture must support the introduction of functionalities framed within these 5

vertical categories. Following the design principles of ASSIST-IoT architecture, the conceptual abstraction that

must be internalised is the following: ASSIST-IoT architecture will allow (and put the means) to define enablers

and describe properties targeting vertical capabilities in an IoT deployment. Additionally, a specific set of

enablers are defined as inherent, meaning that those will be present in any ASSIST-IoT deployment in order to

provide a determined suite of ASISST-IoT essential innovations.

Therefore, the objective in this section is three-fold:

• To define what each of the verticals means. This entails describing the overall concept, showcasing

relevant examples and outlining the potential for NGIoT deployments that those capabilities cater.

• To describe the inherent enablers or the cross-cutting properties that will be needed per each vertical.

This explanation aims at crystallising the abstraction of each vertical into particular implications when

devising an ASSIST-IoT deployment.

• To propose an initial list of potential enablers to be created. This part will consider the different

expectations during ASSIST-IoT in terms of pilots, tasks’ scope, particular needs, etc.

4.1. Self-*
Self-* System is a system that is autonomous or semi-autonomous alongside some dimension. Autonomous in

this context means that there is no need for constant overview from human operators. In order to realise Self-*

capabilities, the functionalities with focus on Self-*- system defined in terms of ASSIST-IoT architecture must

be realised. To do that, the State-of-the-Art analysis has been carried out, altogether with ASSIST-IoT’s Pilots

(stakeholder concerns – see Section 2.1) and professional experiences.

In the Figure 10 it can be seen that ASSIST-IoT’s Self-* correlates to “cross-product” of cross-cutting functions

related to Resilience and Reliability with Intelligence and Availability which might help narrowing down the

initial scope of Self-* enablers to those closely related to broadly understood DevOps and software reliability.

After some thought, this conclusion is not that surprising – as one could argue that the basic feature of Self-*

system is that of ensuring its reliable operation now and in future.

10 https://www.ibm.com/es-es/cloud/watson-iot-platform
11 https://onem2m.org/developers-corner/tools/open-source-projects
12 https://www.universaal.info/

https://www.ibm.com/es-es/cloud/watson-iot-platform
https://onem2m.org/developers-corner/tools/open-source-projects
https://www.universaal.info/

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 28 of 63

One of the most basic and important features of any network is reliability. First step towards that direction is

for the system to be able to diagnose a fault. This is where self-diagnosis is introduced. Self-diagnosis is a

capability of a system to detect erring behaviour within itself. Counterpart to fault detection is fault localisation

as usually it is not enough to say that a system has faulty components - it might be necessary to pinpoint which

component (or a set of those) is responsible.

Building on top of self-diagnosis, the next logical step is to enrich the system's ability to fix faulty elements

(either a group of faulty elements, fix them partially to restore expected behaviour or as a last resort notify

human operators). That capability is called self-healing.

Another capability is called self-awareness. A system is self-aware when it is able to interpret its own state

based on some internal domain knowledge. This implies that self-awareness is a very high-level term and might

be realised in various forms (self-healing is one of them). Due to the broad scope of this term many

classifications of those systems were introduced, pertaining to levels, scope, span and even type of objects, that

the system works with.

Self-organisation is the ability of a system to adapt to changing conditions and various problems that the system

faces in a given moment. It is often realised by monitoring itself and reacting appropriately to signals to maintain

usefulness. An example would be a swarm of robots coordinating work among each other to execute a complex

task that would be impossible to realise by a single robot.

Self-configuration allows the system to autonomously configure and reconfigure itself and its resources when

faced with changing environments to maintain its functionalities. An example would be a personal fan which

would decide RPMs based on environmental temperature.

The previous characteristics (properties of the NGIoT deployment to be achieved by ASSIST-IoT) will redound

on core enablers that may fall under various planes of the architecture. A thorough description of those will be

provided in further versions of this deliverable (D3.6 and D3.7).

Enablers of the Self-* vertical

All aforementioned Self-* capabilities will be realised via enablers. At the initial stage of architecture definition,

a final clear-cut list of Enablers targeting this vertical is unfeasible to be closed, but a general direction of where

our works should be directed towards is given below. Two enablers have been identified as inherent of this

vertical of the architecture, meaning that they should be present in every non-trivial ASSIST-IoT deployment:

• Resource Provisioning and Coordination.

• Automated Device Connection and Configuration.

Besides, a list of enablers identified so far that will be potentially developed or adapted throughout the execution

of ASSIST-IoT project to provide the functionalities expected for this vertical are listed in Table 3. This list is

preliminary and thus it is expected to change with the refinement of requirements and in the process of realising

the architecture.

Table 3. Preliminary list of potential enablers targeting Self-* capabilities

Enabler Name
Self-*

Capabilities
Horizontal

Plane Crossed
Description

Reliability and

Communication

Self-diagnosis,

Self-healing

Smart Network

and Control

Device and

Edge

All pilots and most practical problems lean on reliable

communication between its nodes. Moreover,

depending on consequences of the faulty behaviour, we

will need to ensure that particular components work as

intended (for example cranes providing its localisation

reliably).

This enabler could be extended with capability to either

perform self-healing actions (for example: send a

request to restart component) or notify human operator

that human intervention is required.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 29 of 63

Resource

Provisioning and

Coordination

Self-Awareness

Self-organisation

Data

Management

Application and

Services

To tackle problems in a changing environment we might

need to increase or decrease resourcing trying to solve

them. Well-known example would be scaling up or

down software component instances depending on the

pressure put on the system.

Additional feature might include provisioning resources

before actual increased demand based on statistical

predictions.

(geo) Localisation Self-awareness Device and

Edge

Data

Management

To solve challenges of pilots we need to localise

physical objects (containers in ports, workers on

construction sites), some devices should be aware of

their position in relation to each other (aligning cranes

and tractors). We might need to realise localisation

using absolute coordinates (GPS) or relative

(coordinates in a port).

Another form of this enabler might be a logical

localisation of data or data lineage.

Monitoring and

Notifying

Self-awareness Device and

Edge

Application and

Services

This enabler could be viewed as a general purpose by

representing it as a combination of high-level

monitoring module (which would allow to monitor

devices, logs, etc.) and notifying module that could send

custom messages to predefined system components.

For example, on construction sites we will monitor

health signals of workers. Those signals should be

monitored and in case of breaching some threshold

notification should be sent and action might be taken.

Automated Device

Connection and

Configuration

Self-awareness,

Self-configuration

Device and

Edge

Smart Network

and Control

Various devices will be joining networks (cranes,

tractors, wristbands). After joining this network, the

process of configuring and assigning work to a device

should be automated.

4.2. Interoperability
Interoperability is the ability of equipment from different manufacturers (or different systems) to communicate

together on the same infrastructure (same system), or on another while roaming. The implementation of the

project is about to take place in three different pilots. Considering this, interoperability will play an especially

important role in the fruitful completion of each of the pilots, regardless the systems used in each separate case.

Interoperability will be undertaken at three levels:

• Technical interoperability – means the ability of two or more information and communication

technology applications, to accept data from each other and perform a given task in an appropriate and

satisfactory manner without the need for extra operator intervention.

• Syntactic interoperability – allows two or more systems to communicate and exchange data in case

that the interface and programming languages are different (e.g. by using of a standardisation of the

communication between a software client and a server).

• Semantic interoperability – is the highest level of interoperability which denotes the ability of

different applications/artefacts/systems/… to understand exchanged data in a similar way, implying a

precise and unambiguous meaning of the exchanged information.

On the software perspective, the term interoperability is used to describe the technical capability of different

programs to exchange data via a common set of exchange formats, to read and write the same file formats, and

to use the same protocols.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 30 of 63

Interoperability will be addressed in terms of scalability, security, privacy and heterogeneity of data sources.

ASSIST-IoT will support data interoperability by proposing a semantic data governance toolset, offering data

sharing, privacy, security and trust enablers. Another possibility to support the interoperability approaches in

ASSIST-IoT is the adoption of DLT. Recognizing the promises that DLT brings to the table, associated enablers

will be investigated for the project, especially on which benefits (vis-á-vis interoperability) may Smart Contracts

bring. As the technology has passed its novelty phase, hurdles have surfaced during the adoption of DLT in

projects. Considering the previous fact, certain components within the DLT scope seem appropriate to be

potentially leveraged (after consideration and only to the most essential areas that will harness the benefits of

DLT) towards achieving interoperability. In particular, semantic enablers might be supported in ASSIST-IoT

by judicious use of DLT-based provenance management gand included in pertinent (established on the basis of

requirements analysis) components of the architecture. Hence, DLT may be used (after study and investigation)

as a supporting mechanism for enabling semantic interoperability between different IoT networks/platforms..

Interoperability will be a property of the ASSIST-IoT architecture that will be more thoroughly addressed in

the next iteration of this document (D3.6). This feature will be tightly related with the development of the first

enablers in WP4 and WP5, as well as with the adoption of the design principles outlined in this deliverable.

4.3. Security, Privacy and Trust

Security:

Security applied in NGIoT architectures is highlighted in different building blocks, as already mentioned in

ASSIST-IoT deliverable D3.1 (State of the Art). More specifically, references architectures such as IoT-A

Project [31] and OpenFog [26] have great influence over the one proposed by ASSIST-IoT.

In general, an NGIoT architecture like ASSIST-IoT’s, requires a multilevel and multi-plane approach when it

comes to security. Not only all the security, privacy and trust requirements should be guaranteed by the

mechanisms provided by this vertical, but they have to act within the horizontal planes and be part of transversal

enablers. These specific enables will enforce security, privacy and trust on all the planes of the architecture.

More specifically, the Security, Privacy and Trust vertical will provide the following functionalities along the

ASSIST-IoT architecture:

• Authorised registration of the IoT devices joining the network.

• Security, privacy, and trust on access and when sharing data for multiple domains.

• Security and privacy for data storage.

• Security monitoring and incident response to avoid cyberthreats.

Access control mechanisms are core security mechanisms for implementing security features that require

identification with proper authentication and authorisation. The following terms describe different entities and

actions that take part in access control processes.

• Access: is an operation that allows an entity to view or modify information resources.

• Resources: any service, knowledge, or information which is published, shared, or registered.

• Resource provider: any entity or organisation which provide resources in a connected environment.

• Client: any user or organisation which request a specific resource provided by a resource provider.

• Client profile: the identity of a client which provides information about the client and the purpose of

requesting a specific resource.

• Permission: a special authorisation rule which govern how a resource is being accessed by the client.

• Capability: a mechanism that contains resource access permissions which is entitled to each profile.

• Authentication: is a process by which the credentials provided by an identified entity are compared with

those memorised/created in the system to ensure that it is effectively who or what it claims to be.

• Authorisation is a process of granting, or automatically verifying, permission to an entity to access to

the requested information after the entity has been authenticated.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 31 of 63

Enablers of the Security part of the vertical:

In order to fulfil the aforementioned requirements within the ASSIST-IoT architecture, the following inherent

key enablers have been identified so far:

• Identity Manager enabler.

• Authorisation enabler.

• A collection of monitoring and incident response enablers (see Table 4 below).

• Distributed Ledger Technology DLT related enablers (see the reasoning in the Trust and Privacy part

and the list in Table 4).

Figure 15. Security enablers for ASSIST-IoT architecture

ASSIST-IoT architecture will require a multilevel security monitoring solution that will need to adapt to

different services and server instances in all the horizontal planes. One of the major difficulties will be the

different objects to manage, and the capacity of those to generate more pieces of information. Security

monitoring mechanisms, which basic architecture is shown in Figure 16, will provide security awareness and

infrastructure monitoring for threat detection and incident response to the architecture deployed.

Figure 16. Structure and mechanisms for security monitoring enablers

A tentative list of enablers of this vertical targeting security is presented in Table 4. It should be highlighted that

this is a preliminary list and it is expected to change during the execution of the project.

Table 4. Preliminary list of potential enablers targeting Security

Enabler name Description Planes involved

Candidate

technological

components

Identity

Manager

enabler

Identity manager enabler will be responsible for

identifying and authenticating to have access to the

resources by associating user rights with established

identities. Identity manager enabler will perform

authentication phase of access control process. Identity

manager will process and validate the identity for later

control the access to the resources by the authorisation

enabler.

