

Architecture for Scalable, Self-*, human-centric,

Intelligent, Secure, and Tactile next generation IoT

ASSIST-IoT Technical Report #5

DevSecOps Methodology for NG-IoT Ecosystem

Development Lifecycle – ASSIST-IoT perspective

Óscar López, Jordi Blasi, Mikel Uriarte, Ignacio Lacalle, Gonzalo Galiana,

Carlos E. Palau, Eduardo Garro, Maria Ganzha, Marcin Paprzycki,

Piotr Lewandowski, Katarzyna Wasielewska, Konstantinos Votis,

Georgios Stavropoulos, Iordanis Papoutsoglou

Journal of Computer Science and Cybernetics

https://vjs.ac.vn/index.php/jcc/index

This project has received funding from the European’s Union Horizon 2020 research

innovation programme under Grant Agreement No. 957258

https://vjs.ac.vn/index.php/jcc/index

DevSecOps Methodology for NG-IoT Ecosystem Development Lifecycle –
ASSIST-IoT perspective

Óscar López1, Jordi Blasi1, Mikel Uriarte1, Ignacio Lacalle2, Gonzalo Galiana2, Carlos E. Palau2,

Eduardo Garro3, Maria Ganzha4, Marcin Paprzycki4, Piotr Lewandowski4, Katarzyna Wasielewska4,

Konstantinos Votis5, Georgios Stavropoulos5, Iordanis Papoutsoglou5

1R&D Department, S21Sec, Zamudio (Spain);
olopez@s21sec.com, jblasi@s21sec.com, muriarte@s21sec.com

2Communications Department, Universitat Politècnica de València, Valencia (Spain);

iglaub@upv.es, gongafor@inf.upv.es, cpalau@dcom.upv.es

3R&D Department, Prodevelop, S.L., Valencia (Spain);

egarro@prodevelop.es

4Systems Research Institute Polish Academy of Sciences, Warsaw (Poland);
Maria.Ganzha@ibspan.waw.pl, paprzyck@ibspan.waw.pl, piotr.lewandowski@ibspan.waw.pl

5Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece;

kvotis@iti.gr, stavrop@iti.gr, ipapoutsoglou@iti.gr

Abstract. Current software projects require continuous integration during their whole lifetime. In this

context, different approaches regarding introduction of DevOps and DevSecOps strategies have been

proposed in the literature. While DevOps proposes an agile methodology for the development and

instantiation of software platforms with minimal impact in any kind of operations environment, this

contribution proposes the introduction of DevOps methodology for Next Generation IoT deployments.

Moreover, novelty of the proposed approach lies in leveraging DevSecOps in different stages and layers

of the architecture. In particular, the present work describes the different DevSecOps methodology

tasks, and how the security is included on pre-design activities such as planning, creation or adaptation,

the design and implementation, as well as on post-implementation activities such as detection, response.

Without proper consideration of security and privacy best practices identified in this article, the

continuous delivery of services using DevOps methodologies may create risks and introduce different

vulnerabilities for Next Generation IoT deployments.

Keywords. DevSecOps, Internet of Things, NG-IoT, software development lifecycle

1 INTRODUCTION

Over the last few years, the Internet of Things (IoT) has emerged as a promising technology paradigm

to be potentially applied to any type of Industrial environment. Benefits of its application might range

from enhanced productivity and quality, up to reduction of costs or more efficient use of resources.

Nevertheless, due to the increase of interconnected devices, the rise of IoT brings new challenges [1],

such as: (i) significant growth of volume of unstructured data sent by the IoT devices; (ii) high degree

of heterogeneity of this large volume of data leading to interoperability issues; (iii) scalability problems

caused by explosive growth of the number IoT devices; (iv) increased need for a near real-time reaction,

close to the places of data creation and/or data consumption, (v) and dependencies between applications

developed in technological silos for individual IoT deployments. Additionally, it should be observed

that traditional, centralised, IoT architectures lack the necessary capabilities to handle new requirements

for human-centric applications, decentralization, and moving intelligence to the far edge of the

mailto:olopez@s21sec.com
mailto:jblasi@s21sec.com
mailto:muriarte@s21sec.com
mailto:iglaub@upv.es
mailto:gongafor@inf.upv.es
mailto:egarro@prodevelop.es
mailto:Maria.Ganzha@ibspan.waw.pl
mailto:paprzyck@ibspan.waw.pl
mailto:piotr.lewandowski@ibspan.waw.pl
mailto:kvotis@iti.gr,%20stavrop@iti.gr,%20ipapoutsoglou@iti.gr

2

deployment. New trends include moving from the widespread use of cloud-based infrastructure models

- which are dominated by leading Internet companies - towards IoT edge, supporting mesh distributed

processing, low latency, fault tolerance and increased scalability, security, and privacy. Furthermore,

the Alliance of Internet of Things Innovation (AIOTI) [2], also foresees a change in the models of

managing and controlling the flow and transmission of data.