Data Management

Application and

Services

OAuth2,

Federated

identity, W3C

VCs

Authorisation

enabler

Authorisation enabler. Identity manager enabler is

focused on authentication while access management is

aimed at authorisation. Both processes compose the

access control workflow and process. Authorisation

enabler is based on XACML standard [32] security

Data Management

Application and

Services

Software

implementations

for XACML

existing

components to be

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 32 of 63

policies, results on obligations actions to be deployed after

the evaluation process

• PAP (Policy Administration Point). Offers the

interface for the security policy definition.

• PDP (Policy Decision Point)

• PIP (Policy Information Point)

evaluated or

other modules

developed ad-

hoc.

Security agent

enabler

Perform functions of an endpoint detection and response

system, monitoring and collecting activity from end points

that could indicate a threat

All horizontal

planes

Wazuh agent

(Wazuh)

Security

monitoring and

threat detection

enabler

Security monitoring enabler for threat detection and

incident response. Provides security awareness and

visibility and infrastructure monitoring.

All horizontal

planes

Wazuh (Wazuh)

Collector

enabler

Collector enabler will perform data shipper function and

will enable transference and collection of logs and

metrics. Software component based on lightweight agents

and send data from machines

All horizontal

planes

Beats (Elastic)

Storage and

search analytics

enabler

Search engine and distributed storage for data collected

form the infrastructure under study

All horizontal

planes

Elasticsearch

(Elastic)

Log

management

enabler

Log collection and log aggregation enabler to further

analysis and process

All horizontal

planes

Logstash

(Elastic)

Visualisation

enabler

Analytics and visualisation platform All horizontal

planes

Kibana (Elastic)

Privacy and trust.

In ASSIST-IoT, privacy and trust per design will be addressed by the introduction of DLT-related enablers.

DLT is a novel technology that has numerous uses. DLT is known for the opportunity to decentralise procedures,

resilience to changes, anonymity, and immutability to data. The implementation of carefully selected DLT

mechanisms within ASSIST-IoT will be tackled from various viewpoints, both purely technological (for the

architecture) and dependent on the use cases.

However, privacy and trust are somehow inter-twinned. After an initial research in the literature, a basic

structure figure has been envisioned to harmonise the adoption of traditional security elements (see previous

Security part) with a DLT infrastructure.

Figure 17. Harmonisation of DLT and Security enablers in ASSIST-IoT

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 33 of 63

This initial concept is showcased in Figure 17, where the PAP policy (security-wise) can be central, controlled

by an admin team and replicated in the DLT - probably using Smart Contracts. The DLT can be used to provide

resistance to unauthorised changes to policies.

The possibility of adopting DLT both as a dedicated enabler and as a component of other enablers to handle

devices and software inside an enabler will be explored. Regardless of the approach chosen, judiciously applied

DLT techniques will enhance the security in sharing data, enforce access control mechanisms, enhance data

integrity verification, allow auditing, and support federated learning (to be conceptualised) with its

decentralisation.

To sum up, the DLT adoption is envisioned to offer the opportunity for protecting the data along with their

transmission by contributing to access control, data integrity verification, and auditing.

Enablers of Privacy and Trust part of the vertical:

About secured data sharing in ASSIST-IoT, blockchain and/or DLT-related enablers (e.g., Directed Acyclic

Graph -DAG- and/or Blockchain – to be investigated) will be used to guarantee data sharing among

heterogeneous devices. A set of enablers within ASSIST-IoT architecture that could be acting as data producers

and consumers will be identified and authenticated using DLT-based mechanisms (e.g., using certificates tied

with Hyperledger Fabric Certificate Authorities) or Verifiable Credentials (VCs) generated in accordance with

W3C specific standards), (see also Identity Manager in the security part of the Section). These mechanisms

might be inter-twinned with the distributed broker identified in the Data Management plane of the ASSIST-IoT

architecture.

DLT in ASSIST-IoT will allow IoT devices at the Devices and Edge plane to establish secure communication

channels and exchange verifiable credentials that act as means of their certification by a root of trust (see also

Identity Manager in the security part of the Section). At Data Management plane level, data providers and

consumers (potential DLT component to be studied) might have appropriate applications to authenticate

themselves using certificates or attribute-provisioning services allowing a control of with whom their data will

be shared.

Access control mechanisms in an NGIoT deployment system must be conceived from two perspectives. On

the one hand, the security viewpoint was addressed in the previous part of the section. On the other hand, privacy

and trust also play a role in their definition. Data access mechanisms based on Smart Contracts deployed on a

Peer-to-Peer permissioned network (e.g., Hyperledger Fabric) may further enhance the secure data sharing by

controlling the access to (refined) sets of data. Moreover, the usage of Smart Contracts can enable translation

of conventional agreements into automated transactions, providing transparency, assurance and provenance,

and as such a better and more trusted collaboration among the entities that exchange data.

Another relevant aspect in the Privacy and Trust vertical of ASSIST-IoT will be the data integrity verification.

DLT-based technologies enable immutability of data kept on the ledger. Proper data integrity verification

mechanisms employed in ASSIST-IoT architecture will allow data consumers to verify the integrity of the

exchanged data.

Furthermore, the specific property of the immutability of the data kept on the ledger can be leveraged for logging

and auditing selected data sharing transactions in an immutable way allowing for transparency, auditing,

non-repudiation and accountability of actions during the data exchange related actions from the part of the

involved stakeholders, i.e., for the enablers of the ASSIST-IoT architecture that are involved in data exchanges.

Besides, an intriguing aspect that this vertical (in the Privacy and Trust part) could cover is securing

decentralised intelligence. Decentralisation and federation (Federated Learning – FL) are interesting key novel

concepts in the ASSIST-IoT technological proposition, therefore the architecture should research most

appropriate ways and include enough provisions to allow the “conceptualization and testing” of DLT-powered

Federated Learning in the project.

With regards to ASSIST-IoT, the DLT-based FL techniques will be implemented within the architecture for

representative scenarios. This approach could enhance the privacy of data exchanged among the edge nodes

when they execute AI functions to extract knowledge from contextual and streaming data within the ASSIST-

IoT architecture. More specifically, ASSIST-IoT architecture will foster the use of DLT-related components to

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 34 of 63

exchange the local, on-device models (or model gradients) in a decentralised way avoiding single point of

failures acting as a component to manage AI contextual information in an immutable form, and avoiding as well

alteration to the data.

In general, it should be noted that usage of DLT imposes scalability and performance overheads which may

cause hurdles in the use case related requirements for (near) real-time provision of results.

Table 5. Preliminary list of potential enablers targeting Privacy and Trust

Enabler name* Description Planes involved Preliminary candidates

Logging and

Auditing enabler

Allow the documentation of

data usage and data usage

billing, when applicable

Data Management IDS (Blockchain-based) Clearing House,

Hyperledger Fabric Chaincode (Smart

Contracts), cryptographic techniques.

Data integrity

Verification

enabler

Provide mechanism for Data

Integrity Verification

Data Management Hyperledger Fabric Chaincode,

cryptographic techniques.

Distributed

Broker service

enabler

Support immutability and

non-repudiation of selected

aspects of connections

between enablers

All horizontal

planes

IDS Clearing House, Hyperledger Fabric

Chaincode, cryptographic techniques.

DLT-based

Federated

Learning enabler

Facilitates exchanges of

parameters of on-device local

data models in an immutable

and decentralised way

Device and Edge Hyperledger Fabric clients - light nodes,

openDSU), DAG (IoTa), cryptographic

techniques.

*Please, note that this table is quite preliminary. DLT-based enablers are prone (more than others in ASSIST-IoT

architecture) to be changed/re-focused due to their dependency on forthcoming design principles. Extensive discussions

are on-going between task leaders, architecture designers and also stakeholder representatives to fine-tune the approach of

these (and further) enablers.

4.4. Scalability
Scalability vertical in ASSIST-IoT is a property of the system that is present due to (i) the design principles

followed, (ii) the container orchestration technologies leveraged, and (iii) the functionalities covered by the

Planes and other verticals of the architecture. This means that no specific enablers are provided to guarantee

this property, but rather comes implicitly from all the former.

The Scalability vertical addresses the dynamic technical and business needs behind NGIoT deployments in

general, and ASSIST-IoT in particular. Because of the variability of edge/fog continuum scenarios for the

NGIoT, the ASSIST-IoT architecture envisions to enable elastic scaling deployments ranging from modest

barely local operations up to large heterogeneous deployments based on demand features and functionalities.

This scalability is essential for in order to adapt to different workloads, performance, costs, and other business

needs. From ASSIST-IoT, and following OpenFog RA [26], Scalability will involve three main dimensions:

software, hardware and communication capabilities.

Scalable hardware

It involves the ability to add and modify the configuration of the internal elements (either sensors, actuators, or

edge/fog nodes) of an NGIoT deployment, as well as the numbers of and relationships between them, including:

• Computation scalability: from single core CPUs on PLCs to specialised GPUs with thousands of cores

required for AI model training.

• Network interfaces scalability: from a single wireless (or wired) interface to large arrays of wireless (or

wired) interfaces with aggregate capacities of many Gbps.

• Storage scalability: from simple flash memory chips to large arrays of cluster disks.

This particular scalability dimension will be provided mostly by the capabilities of ASSIST-IoT Nodes and

Smart IoT Devices, which final extent will be determined during their specification and design stage. The

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 35 of 63

provisioning of new sensors, actuators, interfaces, etc. will be acknowledged by the system, requiring the

participation of functionalities from the Application and the Network planes.

Scalable software

It will be of paramount importance, as it will not only include applications, but also the infrastructure to run

them, as well as optimal management of those resources.

• The management infrastructure of ASSIST-IoT must scale to enable the efficient deployment and

ongoing operation of tens/hundreds of computing/processing nodes in support of thousands of smart

and connected things. To do so, a scalable orchestration will manage the partitioning, balance, and

allocation of resources across the ASSIST-IoT network. As business data analytics algorithms will

handle data of several orders of magnitude, it will also have a particularly aggressive scalability target.

To do so, composability and modularity are key aspects of software scalability, where individual

hardware and software components are assembled into a NGIoT node optimised to run the specific

applications required (e.g., microservices running over basic containers).

To cope with this scalability dimension, Kubernetes and related technologies for container orchestration

at the edge will be leveraged to schedule and monitor containers in ASSIST-IoT, as explained in Section 3.1.

They try to provide these functionalities so developers can focus only on running in the most reliable and safe

manner their NGIoT applications. However, although Kubernetes is great at offering a common layer of

abstraction across different environments, many companies are looking at it mostly for its extensibility,

portability and scalability. Three k8s architectural patterns will be considered, which application will depend

on the constrains and available hardware in a particular ASSIST-IoT scenario:

1. Kubernetes Clusters at the edge: instead of deploying a high availability cluster, a minimal version of

k8s in a single-server machine shall be used. Then, platforms to manage and orchestrate container

workloads on multiple clusters may be used.

2. Kubernetes Nodes at the edge: For those cases where the type of infrastructure is limited at the edge,

so that it is not possible to consider the installation of a cluster, a minimal version of k8s node at the

edge can be deployed, while the main k8s cluster can be placed at a cloud provider or in a colocation

data center. Networking may become even more important, so that the k8s control plane can reside in

the cloud and k8s nodes, or even in devices at the edge, with an agent to interact with the k8s API.

3. Kubernetes Devices at the edge: The open-source Akri project allows registering native k8s resources

leaf devices such as IP cameras and USB devices at the edge. It is a similar pattern as the previous one

(a k8s node at the edge is still needed), but it does not need to install Kubernetes on a device.

The use of container orchestration systems is not the only way that addresses software scalability in ASSIST-

IoT. Both microservices architecture and containerisation design principles contribute to it, bringing the

benefits specified in Section 3.1 in comparison to the use of Virtual Machines or the adoption of SOA or

monolithic architectures.

Scalable communication capabilities

It involves the ability to modify the configuration of the network elements, including among others:

• Nodes scalability: that allows changes in size as more applications, or objects are added or removed

from the network (see Section 6). To do so, it is envisioned that the scalability can range from adding

capacity to individual nodes by adding hardware like equipment, or by adding software and/or pay-as-

you-grow licensing (e.g., X-as-a-service – XaaS).

• Performance scalability: that enables growth of capabilities in response to application performance

demands (e.g., reducing round-trip-time latencies between sensors and actuator).

• Reliability scalability: that permits the inclusion of optional redundant capabilities to manage faults or

overloads, as well as to ensure an integrity and reliability at scale.

• Security scalability: achieved through the addition of security modules (HW and/or SW) to a basic node

based on the stringent security needs (scalable rights access, crypto processing capabilities, or

autonomous security features). See Section 4.3 for more details.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 36 of 63

As aforementioned, Scalability is a property of ASSIST-IoT that is addressed by the inherent characteristics of

enablers from other planes and the design principles adopted. For instance, scalability related to both

communication reliability and performance are guaranteed by the joint effort of (i) specific Self-* enablers to

be developed/adapted, (ii) the utilisation of SDN paradigm, and (iii) specific data enablers such as the Edge data

broker (to be presented in Section 5.3).

4.5. Manageability
ASSIST-IoT will consider the introduction of certain components that involve autonomous decision making

(see previous verticals). These components may rely on complex observations (human-centric, image) that

require advance management characteristics. Additionally, drawing from the decentralisation approach of

ASSIST-IoT, special manageability traits must be researched so that the control of this autonomy and

reconfiguration can be done in a distributed way. Besides, the different outcomes of the enablers may feed other

enablers’ parameters located at diverse locations. All the previous drives the need of introducing manageability

features beyond the classic centralised approach (controlling the deployment from a single, cloud data centre).

The purpose of the Manageability vertical in ASSIST-IoT goes beyond the classic management lifecycle of the

nodes in an IoT deployment. Manageability in ASSIST-IoT refers to managing nodes and every configuration

option over any enabler running in a particular deployment of the architecture.

Manageability enablers will be developed in ASSIST-IoT architecture to cover the following functionalities:

• Allowing cross-cutting coordination and orchestration between enablers. This may be introduced by

enablers whose components help reduce complexity and improve configuration capabilities.

• Enhancing the management of enablers’ outputs (e.g. AI methods results) towards self-autonomy and

self-awareness. This will mean providing for (semi-)autonomous actions undertaken by the ecosystem

always with the intervention of the human in the process (via these Manageability enablers).

• Creating end-to-end workflows involving all pertinent sub-systems. This will mean the creation of

enablers (aligned with other verticals such as Security, Interoperability and Scalability) for re-deploying

the architecture depending on enablers’ outcomes throughout the Edge-cloud Continuum approach.

This will also mean the potential creation of flow orchestrator enablers coordinating the exchange of

information, messages and alerts between enablers (aligned with DLT instructions) and services (see

Section 7). Workflow orchestration will be strongly related to decentralisation mechanisms, as those

must consider management across multiple nodes (located at various tiers – Section 7) and devices.

• Supporting dynamic ecosystem re-configurability (possibly without the need for a restart, or only local

restart) available to users, but also supporting Self-* enablers. Re-configuration (in the ASSIST-IoT

context) will take place based on the needs of the different deployed enablers and the global system

performance (enablers, nodes, network, etc.).

The creation of enablers targeting this vertical will be mainly measured (in terms of benefit for a NGIoT

deployment) in uptime. The fact of introducing Manageability vertical (responding to the previous aims) will

optimise the uptime of the different enablers (other planes and verticals) running in the ASSIST-IoT

deployment. This is directly related to the capacity of re-configuration and adaptability of the system.

As an architectural decision, the first design mandate with regards to Manageability will be to force all enablers

to include (in their interfaces) a baseline set of methods/attributes to ensure manageability. This will mean

including a specific series of API functions that all enablers will need to comply with.

Finally, any Manageability enabler to be deployed in an ASSIST-IoT instance must consider the plurality of

devices for interaction. This will mean not restricting the management from a central entity and a console, but

taking into account different access methods (UI, APIs) from different devices (smartphone) connecting to

different nodes of the architecture.

Enablers of the Manageability vertical

The inherent enabler for Manageability in ASSIST-IoT will be the orchestrator of enablers deployment.

While this enabler will be a matter of study within the DevSecOps procedure, it is clearly targeting

manageability features in the architecture, therefore will become the crucial element of this vertical.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 37 of 63

DevSecOps will be aimed at designing the end-to-end flow of deployment in ASSIST-IoT, considering security,

agile integration and methodological concerns. However, the orchestration enabler (of study here) consists of

the software mechanism through which one user of the system will actually be able to analyse the Deployment

View and order the creation/edition/removal of enablers (where, how, when, with which resources, etc.).

Additionally, this inherent enabler of the architecture may automatically re-configure the enablers deployed

based on a series of rules, events, KPIs, user-settings, etc.

This enabler will be formed of various “enabler components”, which could be a combination of different

technologies or be instantiated by a single building piece. This decision will mostly depend on the will of the

system owner of each ASSIS-IoT deployment. Initially, the schema of this enabler might be as follows (to be

fine-tuned):

Figure 18. Inherent enabler of Manageability vertical

Particularisation of this enabler, as well as selecting preferred technologies (one per component) will be a matter

of study for the next version of this deliverable (D3.6). The enabler template will also be completed by then.

Besides, a list of enablers identified so far that will be potentially developed or adapted throughout the execution

of ASSIST-IoT project to provide the functionalities expected for this vertical are listed in Table 6. This list is

preliminary and thus it is expected to change with the refinement of requirements and in the process of realising

the architecture.

Table 6. Preliminary list of potential enablers targeting Manageability vertical

Enabler name Description Planes involved

Candidate

technological

components

Orchestration of

enablers deployment

User of the system able to create, edit and

remove enablers.

Smart Network

Devices and Edge

ISTIO, GKE, MANO,

Others from T4.2.

Enablers’ outputs

management

Management of the results of the different

enablers. UI or tool for allowing the user

forward/customise the use of those results.

Data Management

Application and

Services

-

Workflow between

enablers based on

events, messaging

exchange, or others

UI-based tool for representing nodes,

enablers and enabler components, allowing

their interconnection (graph-like),

following architecture principles.

Devices and Edge

Data Management

Application and

Services

Argo, Apache Airflow,

Plynx, Brigade, Dagster,

Node-red, Custom enabler

components over those.

Devices management Enabler for monitoring devices and nodes

in a deployment, allowing to monitor status

and current work (in terms of enabler

components).

Devices and Edge

Upswift, openBalena,

Particle, DataV,

QuickLink Others from

T4.1 analysis.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 38 of 63

5. Functional View

As aforementioned, the Functional View, also sometimes referred to as Logical View, has the primary objective

of showing the functionality required to fulfil the user needs and address the stakeholders’ concerns. It describes

the main system’s functional elements, their responsibilities, interfaces, and primary interactions [3]. Apart from

the main functional elements that have to be present within an ASSIST-IoT architecture, the project targets the

design, development (or adaptation) and implementation of a set of “core” enablers to enhance the

functionalities of the elements of the different planes of the architecture. Hence, the objective is three-fold:

• To define the main functionalities that each plane has to provide in an ASSIST-IoT system, jointly with

a functional diagram showing the main interactions between the different identified elements

composing the plane.

• To describe the inherent enablers that will be developed or adapted in each plane, aiming at enhancing

the basic functionalities provided by the elements of the plane.

• To propose an initial list of potential enablers to be created. This part will consider the different

expectations during ASSIST-IoT in terms of pilots, tasks’ scope, particular needs, etc.

In the following subsections, a functional decomposition is presented for each of the horizontal Planes of the

conceptual architecture. It should be reminded that this is a first version of the architecture and it will be refined

in two following iterations, so some interfaces may not be present in this document or may suffer changes during

the execution of the project.

5.1. Device and Edge Plane
The Device and Edge plane is the logical abstraction of ASSIST-IoT for the functionalities that will interface

with sensors and actuators along with network functions. The innovations to be carried out in the architecture

of ASSIST-IoT associated with this plane will fall under four different functional blocks (see Section 3.2.1): (i)

Analytics capabilities, (ii) AI capabilities (federated learning), (iii) enhancement of IoT devices smartness and

(iv) communication capabilities.

The functionalities of the Device and Edge plane are executed by nodes. Nodes provide the hardware bedrock

for the NGIoT architecture and contain hardware and firmware (hardware-specific software) to support the

containerisation of enablers.

Nodes (see also Section 6).

In general, a node contains the hardware bedrock on top of which ASSIST-IoT enablers run. To support

containerisation, as described in section 3.1, the general architecture of a node consists of hardware, a hardware

abstraction layer, an Operating system and a Container runtime (e.g. Docker) on top of which containerised

enablers can be operated (see Figure 19).

In ASSIST-IoT, a node can be connected to sensors and actuators (what is called a Far-Edge Node). Sensors

might be very basic, like temperature and humidity sensors or might be very complex like LIDAR and cameras,

which generate huge amounts of data. Actuators span from traffic lights, fans, etc. to high data consuming

displays. The captured sensor data can be made available to the network (through the aforementioned nodes) by

means of the communication capabilities and the physical network interface or can be stored in memory. In-

memory stored data is also used by the Analytics and AI capabilities. Memory can also be used to prevent data

loss in case the network connection is lost (e.g., when a wireless communication interface is used). Sensors and

Actuators can be interfaced to an Edge Node or could even be part of it (e.g. embedded sensors), extending the

possibilities of the Edge Node. In addition, each node may manage one or several Smart IoT device interfaces.

A smart IoT device has the same architecture as an Edge Node. A Smart IoT device can either be connected to

an Edge Node or be connected to a network directly through the Physical network interface. The physical

network interface can be a wired (e.g. Ethernet) or wireless (e.g. WiFi, Bluetooth, Lora, etc) interface.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 39 of 63

Figure 19. General node functions

An example of an IoT device smartness enabler can be the annotation of images for AR purposes. In this case,

only annotated data needs to be communicated to the node instead of sending huge amounts of image data to

the cloud to be annotated and sent back to the node. Analytics capabilities can analyse/filter/process data. The

results can be communicated to the network, stored, can be used to control an actuator or can be used as input

for the AI capabilities enabler e.g. for federated learning.

Depending on the node application the node can be battery-powered. This means that the balance between

energy consumption and compute power needs to be taken care of depending on the required autonomous

operating time. Another potential enabler in this regard could be using AI for ensuring energy balance in Edge

Nodes.

Functional blocks

Table 7 relates the four functional blocks that have been identified for this plane. The key concept here is that

in an ASSIST-IoT deployment, enablers will be developed falling under one of the following building blocks,

that serve as an abstraction of the functionalities/innovations of the NGIoT that can be included in this plane.

Table 7. Functional blocks of the Device and Edge plane

Building block Description Potential enablers

Analytic

capabilities

Analyse data to make decisions based on

captured data, vision, audio, text, etc.

Custom-based Python enabler, FPGA and VHDL for

latency optimisation.

AI capabilities

(Federated

Learning)

Framework to implement AI based

models and federated learning.

AI capable micro controller or processor from ST,

NXP, Microchip, Renesas, etc. to implement compute

power. Custom Python component(s) to implement

algorithms. Akka for distributed systems.

Enhancement of

IoT devices

smartness

Application specific intelligence, data

processing to enhance data that can be

used by e.g. the AI capabilities.

Image annotation, AR/VR engine, signal processing

algorithms.

Communication

capabilities

Interface with the network and/or Smart

IoT device.

Extension in the node for using the following

protocols: Ethernet, WiFi, Bluetooth, ZigBee, 5G,

RS232, RS485, DHCP, TCP/IP.

At this point, no inherent enablers have been defined. Instead, during the first moths of the project, this plane is

focusing on the design of Technological Components to carry such enablers. These the two Technology

Components in the plane are: (i) a Gateway/Edge Node and (ii) a Smart IoT Device Node. It is the objective of

the project to, apart from devising a set of innovative enablers in this plane, to create two novel nodes that will

be, per design, compliant with ASSIST-IoT architecture:

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 40 of 63

• Novel Edge ASSIST-IoT Node.

• Novel Smart IoT Device Node.

These nodes will be prepared to connect with other nodes compliant with ASSIST-IoT and to directly execute

enablers being scheduled and orchestrated by ASSIST-IoT structure.

5.2. Smart network and Control Plane
The Smart Network and Control plane is in charge of key aspects of the ASSIST-IoT architecture. On the one

hand, it is responsible for the connectivity among network elements, aiming at ensuring low latency and

resiliency. On the other hand, this plane covers as well the orchestration of virtualised functions, not only for

network-related functions (e.g., VNFs for delivering services such as load balancing, firewall, packet inspection,

etc.) but also for Next-Generation functions such as data governance, interoperability, privacy, security, and

intelligence, among other functionalities.

This plane has been designed following the SDN/NFV paradigm, considering auto-configuration capabilities to

provide continuous support for real-time applications. To this end, the plane is composed of four functional

blocks, namely (i) smart orchestrator, (ii) SDN controller, (iii) VNFs and (iv) self-contained network. The

functionalities offered by each one of the functional blocks are explained hereinafter, which general components

are presented in Figure 20.

Figure 20. Functional View of the Smart Network and Control plane

Smart Orchestrator

The orchestrator is the central component of a system based on NFVs, being responsible of both resource and

network service orchestration. It ensures that network services have their needed computational, memory,

network and storage resources, and manages the lifecycle of the NSs deployed over the virtualised infrastructure

(NFVI). ETSI has developed a standard for NFV Management and Orchestration, known as ETSI NFV MANO,

being the most leveraged architectural framework for NFV orchestration. The NFV MANO (hereinafter referred

to as just MANO) is composed of three main components: the NFV Orchestrator (NFVO), the VNF Manager

(VNFM) and the Virtualised Infrastructure Manager (VIM).

The NFVO is responsible for different functions, including (i) the onboarding of NSs and VNF packages, (ii)

the management of NS lifecycles (from instantiation and scaling to performance measurements and termination)

and (iii) global resource management, validation and authorisation of NFVI resource requests. The VNFM is in

charge of the lifecycle of VNF instances (instantiation, in/out-scaling, updating and/or upgrading, and

termination), and lastly the VIM controls and manages the NFVI resources, while collecting performance

measurements and events. Additional functionalities of these components can be found in [33], although new

ones are being presented in newer releases of the NFV reference framework.

MANO solutions are usually composed of the NFVO and VNFM entities, thus controlling both VNFs and NSs

onboarding and lifecycles, whereas VIMs technologies are installed independently. There are a plethora of

solutions, including OSM, ONAP, Open Baton, OPNFV, Cloudify, Tacker, Open-O, etc. ASSIST-IoT will

address this functional block not only by implementing it, but the project will develop specific enablers based

on two principles. The principles are the smart auto-configuration capabilities, which aims at ensuring QoS

demanded by end-user services, and agnosticism of the underlying orchestration solution.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 41 of 63

ASSIST-IoT orchestrator will be initially based in MANO specifications, although keeping a close look towards

current trends in case the NFV orchestration paradigm is shifted towards k8s-centric [23]. At the moment,

following the general tendency towards containerisation, k8s and related technologies for low-resource devices

(e.g., k3s) will be the primary selection for the instantiation of VNFs rather than their deployment on top of

Virtual Machines (VMs), this is, leveraging Kubernetes technology as a VIM integrated in MANO.

SDN Controller

This network component is in charge of connecting different nodes of the infrastructure through dedicated

switches, or routers, with SDN capabilities. Since SDN-related equipment has the control plane decoupled from

the data plane, its functionalities (e.g., traffic prioritisation, output ports, etc.) are taken over by the Controller,

which can configure them through dedicated interfaces after making decisions based on information gathered

from the network. A general architecture of SDN controllers is presented in Figure 21. In summary, controllers

are composed of a core, which contains the main functions related to network configuration and monitoring,

and a set of interfaces, which are needed (i) to allow applications to interact will the controller and the data

plane of devices (northbound interfaces), (ii) to configure and monitor physical and virtual network devices

(southbound interface, typically with OpenFlow controller), and (iii) for communicating with other controllers

or with legacy equipment (east/west bound interfaces). It should be highlighted that the exposed interfaces vary

among the different controllers available, and that although most of them have the same basic functionalities,

different network operations are integrated in them.

Controllers can be applied in different parts of the NFV architecture shown in Figure 21. According to [34], the

controllers can be positioned in:

• The VIM, merged with it,

• a virtualised VNF,

• as a part of the NFVI (without being a VNF),

• as part of the OSS/BSS,

• the physical plane, realised as a PNF.

Figure 21. General overview of SDN Controller [35]

Regardless of the position as well as the number of Controllers within an ASSIST-IoT supported deployment,

they must ensure connectivity not only among the VNFs deployed on a particular NFVI Point of Presence (PoP,

for instance, an edge server with virtualisation capabilities), but also among different NFVI PoPs that may be

available in the same site (i.e., among those nodes with virtualisation capabilities). An ASSIST-IoT SDN

Controller must provide at least services (a) for routing data based on usual routing protocols, (b) for topology

discovery and management, (c) for tracking of the elements, and (d) for capturing packets metrics to have

information of the traffic of the network, having all this information stored within (e) a storage manager.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 42 of 63

Regarding its interfaces, they must at least provide OpenFlow 1.3 as one of the southbound interfaces, and

a REST northbound interface accessible through a command line interface (CLI) for facilitating the access of

SDN applications.

In ASSIST-IoT, apart from selecting and deploying an SDN Controller (or many), it will be supported by

enablers to improve the performance of SDN-based networks, leveraging telemetry and historic

information and/or network-specific AI models, in terms of routing, filtering, access, etc., targeting NGIoT

deployments. Hence, a set of enablers will be developed to align ASSIST-IoT with the concepts of intent-based

networking (IBN13). Besides, it should support decentralised topologies and high availability, so in case of

failure of a Controller, its managed nodes can be controlled by another. The latter can be achieved in different

ways, for instance, by either using a slave Controller instantiated in a different node which monitors the master

Controller and take over only in case of failure, or by having a clustering of Controllers within the same node

[36]. As with the MANO component, the necessity of an abstraction layer will be explored aiming at decoupling

the actual selection of the SDN Controller from the provided technology.

It should be highlighted that despite the fact that SD-WAN solutions also make use of a dedicated SDN

Controller, they fall within the responsibility of the self-contained network functional block and hence it is

outside of the scope of this building block.

VNFs

VNFs are the cornerstone of any NFV deployment, since the former are the logical result of the latter. VNFs

execute particular network functionalities usually over generic virtualised hardware, functionalities that outside

this paradigm have to be performed by dedicated hardware. Although they were originally envisaged to be

instantiated on top of Virtual Machines, current trend is moving towards the use of containers. Thus, it is not

unusual to refer to the later as Cloud-Native Network Functions (CNFs) or Kubernetes-based VNFs (KNFs). In

any case, a Network Service can be composed of a combination of one or different types of virtualised functions,

and even also Physical Network Functions (PNFs), which refer to classical dedicated hardware that performs a

specific network function. In ASSIST-IoT, with the exception of PNFs, the rest of virtualised functions will be

referred as VNFs.

VNFs aims at providing various network functionalities such as load balancing, firewalling, WAN acceleration,

packet inspection, etc. In any case, software solutions from non-network scopes can be virtualised, so VNFs for

providing other functionalities such as data governance, scalability, security, intelligence, etc. will be integrated

so they can be managed as well by the Smart Orchestrator of ASSIST-IoT. In any case, the latter functionalities

will be provided by the different software enablers envisioned in ASSIST-IoT, and hence this section will be

focused only in VNFs that provide network-related functionalities.

In principle, any kind of network functionality falls under the scope of this building block, however, only a set

of them will be implemented within the project, according primarily to their relevance in the considered pilots.

These VNFs include: (i) WAN acceleration, which aims at optimising data transfer efficiency in Wide Area

Networks; (ii) v5GC, to have a virtualised Core for private and custom 5G access networks; (iii), traffic

classification, to categorise the network traffic into a number of application classes; (iv) virtual switching, to

have the possibility of having not only physical but also virtual switches in the network; (v) load balancing, to

distribute workloads according to the resources of the physical nodes of the Device and Edge plane and (vi) link

aggregation functions, to combine different access networks for transmitting and receiving data. If additional

functions are needed either for the particularities of the use cases or required for implementing the listed ones,

they will be developed and indicated in the next version of the architecture (i.e., D3.6).

Self-contained network

This building block response to the necessity in some potential deployments of provisioning a private network

that works over a public one, ensuring anonymisation and security of communication. Different technologies

can be leveraged to realise this kind of private Wide Area Networks (WAN), which selection depends on the

actual requirements of the deployment: Virtual Private Networks (VPNs) and Software-Defined WAN (SD-

WAN).

13 https://www.cisco.com/c/en/us/solutions/intent-based-networking.html

https://www.cisco.com/c/en/us/solutions/intent-based-networking.html

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 43 of 63

On the one hand, VPNs are secured networks that transmit data in an encrypted form between two network

elements, usually to facilitate the connection of a device to a network different to the one it belongs to (remote

access), although it can also be used to connect two networks (site-to site VPN). They can be implemented by

means of technologies such as IPSec or SSL. On the other hand, SD-WAN is proposed to apply software-defined

techniques in networking connections over wide geographic areas [37]. It simplifies the connections between

different physical sites, while providing centralised monitoring and control with flexibility and low cost. The

main advantages of this network are that (i) similarly to SDN, if allows defining network policies and manage

traffic from a centralised location without having to configure each device, thus simplifying network

management tasks, (ii) it considers application-level requirements to guarantee QoE for particular users,

locations or applications [37] and, in addition, (iii) it can manage different underlying networks (e.g., MPLS,

LTE, Internet, satellite…) as well as aggregating all the link bandwidth to increase the total throughput.

ASSIST-IoT will comprise both types of technologies: VPN and SD-WAN. The VPN connections are to grant

access of external nodes to an ASSIST-IoT deployment, while SD-WAN technology will allow connectivity

between different sites and enabling the orchestration of NSs with VNFs located in different PoP of the NFVI.

To realise the latter, ETSI MANO specifies an additional component named WAN Infrastructure Manager

(WIM). It can interact with the NFVO to control its dedicated SDN Controller, which will prepare the NFVI

PoP network gateways of the different sites to allow their connectivity. The WIM component will be part of

ASSIST-IoT, interacting with the rest of components of the plane as can be seen in Figure 22 below. Initially it

is plan to leverage Internet for the realisation of SD-WAN within ASSIST-IoT, however, it should be extended

to support other underlying networks such as the aforementioned.

Figure 22. Interaction between ASSIST-IoT components

Enablers of the Smart Network and Control Plane

According to the layered approach in ASSIST-IoT architecture, the main features of this plane will be covered

with the following inherent key enablers, which will be aided with a set of VNFs for providing specific network

functionalities:

• Smart Orchestration enabler.

• SDN Controller.

• Auto-configurable network enabler.

Other enablers have been identified to be developed, however, they are not inherent to any ASSIST-IoT

deployment since they use depend on the particular network topology of a deployment scenario (for instance,

enablers related to WAN or VPN only make sense in multi-site environments, or a link aggregator enabler is

only needed if there are multiple access networks and applications needs it). These other identified enablers are

listed jointly with the inherent ones in Table 8, aiming at providing the functionalities expected from this plane.

This list is preliminary and thus it is expected to change with the refinement of requirements and in the process

of realising the architecture.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 44 of 63

Table 8. Preliminary list of potential enablers targeting the Smart Network and Control plane

Enabler name Description
Candidate technological

components

Smart orchestration

enabler

This enabler will facilitate the interaction with MANO

components (NFVO and VIM). It will provide functionalities

as VNFD and NSD validation while serving also as abstraction

layer (decoupling actual MANO selection from ASSIST-IoT

architecture).

OSM, ONAP, OpenVIM,

Openstack, custom

components.

SDN Controller This enabler will manage the forwarding plane of the physical

and virtual switches of the ASSIST-IoT architecture, based on

the business logic applied through its northbound APIs.

OpenDayLight, ONOS

Auto-configurable

network enabler

Enabler to generate and apply policies for the SDN controller

to improve and optimise the network performance, based on AI

mechanism, for support QoS in multi-application traffic

scenarios.

Tensorflow, Keras (AI

platform), AI network

models.

Traffic classification

enabler

Enabler to classify network traffic into a number of application

classes (video, VoIP, etc.), based on ML algorithms.

ETSI ENI specification,

custom classifier, AI

platform

Multi-link enabler This enabler aims at selecting among the available wireless

access network technologies (cellular, WiFi, fluidmesh, etc.)

for transmitting data based on the target application.

Additionally, this enabler will provide reliability mechanisms,

so in case one access technology stop working it would switch

to another

Custom component

SD-WAN enabler Enabler to provide access between nodes or devices from

different sites based on SD-WAN technology. It will consist of

three elements, a dedicated node (SD-WAN edge), an SD-

WAN controller and a configuration server.

FlexiWAN, Nante-WAN,

Custom WIM component,

SDN Controller (does not

have to be the same as the

one considered as enabler)

WAN acceleration

enabler

Enabler to increase the efficiency of data transfer in Wide Area

Network. It will leverage different techniques such as

compression, latency optimisation and traffic shaping, among

others.

Custom component

VPN enabler Enabler to provide access to a node or device from a different

site considering VPN technologies in a secure and seamless

way, outside the scope of the SD-WAN enabler. It will consist

of a server and a client.

Wireguard

5.3. Data Management Plane
The Data Management plane encompasses any process, in which data is processed to deliver features concerning

data interoperability, annotation, security, acquisition, provenance, aggregation, fusion, etc.

The functionalities of this plane very often have a supporting role for other processes or applications. For

example, data communication channels in a heterogeneous fog environment have additional properties or

constraints that need to be observed. They pertain to the dynamically changing needs, but also momentary

capabilities of delivering and consuming data. This dynamic process of data supply and demand introduces new

challenges, in delivering data, where and when it is needed, taking into account security, network performance,

processing capabilities of the receivers, and even predicting demand, before it is explicitly reported. This series

of challenges are addressed by a data broker enabler.

A separate concern is data interoperability i.e. the capability of the data to be understood by multiple cooperating

systems. ASSIST-IoT approaches data interoperability with the semantic approach. It addresses the steps needed

to produce and consume so-called self-describing data, such as semantic annotation, translation and

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 45 of 63

harmonisation. In controlled systems, semantic annotation can, by itself, introduce interoperability by enriching

data with commonly understood and shared schemas, ASSIST-IoT goes a step further in using a broader

approach of semantic translation, in which data can be made interoperable, even if annotated with different

schemas. A number of supporting solutions, such as a repository of ontologies, is also planned.

The Data Management plane also contemplates leveraging DLT enablers (see 4.3) to enhance data security

mechanisms. DLT possesses characteristics that could assist the secure storing, transfer, and handling of IoT.

In more details, DLT can allow the decentralisation of the data management and can secure the data as the

immutability of data is one of the DLT characteristics. This immutability property will be applied to a set of

data integrity verification DLT-based mechanisms as well as to a set of DLT-based communication, among

different architectural layers, auditing mechanisms. Semantic data interoperability between the different layers

of the assist-IoT architecture may be supported by a DLT-based mechanism. Besides, the decentralisation of

the data has the potential to support federated learning, for example a distributed ledger can accommodate

hashes that points to the data that are stored in devices. The immutability of the data in DLT ensures that the

data have not been tampered with. Moreover, there is the opportunity to manage and control the ownership of

the data in a DLT environment. In a previous section dedicated to Interoperability, mechanisms leveraging

selected DLT technologies have been described to showcase the support of those enablers to data

interoperability in ASSIST-IoT.

Figure 23. ASSIST-IoT Data Management plane draft interconnections diagram

Additionally, the rules for processing of data on this plane will be prepared as a supporting work for processing

heterogeneous data of varying degree of confidentiality. Although this action will not result in a technological

(software or hardware) enabler, it will deliver guidelines and descriptions of pitfalls and rules, that must be

observed and attended to, when handling sensitive and non-public data.

Enablers of the Data Management plane in ASSIST-IoT:

The main functions of this plane will be covered with the following inherent enablers, with key support from

security functions provided by enablers in the Security, Privacy and Trust vertical, in particular the authorisation

and authentication enablers:

• Long-term data storage enabler

• Semantic translation enabler

• Edge data broker

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 46 of 63

In Table 9, the initial list of enablers to be developed or adapted to provide the functionalities expected from

this plane are listed (see also Figure 23). Similarly to the lists presented for the former planes and verticals, this

list is preliminary and thus it is expected to change with the refinement of requirements and in the process of

realising the architecture.

Table 9. Preliminary list of enablers on the Data Management plane

Enabler name Description

Candidate

technological

components

Semantic repository

enabler

A database of data models and ontologies offered publicly. This enabler

provides access to data models as a service. The key features include

versioning (different versions of data models), ownership (only the data

model owner may update a data model), provision & search (data models

are public and searchable) and documentation (documentation provided

by data model owner is served with the data model itself). This enabler

supports data interoperability through shared data models and semantics.

Custom component

on CMS/Django,

reSpec

Semantic

translation enabler

An intermediary in communication capable of translating streaming

messages or batch data, preserving their semantics. It enables semantic

interoperability, even in a system without a central shared data model.

Custom component

on Apache Kafka,

Scala, Akka, Apache

Jena

Semantic

annotation enabler

An enabler that annotates data with data model or ontology information,

in order to bring it to the semantic level. It has a supporting role in data

interoperability, and is dedicated to data that wants to benefit from

semantic technologies, but is not yet represented in a semantic (i.e. self-

describing) way.

Custom component

on Scala, Apache

Jena

DLT

communication

enabler

Will contemplate how to leverage DLT-enablers distributed across many

nodes, in order to enhance data integrity verification, as well as

communication auditing mechanisms. The use of DLT in this enabler is

meant to provide mechanisms that can detect data tampering in any

context – whether changing or sending a sensitive piece of data, or

logging data access and resource requests. Moreover, supporting

Semantic Interoperability mechanisms could be incorporated into this

enabler.

Hyperledger fabric,

OpenDSU

Long-term data

storage enabler

Provides dedicated storage space for users, services and other enablers.

The role of this enabler is to serve as a secure and resilient storage,

offering different storage sizes, individual storage space for separate

users, and the promise, that the data will be kept safe, in face of various

kinds of unauthorised access requests, or hardware failures.

Custom component

on MongoDB, Neo4j

Edge data broker Enables the efficient management of data demand and data supply

from/to the Edge Nodes. It optimally distributes data where it is needed

for application, services and further analysis. Data distribution is based

on reported demand and available resources at the Edge Nodes. It

provides: subscriptions and messages between the broker and the Edge

Nodes; management of message scheduling, routing and delivery;

common interfaces for searching and finding information.

Custom component

on RabbitMQ,

Apache Camel

5.4. Application and Services Plane
The three ASSIST-IoT horizontal Planes discussed above facilitate the collection of real-time data from

massively distributed sets of sensors and heterogeneous networks. However, all these data shall be exposed in

a human-centric approach to NGIoT end users.

The ASSIST-IoT Application and Services plane is intended to provide access to data via human-centric

configuration enablers. These enablers can be seen as the App Entities envisioned in the AIOTI HLA [28], i.e.,

features to provide application logic, which may include data visualisation and user interaction services, data

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 47 of 63

analytics capabilities, various kinds of data processing capabilities, data protection support and/or data

management logic14. To do so, ASSIST-IoT will develop and deploy software platforms for helping human

decision-makers to coordinate operations with special focus on sharing visibility of what is happening in various

parts of the NGIoT deployments. In particular, three main working lines are envisioned in this horizontal plane:

• The development of client-side applications, also called frontend applications or dashboards, will enable

users to see and interact with content in a user-friendly interface, including the support of business

analytics that makes use of Intelligent Decision-Making services. To do so, a mixture of HTML, CSS,

JavaScript, and ancillary libraries is foreseen.

• ASSIST-IoT will not only address web-based or mobile-based dashboard applications, but the project

will also evaluate innovative interaction mechanisms like AR/MR interfaces, considering real time

requirements and human-centricity. This type of interfaces has the potential to make an immense impact

on how people work and interact in the future, boosting operational performance efficiency (such as

cranes remote operating stations), or guaranteeing workers’ safety (such as identification of

abnormalities in workers’ physiological parameters by OHS managers), as well as end-users’ safety

(such as augmented vehicle maintenance support).

• Finally, as an open platform, ASSIST-IoT system will expose its applications capabilities via open APIs

to boost open experimentation. Therefore, the ASSIST-IoT Applications and Services plane will also

provide open APIs, over which more advanced external functionalities coming from third parties can

be onboarded, demonstrated and validated in pilot facilities.

Figure 24. ASSIST-IoT Applications and Services functional model.

Enablers of the Application and Services plane in ASSIST-IoT:

In this particular plane, classifying an enabler as inherent is a challenging task since the presence of them is

strongly dependent on the actual use case. In any case, the following enablers have been identified as such,

following the principles of (i) monitoring being a key functionality that should be present in any novel NGIoT

environment, and (ii) human-centricity being one of the cornerstones of ASSIST-IoT:

• Business KPIs reporting enabler.

• Performance and usage diagnosis enabler.

• AR/VR/MR enabler.

The full list of enablers identified so far for this plane is listed in Table 10. This list is preliminary and it is prone

to changes during the execution of the project, based on the evolution of requirements and in the actual

realisation of the architecture.

14 In addition, the App Entities may include support for cybersecurity and trust.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 48 of 63

Table 10. Preliminary list of enablers on the Applications and Services plane

Enabler name Description
Candidate technological

components

Business KPIs reporting

enabler

All valuable metrics and figures for the industrial

stakeholder/end user to be available for

representation in dashboards, reports, etc.

Grafana, Freeboard, Mozaïk,

Kibana, Tipboard, Smashing,

Dashing, ELK stack, MS Power BI,

Microstrategy, Tableau

Performance and usage

diagnosis enabler

Performance and diagnosis numbers to be

collected, so the system could highlight some

problems and act in accordance (notify to the

admin, automated recovery, fine tuning machine

resources).

Grafana, Freeboard, Mozaïk,

Kibana, Tipboard, Smashing,

Dashing, ELK stack, MS Power BI,

Microstrategy, Tableau,

Prometheus

AR/VR/MR enablers An AR vision and 3D rendering engine that will

mix the virtual content with the real world

(including localising the AR device relative to the

real-world reference, and represent digital

augmented scenes).

Holo Lens SDK, Unreal Engine,

Unity3D, Google ARCore, AR.js,

ARToolKit+, DrokidAR, Vuforia

OpenAPI Management The open call experimenters should subscribe to the

different Open APIs (like API creation, publication,

securing, and monitoring) via an API manager.

Apigee, 3scale, IBM API

management, Akana, Kone,

MuleSoft, MS Azure API

management, Postman, WSO2

6. Node View

The View of the Node in ASSIST-IoT responds to a structural aspect of the architecture. Per definition (see

in Section 3.2), one enabler of ASSIST-IoT instances its enabler components in one or various nodes of the

infrastructure of the deployment. This chapter aims at describing and characterising what exactly conforms a

node, how it is expressed in the architecture and its role in the whole play.

Simply put, an ASSIST-IoT node is a hardware element within the deployment network that can provide

computation capabilities by running some ASSIST-IoT enabler execution. These nodes might vary on

geographical location (close to the source, same building, same city, remote…), on topological spot (see Far-

Edge, different Edge tiers, etc. in Figure 26 in the next section) on processing capabilities (datasheets,

restrictions, technical specifications) and on application domain (applying only a certain subset of potential

enablers, for instance, to an SDN-enabled switch, a Smart Gateway realised by a Raspberry Pi or a full-fledged

server able to train complex AI models).

The main role of the nodes in ASSIST-IoT architecture consists of running (executing) enabler components.

These components may also be quite varied (e.g., databases, specific server endpoints) and will base their

application on the node characteristics. Typically, the nodes closer to data sources (e.g., Smart IoT devices) will

focus on I/O processes for monitoring and actuation, whereas remote nodes (e.g., cloud server in a data centre)

will focus on centralised, massive computing components (e.g., inference engines, Big Data storage).

On the other hand, being the essential piece of ASSIST-IoT communication, the nodes in the architecture will

need to be able to interact hierarchically (north-south) and laterally (east-west) with other nodes. The latter

will be the cornerstone for building decentralisation of the system upon. This communication (in ASSIST-IoT)

will be realised via REST API mechanisms, through which the different nodes will share status and components’

data to allow enablers properly function. As a matter of fact, the functioning of enablers in an ASSIST-IoT

deployment may set this interaction as their essential feature. As outlined before, these communications (north-

south and east-west) will take place providing that the instantiation of ASSIST-IoT already possesses sufficient

network connections. The Node View takes the underlying network connectivity for granted.

The Node View is represented in ASSIST-IoT using the following abstraction. Figure 25 represents the basic

capabilities that are considered in the Node View. This schema covers the communication, processing, storage

and virtualisation properties that are needed for characterising a Node and for spotting it within the system.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 49 of 63

First, the two blocks at the bottom of the figure aim at depicting the southbound communication capabilities of

a Node and the direct connections with the physical world, correspondingly. These will be especially relevant

in low-tier nodes (such as Smart IoT devices and Far-Edge nodes) for monitoring IoT devices and acting over

them.

Figure 25. Node View in ASSIST-IoT architecture

Scaling up in the abstraction, the most relevant properties of a node will be its network capacities (network

connections, IP address, etc.), its accelerators (number and type of GPUs, TPUs, FPGAs, etc.), computing

capabilities (CPUs, cores) and its storage capacity. This information will be the baseline to build the enabler

components. Depending of these capacities, a Node will have different roles and will be able to support a certain

number of enablers.

At the top of the schema, it represents the operative system and/or virtualisation/containerisation option selected.

Any node in ASSIST-IoT will have (most likely) its own operative system (Linux OS, Windows, other) or its

own virtualised/containerised environment (VMWare, OpenStack, Kubernetes) allowing them to be sub-

divided in smaller computing entities. This representation will be very useful from ASSIST-IoT perspective as

this will highly drive the different techniques/enablers that will be able to be used for that node. In

particular (see Section 5), ASSIST-IoT will base the enabler deployments on the containerisation of “enabler

components” and its distribution as a Kubernetes service among nodes. Following this approach, ASSIST-IoT

nodes will function as K8s nodes (acting either as master or slave nodes). Therefore, K8s will need to run over

the current OS of the node. In the case that this would not be feasible (operative restrictions, logistic restrictions,

low resources availability, etc.), the system will need to know which environment exists in that node to provide

an alternative mechanism for running “enabler components” upon it.

The previous form the “static” View of one Node in ASSIST-IoT. Apart from those, each Node will have

general attributes for identifying and handling them within an ASSIST-IoT deployment. These will be an

identification number, hostname, spot, current location, and the type of node per each (see Appendix B). These

data will be used by different enablers to manage the nodes, including manageability features and operative

processes enabling the execution/scheduling of “enabler components” on them.

Additionally, Nodes will also need to be dynamically monitored by and interacted with enablers. With that

purpose, an additional set of abstract properties have been defined. It has been considered that, at any moment,

one Node will be running a series of enabler components (normally more than one). Some traits of ASSIST-

IoT architecture are self-reconfigurability, manageability and adaptation. To materialise those, the owner of the

deployment (and the system itself) will need to know exactly which “enabler components” are being executed

in each node. This also opens the possibility to monitor system’s performance and facilitates

starting/stopping/interacting with those enabler components. It has been designed that every node must keep a

constant record of those and must make that record accessible.

For describing all the previous, one Node will be continuously described within ASSIST-IoT using the

template that is provided in the Appendix B - of this document.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 50 of 63

7. Deployment View

At this point, all basic elements of the ASSIST-IoT architecture have been explained. On the one hand, the

enablers (framed within Planes, functional blocks, Verticals, etc.) form the key asset the other elements orbit

around. On the other hand, the nodes (HW) hold the computing load in the architecture. However, a crucial

aspect is missing for gluing all the previous together. The way that nodes and enablers are scattered through a

specific infrastructure in the deployment form the Deployment View.

The Deployment View of the architecture aims at presenting how an ASSIST-IoT architecture is deployed to

address the specific uses cases and business scenarios. It consists, from one side, of a set of different ASSIST-

IoT nodes (presented in the previous section), distributed within different edge tiers, which are connected to

other physical elements to create an interconnected system. Systems can range from small embedded to

large fully connected ones, responding to the specific scenarios and use cases that the system aims at addressing.

Figure 26 represents an edge deployment of different tiers, considering Far-Edge nodes, Edge Nodes and Cloud

nodes. From the other side, it covers the aspects of the architecture relevant for building, testing and

maintaining services in the system. The different enablers active in an ASSIST-IoT deployment will target

specific objectives/functionalities. However, the architecture foresees the combination of enablers to build

services. Here (for ASSIST-IoT), the concept of service refers to a specific application offered by the

technology providing measurable actions/functionalities to the final user. Services (in this context) must not be

confused with the Application and Services plane division (see section 5.4). While the Application and Services

plane is a Functional View of the traits of ASSIST-IoT spotted in the higher layer of the IoT, one service in the

Deployment View may consist of the combination of, for instance, three enablers spotted in the Device and

Edge plane and Data Management plane.

The Deployment View is mainly addressed to the “system owners/developers” actors. This View will allow all

of the actors to have an all-encompassing sight of a particular service: which enablers it is consisted of; which

nodes are being used, how the enablers are interacting among them, etc. However, this View is also useful for

an end user to observe at. For a stakeholder (that just wishes to obtain a functionality from the IoT system), this

View provides a “snapshot” of where and how is ASSIST-IoT being instantiated on their infrastructure. As a

joint of both, the information managed in a Service Development View will allows those actors to take specific

actions such as maintenance, introduction of new equipment, resizing, etc. From a bird’s eye, this View will

consist of a set of software and hardware pieces that are used by ASSIST-IoT. These pieces will be completely

adjusted (and restricted) to the network infrastructure that each deployment can provide. Finally, this View will

also allow those two actors build on two directions: (i) analysing the introduction of new services (e.g.

monitoring of sensor data and applying AI models over it), and (ii) hardware technologies (e.g. AR Glasses,

new network elements adjusted to improve latency, bandwidth, etc. or to connect to external systems).

Figure 26. Deployment View of ASSIST-IoT architecture

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 51 of 63

The Deployment View represents a typical hierarchical deployment of nodes of the Edge Continuum paradigm.

However, some considerations have to be explained to avoid potential misleading in the interpretation of this

View. The characteristics and design criteria of an ASSIST-IoT deployment are driven by the following:

• ASSIST-IoT aims at extending the capabilities of decentralised, distributed architectures: it must

support specific use cases that fall under the scope of just IoT Devices and Far-Edge tiers, without

involving upper tiers or even a central one.

• Many of the (software) enablers provided by ASSIST-IoT can be part of not only decentralised but also

centralised topologies, and for this reason the Deployment View represents this possibility.

• Regarding the hierarchy, a central node might be part of the physical site (e.g., higher edge tier) or be

part of a cloud infrastructure (which would prevent it to be directly involved in low-latency

communications).

• The number of tiers and nodes is dictated by the requirements of a particular scenario. To design

it, it is needed (i) to know the hardware capabilities of the available nodes, (ii) to evaluate the workload

that will be executed in each tier, (iii) to evaluate the number of devices involved, (iv) to define the

workloads to be executed by each tier, and (v) to have the requirements in terms of latency between

nodes and with IoT devices [26].

• Communication among nodes of the same tier is considered to support a larger number of use cases

(e.g., through northbound or dedicated east-west bound interfaces for distributed ones).

• Communication between the different nodes of ASSIST-IoT will be realised through SDN physical or

virtual devices (mostly switches) and different access networks (5G, WiFi, TSN, etc.).

• One service is the combination of (at least, one) various enablers. One service may use enablers targeted

to different layers (from a Functional View perspective).

• Each enabler has its own “scope” that contains its components, possibly spread out across different

places of deployment (devices, Edge Nodes, cloud, etc.).

• The communication between “enabler components” and any other element of ASSIST-IoT architecture

will also take place via the enabler interface.

• One “enabler component” might be used by different enablers. The mechanisms for allowing this

“share” of components will be a matter of design and discussion (for deliverable – D3.6).

A real topology depends on the vertical industry in which it is expected to be instantiated, since the system

topology is strongly influenced by the physical location and the actual requirements of the use cases and

scenarios considered. In an ASSIST-IoT hierarchical system, the nodes of each tier have different scopes: (i)

Smart IoT Devices, which are differentiated from “dummy” IoT sensors and actuators as they are designed

considering enough computing capabilities to assist in decision making and data filtering and processing tasks;

(ii) Edge Nodes of the first tier, also referred to as Far-Edge Nodes, which are responsible primarily for data

gathering, real time processing and first location of intelligence; (iii) nodes in upper tiers are responsible for the

orchestration of services, the coordination of distributed and/or federated operations, and for applying

intelligence based on inputs from different nodes of the lower tier (e.g., applications that require inputs from

nodes that manage different types of devices); and lastly, in those use cases that require it, (iv) a cloud backend

is in charge of deep analysis of the captured data to extract knowledge as well as for long-term storage.

Figure 27 represents an example of the deployment of one service. In this example, one relevant actor is

designing a service that combines five enablers distributed among a wide variety of nodes, targeting various

functional blocks, and making use of diverse components.

The design, in which enablers are treated as modules, whose internals do not need to be of concern to other

enablers, is called encapsulation. Any encapsulated enabler should also be secure, which requires that all

communication channels between its components are secured, and components are not directly accessed from

outside. Encapsulation principle proposed by ASSIST-IoT enables features that are important in the IoT domain,

such as modularisation and virtualisation, and aims to deliver more abstract features, such as security by design.

It also provides a fruitful ground for separation of scopes for enablers, that aim to deliver functionalities

promised by ASSIST-IoT.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 52 of 63

Figure 27. Example of service deployment in ASSIST-IoT

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 53 of 63

8. Future Work

As advanced in Section 3.5, the architecture of ASSIST-IoT will be delivered via several iterations aligned with

different milestones of the project. This document (see Conclusions –9) has provided the starting point that will

be used in forthcoming deliveries to build upon.

Although some thorough definitions area already put in place in D3.5 (e.g., architectural decisions such as

enablers approach or Views specification), much work is still to be done from different perspectives. This

section aims at outlining the following advances expected over the architecture that will be materialised on

updated content in deliverables D3.6 and D3.7.

• Refinement of Views: The basic Views of ASSIST-IoT architecture have been described in this

deliverable (Functional, Node, Deployment). Those descriptions will be enhanced drawing from the

research in WP4 and WP5, as well as from the requirements (D3.2 and T3.4 advances). Additionally,

T3.5 team envisions potential additions in form of new Views. To mention one, there is the plan of

introducing a Data View that will represent the architecture from the viewpoint of end-to-end data flow:

from its generation, how it leaves the IoT device, how passes through different nodes and the processing

to which is exposed at each step.

• Enhancement of currently identified enablers: In D3.5, the key (inherent) enablers per plane have

been identified. In addition, some useful (already planned) enablers have been described. However,

those explanations have been done from a merely theoretical/intentional point of view. As developments

in further tasks advance, the descriptions will be refined, including problems found at their

development, additional considerations, among other.

• Inclusion of new enablers per plane and new enablers associated to verticals: Extension of the

tables presented in the sub-sections of Sections 4 and 5.

• Settlement of architectural decisions, clearly indicating the mechanisms and selected technologies

that will be guiding the materialisation of ASSIST-IoT architecture in pilots (and future deployments)

o Deployment of enablers: Specification of the mechanisms (e.g., using service YAML

descriptors) for deploying the enablers. Establishment of the tool to “run up” enablers and

selection of: K8s, K8s in combination with K3s, Akri, FLEDGE, others…

o Federated Learning and whole decentralisation approach. Some options seem valid at this point

(on how to distribute and orchestrate such intelligence) that are under discussion within

ASSIST-IoT technical team.

o Introduction of global approach to Tactile Internet as structural part of ASSIST-IoT

architecture. Although specific tactile applications are a matter of design under the Application

and Service plane, there has been observed the need to introduce certain considerations in the

architecture for allowing such technologies (that have strong, explicit infrastructure and

performance requirements) to run under ASSIST-IoT structure.

o Transversal introduction of DLT throughout the architecture: Security, Privacy and Trust is a

defined vertical in ASSIST-IoT architecture. However, its influence as “operative, practical

consideration” reaches beyond the usual scope of delivering enablers. Software Architects of

ASSIST-IoT are already in discussions on how the different DLT-related mechanisms should

be tackled as structural inclusions (e.g., within each enabler components, as separated enablers,

leveraging a somehow centralised facility, relying on replication, etc.).

• Depict a mapping of requirements (set out in T3.4) to the different architecture properties, traits and

to different enablers (depending on the case).

• Inclusion of additional formal specifications to align the “architecture asset” with pre-normative

activities and procedures documentation. These specifications may include (among others) UML-based

diagrams of software engineering.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 54 of 63

9. Conclusion

This document presents the initial definition of ASSIST-IoT architecture, being the first of a series of three

iterations and hence to be further refined during the next versions. The architecture responds to the perspectives

and objectives identified for the Next Generation IoT and it is based on the expertise of the technical partners

of the project as well as on the initial requirements of the stakeholders involved. Although the main objective

of this document is setting the foundations of the ASSIST-IoT architecture, it also aims at providing insights

with respect to the technical outcomes to be produced later on in WP4, WP5 and WP6 (what will be actually

delivered, and under which principles).

After presenting a brief overview of the main concepts and architecture paradigms available in the market for

building systems, this document exposes (i) the main design principles, (ii) the conceptual architecture and (iii)

the methodology that guide the definition of the architecture. Conceptually, ASSIST-IoT architecture is a

multidimensional architecture which consists of horizontal layers called “Planes”, which represent collections

of functionalities that can be logically layered on top of one another, and “Verticals”, which represent cross-

cutting functions and properties of NGIoT that exist on different planes or require coordination among them.

Besides, the architecture introduces the abstract term “enabler”, which aims at delivering the functions promised

by ASSIST-IoT innovations and future capabilities within the different Planes and Verticals. In essence, an

enabler is a collection of software (and possibly hardware) components, running on one or different nodes, that

work together to deliver a specific functionality of a system.

Dedicated sections for the Verticals and for the Functional View of the Planes have been included, along with

the enablers expected to be delivered during the execution of the project. On the one hand, the 5 Verticals of

ASSIST-IoT comprise (i) Self-*, (ii) Interoperability, (iii) Security, Privacy and Trust, (iv) Scalability and (v)

Manageability. On the other hand, the Planes of ASSIST-IoT are (a) Device and Edge, (b) Smart Network and

Control, (c) Data Management, and (d) Application and Services. In order to address additional concerns of

stakeholders of a Next Generation IoT architecture, two additional Views have been included, namely “Node”

and “Deployment”, aiming at identifying those aspects related to the characteristics of nodes and devices, as

well as actual implementations of an ASSIST-IoT architecture.

It is important to remind that the goal of this document is to deliver a blueprint, thus presenting a set of

characteristics and functionalities that should be present in a Next Generation IoT system, but providing a degree

of freedom with respect to technological choices and deployment strategy. Lastly, highlighting that this is an

initial definition, meaning that further refinement is expected and hence the presented views, the functionalities

and enablers identified will potentially change, both in number and description, in the following versions.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 55 of 63

10. References

[1] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Softw., vol. 33, no. 1, pp. 112–

116, Jan. 2016.

[2] ISO/IEC/IEEE 42010, “ISO/IEC/IEEE 42010 - Systems and software engineering - Architecture description,”

2011, Online: https://www.iso.org/standard/50508.html.

[3] N. Rozanski and E. Woods, Software Systems Architecture: Working With Stakeholders Using Viewpoints and

Perspectives. Addison Wesley, 2011.

[4] M. W. Maier, D. Emery, and R. Hilliard, “Software architecture: Introducing IEEE standard 1471,” Computer

(Long. Beach. Calif)., vol. 34, no. 4, pp. 107–109, Apr. 2001.

[5] A. Sharma, M. Kumar, and S. Agarwal, “A Complete Survey on Software Architectural Styles and Patterns,” in

Procedia Computer Science, 2015, vol. 70, pp. 16–28.

[6] M. Richards, Software Architecture Patterns. O’Reilly Media, 2015.

[7] R. A. P. Rajan, “Serverless Architecture - A Revolution in Cloud Computing,” in 2018 10th International

Conference on Advanced Computing, ICoAC 2018, 2018, pp. 88–93.

[8] C. M. Mackenzie, F. Mccabe, P. F. Brown, P. Net, R. Metz, and A. Hamilton, “Reference Model for Service

Oriented Architecture 1.0,” 2006, Online: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-

rm.

[9] S. T. Alanazi, N. Abdullah, M. Anbar, and O. A. Al-Wesabi, “Evaluation Approaches of Service Oriented

Architecture (SOA) - A Survey,” in 2nd International Conference on Computer Applications and Information

Security, ICCAIS 2019, 2019.

[10] M. Richards, Microservices vs. Service-Oriented Architecture. O’Reilly Media, 2016.

[11] J. Prathap Irudayaraj and Mp. Research Scholar, “Comparative study on Cloud Software Architecture: Monolithic,

SOA,” J. Appl. Sci. Comput., vol. 6, pp. 2257–2261, May 2019.

[12] S. Newman, Monolith to Microservices. O’Reilly Media, 2019.

[13] T. Cerny, M. J. Donahoo, and J. Pechanec, “Disambiguation and comparison of SOA, microservices and self-

contained systems,” in Proceedings of the 2017 Research in Adaptive and Convergent Systems, RACS 2017, 2017,

vol. 2017-Janua, pp. 228–235.

[14] Z. Wu, S. Deng, and J. Wu, “Service-Oriented Architecture and Web Services,” in Service Computing, Elsevier,

2015, pp. 17–42.

[15] N. Ford, R. Parsons, and P. Kua, Building Evolutionary Architectures. O’Reilly Media, 2017.

[16] E. Berrio-Charry, J. Vergara-Vargas, and H. Umana-Acosta, “A Component-Based Evolution Model for Service-

Based Software Architectures,” in Proceedings of the IEEE International Conference on Software Engineering

and Service Sciences, ICSESS, 2020, vol. 2020-Octob, pp. 111–115.

[17] J. Ghofrani and D. Lübke, “Challenges of Microservices Architecture: A Survey on the State of the Practice,” in

10th Central European Workshop on Services and their Composition, 2018.

[18] E. Wolff, Microservices: Flexible Software Architecture. Addison-Wesley Professional, 2016.

[19] P. Di Francesco, I. Malavolta, and P. Lago, “Research on Architecting Microservices: Trends, Focus, and Potential

for Industrial Adoption,” in Proceedings - 2017 IEEE International Conference on Software Architecture, ICSA

2017, 2017, pp. 21–30.

[20] M. Richards and N. Ford, Fundamentals of Software Architecture. O’Reilly Media, 2020.

[21] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its granularity problem: A systematic

mapping study,” Softw. - Pract. Exp., vol. 50, no. 9, pp. 1651–1681, Sep. 2020.

[22] The European Comission’s science and knowledge service - Joint Research Centre, “Telework in the EU before

and after the COVID-19: where we were, where we head to,” 2020, Online:

https://ec.europa.eu/jrc/sites/jrcsh/files/jrc120945_policy_brief_-_covid_and_telework_final.pdf.

[23] 5G-PPP Software Network Working Group, “Cloud-Native and Verticals’ services,” 2019, Online: https://5g-

ppp.eu/5g-ppp-phase-3-projects.

[24] T. Goethals, F. De Turck, and B. Volckaert, “FLEDGE: Kubernetes Compatible Container Orchestration on Low-

Resource Edge Devices,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2020, vol. 11894 LNCS, pp. 174–189.

[25] CREATE-IoT Project, “D6.3. Assessment of convergence and interoperability in LSP platforms,” 2020.

[26] OpenFog Consortium, “OpenFog Reference Architecture for Fog Computing,” 2017, Online:

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 56 of 63

http://site.ieee.org/denver-com/files/2017/06/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf.

[27] ITU-T, “Y.2060: Overview of the Internet of things,” 2012, Online: https://www.itu.int/rec/T-REC-Y.2060-

201206-I.

[28] AIOTI WG03-loT Standardisation, “High Level Architecture (HLA) Release 4.0,” 2018, Online:

https://aioti.eu/wp-content/uploads/2018/06/AIOTI-HLA-R4.0.7.1-Final.pdf.

[29] ECC and AII, “Edge Computing Reference Architecture 2.0,” 2017, Online:

http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf.

[30] A. Willner and V. Gowtham, “Towards a Reference Architecture Model for Industrial Edge Computing,” Comput.

Sci., 2020.

[31] M. Bauer et al., “Final architectural reference model for the IoT,” 2013, Online:

https://www.researchgate.net/publication/272814818_Internet_of_Things_-_Architecture_IoT-

A_Deliverable_D15_-_Final_architectural_reference_model_for_the_IoT_v30.

[32] E. Rissanen, “eXtensible Access Control Markup Language (XACML) Version 3.0,” Jan. 2013, Online:

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[33] ETSI, “GS NFV-MAN 001 Network Functions Virtualisation (NFV); Management and Orchestration,” 2014,

Online: http://portal.etsi.org/chaircor/ETSI_support.asp.

[34] ETSI, “GS NFV-EVE 005 Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV

Architectural Framework,” 2015, Online: http://portal.etsi.org/tb/status/status.asp.

[35] L. Zhu et al., “SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study,” ACM Comput.

Surv., vol. 53, no. 6, Feb. 2021.

[36] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control: Survey, Taxonomy, and Challenges,” IEEE

Commun. Surv. Tutorials, vol. 20, no. 1, pp. 333–354, Jan. 2018.

[37] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area network (SD-WAN): architecture,

advances and opportunities,” in Proceedings - International Conference on Computer Communications and

Networks, ICCCN, 2019, vol. 2019-July.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 57 of 63

Appendix A - Glossary
This section contains the summary of important terminology used to describe the ASSIST-IoT architecture.

Table 11. Architectural terms

Term Description Examples

Plane Abstract concept that logically groups system

parts working in similar contexts and

environments. A plane corresponds to a

horizontal layer.

ASSIST-IoT defines 4 Planes:

• Application and Services

• Data Management

• Smart Network and Control

• Device and Edge

Transversal

(adjective)

Intersecting more than one plane, or involving

more than one plane.

Vertical

(noun)

A concept that groups together logically

connected features and functionalities of a

system, regardless of the plane on which they

may be implemented.

ASSIST-IoT defines 5 Verticals:

• Manageability

• Scalability

• Security, Privacy and Trust

• Interoperability

• Self-* (autonomy)

Vertical

capability and

feature

Every vertical involves capabilities. A

concretisation of a capability is called a feature.

Capabilities and features are further

subdivisions of the categories defined by

Verticals. Although, in principle, a feature is a

part of a capability, not every capability is

required to be subdivided into features.

Capabilities (and features) are abstractions that

are independent from Planes. The collections of

Planes on which features are delivered depends

on a given enabler.

Example capabilities and features:

• User management capability (Security, Privacy

and Trust vertical)

• Authentication and authorisation feature

• Self-healing capability (Self-* vertical)

• Auto-recovering, fault resistant communication

network

• Semantic interoperability capability

(Interoperability vertical)

• Semantic translation

• Compliance with standard data model

Functional

block

A logical part of a plane. It represents a

separable family of functionalities, that fit

directly into one plane.

• Semantics (Data Management plane)

• Self-contained networking (Smart Network and

Control plane)

Enabler A configurable and deployable collection of

software and/or hardware that enables a

specific set of features (or functionalities) of an

IoT system, and can be interfaced with. An

enabler should be separable from the rest of the

system, in which it is deployed (including other

enablers), but does not need to be independent.

It may require other enablers to deliver a

promised feature. Enablers can be unmanaged

(fully autonomous), semi-autonomous, or fully

managed.

Enablers must provide a system feature. A

computer vision ML algorithm is not an

enabler, but it may be a component of a security

enabler that employs face recognition.

• Secure storage enabler on the Data

Management plane (Security, Privacy and Trust

vertical) - provides a data storage interface for

the whole system. May require an authorisation

and authentication enabler to deliver security.

• Self-healing network enabler on the Smart

Network and Control plane (Self-* vertical) -

employs multiple network components that

autonomously try to recover any lost

connection, (e.g., find alternative network

routes, use different protocols etc).

• Resource scaling enabler on the Device and

Edge plane (Scalability and Self-* verticals) -

enables autonomous facilitation of scalable

number of hardware resources to best support

workloads without unnecessary resource usage.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 58 of 63

Enablers may require specific software or

hardware components to function (e.g., a

secure storage enabler may require a database

component).

Enablers should abstract their operations, so

that they may be viewed as coherently

delivering a specific functionality, without

unnecessary technical details.

In ASSIST-IoT the enabled features are

grouped into Verticals. An enabler is

transversal, if it involves components on more

than one plane.

• Resilient communication enabler on the Smart

network and Control, and Data Management

planes (Security, Self-* verticals) - provides

data and communication channel redundancy,

to automatically recover from data corruption.

• Core ontology semantic translation enabler on

the Applications and Services, and Data

Management plane (Interoperability vertical) -

provides a semantic annotation; semantic

repository; and translation services (that use a

“core ontology” translation model).

Enabler

component

A piece of software or hardware that is a part

of an enabler, and is required for an enabler to

function and deliver a feature. A component

may have a number of descriptive properties

(e.g., an instance of an ACID-compliant

database) and belong to a functional block (and

therefore also to a plane).

Enablers are, in principle, not enabler

components, but components may be reused

between enablers.

• A specific ML algorithm implementation

• A specific ML model

• An ontology

• A LoRa-enabled edge device

• An encryption algorithm

• An internet camera

• A computer vision software delivered as SaaS

• A database instance

• A user registry

Table 12. Autonomic computing terms

Term Description Examples

Self-* A property of a system that makes it

autonomous, i.e., capable of identifying

problems or tasks, and solving or carrying

them out on its own. Self-* systems may also

be semi-autonomous; in which case they

require some instructions or supervision. If a

system requires supervision of every step, or

complete instructions, it is not autonomous.

In ASSIST-IoT autonomic systems can

exhibit properties in the following categories:

self-healing, self-protection, self-awareness,

self-organisation, self-synchronisation, self-

configuration.

Delivery of specific self-* properties may

involve multiple self-* categories, or other

properties. In particular self-awareness and

context-awareness are often helpful or

required for other self-* properties.

Self-healing Self-healing systems are reliable, highly

available and dependable. This is achieved

through the ability to monitor and analyse

data about self to autonomously predict,

detect, prevent and heal faults.

It seems to be important to define

(non)functional requirements of self-healing

solution (where we can apply self-healing,

what to do in case of and how to measure the

self-healing ability).

• A network tool that uses redundant, parallel

channels, caching, and intelligent prediction

to ensure recovery of any network faults

outside of long-term full connectivity loss

(e.g., due to physical damage to all network

interfaces).

• An autonomous robot capable of returning to

upright position (almost) always (e.g., Boston

Dynamics “Spot”).

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 59 of 63

Self-protection A system is self-protecting, if it continuously

(actively or passively) maintains a safety

property and defends itself in the presence of

potential threats by applying privacy policies,

trust mechanisms, and threat detection to

secure itself and its data.

• A physical FDR device (flight data recorder)

that protects itself from data loss or physical

damage.

• A system, that uses an ML-powered semantic

data parser to redact any sensitive or protected

information from all outgoing

communication.

Self-awareness Context-awareness, where the context

pertains to the state of the autonomic system

itself. It involves the ability of a system to

interpret its state by monitoring and analysis

based on given domain knowledge.

• A physical robot that has information about its

position in space relative to any object in the

surrounding area.

• A ML training software that is aware of

different kinds of models, that it can train,

currently trained model, as well as purpose

and shape of training, verification and testing

data.

Self-organisation The collective ability of a system to maintain,

improve, or restore components in a

persistent way under appropriate conditions.

It is often characterised by the ability to

continuously perceive its own state and the

state of its environment (self- and context-

awareness) and react to certain events in

order to maintain a high degree of usefulness

without a human in the loop.

• A drone swarm capable to pick (provision)

and position specific machines to carry out a

given task (e.g., move a heavy object).

• A bit-torrent network that uses throttling and

spoiler isolation (shadow ban/ shadow

greylisting) to ensure fairness of resource

distribution.

Self-configuration The ability of a system to (re)configure its

parameters and resource assignments to

maintain the quality of performance metrics

based on requirements or to adapt to changing

conditions.

• A software container that automatically

deploys itself on any system and configures

itself to work within it (e.g., a virus).

• A music software that applies relevant

copyright laws based on location information.

Table 13. General terms

Term Description Examples

Artifact A catch-all term to describe any kind of non-living,

tangible or intangible element.

Artifacts are usually either parts of a bigger whole, or

outputs of some actions.

• An IoT device

• An architecture

• A diagram

• A song

Context-

awareness

A property of any system that has access to

information about the context, in which it operates.

Context-awareness is practically never full. The

degree of awareness varies and is usually limited to

information required to deliver some functionality

without compromising security. E.g., a web server

operates in a context of an operating system, but for

security reasons is not aware of every process in the

system, or system-wide resource usage.

• A physical robot that has information

about spatial position of any object in

the immediate surrounding area.

• A load balancer aware of resource

usage on managed nodes (e.g., naive

round-robin balancer is not context-

aware).

• Context awareness is broad term

used in FIWARE environments.

Tactile A property of any system, controller or HMI, which

makes its user able to interact with the physical world,

either directly by controlling physical actuators, or

indirectly, by changing the state of software through

the means of a physical controller. The interaction may

be two way: from the user to actuators (control), or

from the actuators to the user (feedback).

• Touch screen.

• Virtual glove with gesture transfer to

physical actuators.

• Haptic feedback controller.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 60 of 63

Tactile internet A communication network enabling low-latency

tactile applications.
• A network enabling real time virtual

building tour via wireless VR glasses

with head position and orientation

support.

• Wireless touch controller for vehicle

diagnostics in a specialised facility,

with real time AR glasses feedback.

Methodology A system of practices, techniques, procedures and

rules used by those who work in a discipline. Applying

different principles, themes, frameworks, processes

and standards to help provide structure to the way we

deliver projects. Methodology can be represented as:

documentation (guidelines, best practices), modelled

processes, templates. A methodology often defines

some design patterns.

• Methodology for requirements

gathering.

• Methodology for algorithm

adaptation to be executed on an edge

device.

• Steps methodology for delivering the

architecture jointly with other assets

of the project (e.g. requirements).

• Methodology for new enabler

development and deployment.

• “How to” style.

Design pattern General reusable recipe for solving a commonly

occurring problem.
• Publisher-subscriber communication

pattern.

• Purely functional programs.

• Relational data modelling.

• Interoperability patterns.

DevOps A set of practices that work to automate and integrate

the processes between software development and IT

teams, so that they can build, test, and release software

faster and more reliably.

• Providing CD/CI infrastructure.

• Versioning.

• Resources management.

DevSecOps An extension of DevOps, in which security decisions

are distributed among participating entities, and made

by those, that hold the highest level of context without

sacrificing safety.

DevSecOps aims to achieve security and privacy by

design. To this end security is an aspect at every level

of the design and development process and is not

delegated or encapsulated as a separate and

independent feature.

• DevSecOps pipeline: code review,

automatic security testing,

vulnerability scanning.

• The pipeline has to be linked with

DevOps.

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 61 of 63

Appendix B - Enabler template
B.1 - General information of the enabler

Enabler Name of the enabler (follow glossary guidelines to name it)

id Short unique identifier/acronym

Owner and support Lead and supporting beneficiaries

Description and main

functionalities

Functional description of the enabler (description paragraph and bullet points for

describing its functionalities)

Plane/s involved Horizontal plane or planes in which it acts

Vertical To specify to which vertical it belongs to (mostly for transversal enablers)

Relation with other

enablers
List of enablers (core or vertical) that interact with this one

Requirements mapping List of the IDs of the requirements addressed or considered

B.2 - Basic visual diagram
Including arrows of the enabler, with its components, and ids of internal (between its components) and external

interfaces.

B.3 - Enabler endpoints

The enabler should have a primary interface for communicating with other enablers or applications (its

components communicate through internal communication mechanisms). REST API is assumed for the

template, may be others.

Method URL
Payload (if

needed)
Description Response format

GET/POST/

PUT/DELETE
/{something}/…

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 62 of 63

B.4 - Description of its enabler components

For each component of the enabler:

Enabler component Name of the enabler component

id Short unique identifier

Rationale Necessity of the component in the enabler

Node type/s* Physical device in which it can be installed (edge node, smart IoT, gateway, cloud…)

Implementation

technologies
Technologies to implement it

HW Requirements Memory, storage and computation power needed

SW Requirements Execution environment and/or other project/third-party requirements

Deliverable D3.5 – ASSIST-IoT Architecture Definition – Initial

Version 1.0 – 30-APR-2021 - ASSIST-IoT© - Page 63 of 63

Appendix C - Node template
C.1 - General information of the node

Node Name of the node (e.g. Node1TL)

id Short unique identifier/acronym

Hostname Hostname of the node (virtual or phy.)

Type IoT Gateway, Cloud, Edge (selectable)

Operative System Auto-explanatory

MAC address Auto-explanatory

IP address Auto-explanatory

C.2 - Specific information of the HW, computing resources

and network capacities of the Node

Field Explanation

HW interfaces Network and communication interfaces (serial, ethernet, usb)…

CPU Auto-explanatory

GPU Auto-explanatory

Cores Auto-explanatory

HW model and year (only of application if it is a complete phy HW bare metal being used)

Storage capabilities Auto-explanatory

Acceleration capabilities Auto-explanatory

Southbound protocols

accepted (node to device)

Access Layer Protocols (e.g. Bluetooth, Serial, WiFi, LoraWAN)

Application Layer Protocols (e.g. MQTT, HTTP, CoAP)

East-West protocols

accepted (node to node)
(e.g. RESTful, HTTP/COAP, MQTT/AMQP/RTS…)

Can it be further

virtualised?
Yes/No

C.3 - Dynamic fields about status of the node

Field Explanation

System tier Spot in the Deployment View of the architecture in which this node currently is.

List of components being executed in this node

Id_component Component_name Technology Id_enabler Enabler Created

	Table of contents
	List of tables
	List of figures
	List of acronyms
	1. About this document
	1.1. Deliverable context
	1.2. The rationale behind the structure

	2. Reference Architecture Design Principles
	2.1. Concepts
	2.2. Architecture paradigms

	3. ASSIST-IoT Approach
	3.1. Design Principles
	3.2. ASSIST-IoT Conceptual Architecture
	3.2.1. Functional architecture

	3.3. Relation with other IoT-related RAs
	3.4. Enablers
	3.5. Methodology

	4. Vertical Capabilities
	4.1. Self-*
	4.2. Interoperability
	4.3. Security, Privacy and Trust
	4.4. Scalability
	4.5. Manageability

	5. Functional View
	5.1. Device and Edge Plane
	5.2. Smart network and Control Plane
	5.3. Data Management Plane
	5.4. Application and Services Plane

	6. Node View
	7. Deployment View
	8. Future Work
	9. Conclusion
	10. References
	Appendix A - Glossary
	Appendix B - Enabler template
	B.1 - General information of the enabler
	B.2 - Basic visual diagram
	B.3 - Enabler endpoints
	B.4 - Description of its enabler components

	Appendix C - Node template
	C.1 - General information of the node
	C.2 - Specific information of the HW, computing resources and network capacities of the Node
	C.3 - Dynamic fields about status of the node