Those rapid advances in IoT ecosystems require more secure and private approaches in terms of

continuous integration and deployment. In particular, for the Next Generation IoT (NG-IoT) scenarios

[3], there is the demand of highly decentralised ecosystems that will need to be supported by security,

privacy, and trust enablers to ensure proper human protection. Furthermore, the human-centricity

approach that will characterise NG-IoT systems will require new ways of interacting with legacy IoT

ecosystems as well as with humans, posing a whole new set of security and privacy related challenges.

Overall, the security and privacy by design aspects will be crucial pillars to maintain trust in NG-IoT

technologies, and will need to be extended along the lifecycle of involved systems, by making use of

secure software developing practices and security operation.

The aim of this contribution is to outline how the DevSecOps methodology can be applied to NG-

IoT deployments in general, and within the ASSIST-IoT project [4] that aims to tackle the mentioned

challenges in particular. Fig.1 outlines (on meta-level) the multilevel approach architecture for ASSIST-

IoT, which is proposing a decentralized architecture for NG-IoT, combining the deployment of

components on the edge and even in the far edge.

Figure 1: ASSIST-IoT multilevel approach architecture [4].

Technical components of the architecture will rely on smart distributed software (and/or hardware)

components (namely enablers), providing self-managed and automated capabilities. Those provisions

will allow ASSIST-IoT-powered systems to respond with a more user-centric approaches to the

technology with a decentralized security and privacy by default. Here, ASSIST-IoT’s perspective will

be applied to provide the foundations for the proposed DevSecOps approach.

The rest of the paper is structured as follows: Section II presents the methodologies in software

development, and efforts in formulating requirements for IoT security. Afterwards, while Section III

provides an overview of the strategies of DevOps and DevSecOps in general, Section IV specifies the

different stages that constitute both methodologies and their application to NG-IoT deployments. Next,

Section V describes the approach that has been proposed for ASSIST-IoT, in terms of security controls

and DevSecOps tools to be used. Finally, section VI concludes the paper with the presentation of the

achievements and proposal of future work.

2 SOFTWARE DESIGN APPROACHES

 3

Software development is a complicated process that calls for cooperation between professionals

from multidisciplinary fields. For that reason, methodologies are conceived to establish the

fundamentals for the efficient management of such projects. Therefore, organizations have different

methodologies to choose from, based on their requirements and focal points.

As different methodologies exist in software development, Gitlab has documented use of each

methodology in a survey [5]. The most practiced methodologies are DevOps/ DevSecOps and Agile,

while methodologies like Kanban, Waterfall, and Lean are significantly lagging behind the most widely

adopted ones.

One of the earliest software development methodologies is the Waterfall, introduced by Dr Royce

[8]. As the methodology’s name implies, it is a linear sequential flow of the processes involved in

software development. Each phase commences only after the conclusion of the previous phase, which

results in having a working software late into the cycle. The methodology has reported drawbacks like

high cost and effort, along with late integration and testing [9].

Kanban is a methodology originating from the Japanese manufacturing sector, while its name

translates into a signboard [6]. Kanban was initially associated with software development by David J.

Anderson, in his work with smalls teams in Microsoft [7]. The methodologies’ beliefs are (i) work

visualization; (ii) limitation of the work in progress; (iii) explicitness of management policies; (iv)

adoption of scientific methods; and (v) continuous improvement.

The lean methodology sets principles for software development by applying the Toyota Product

Development System [10]. In brief, the lean principles to follow are the elimination of waste, quality

delivery, knowledge creation, fast delivery, respect for people, and continuous optimization.

Agile is one of the most practiced methodologies in software development. It incorporates multiple

frameworks, such as Scrum. The methodology was popularized by the publication of the Agile

manifesto [11]. The principles set in the manifesto focus on individuals and interactions, working

software, customer collaboration, and response to changes. Similarly, other works share the principles

[12], or define the term agility [13].

Despite the comparable popularity, DevOps differs from Agile methodology. The first one focuses

on pipeline optimization, while the latter is a project management strategy [14]. DevOps is a term that

is around for a bit over a decade, but a generally acknowledged definition of the approach is absent.

The most cited definition for DevOps, available in the literature, describes the methodology as “a

collaborative and multidisciplinary effort within an organization to automate continuous delivery of

new software versions, while guaranteeing their correctness and reliability” [15].

In the efforts to continuously improve the DevOps methodology, an extension emerged to cover also

issues related to security, leading to the so-called DevSecOps methodology. Security was traditionally

considered at the final stages of the DevOps pipeline. In contrast, DevSecOps is a conscious effort to

swift the security considerations towards the development pipeline, to address adequately and timely

any security considerations.

More precisely, in [16] DevSecOps is defined as DevOps embedded with security controls, aiming

to provide continuous security assurance in all stages of the workflow. Hence, a set of additional secure

rules to aid organizations to implant security deep in their DevOps development and operations

processes is composing the DevSecOps [17].

As the principles for software development are set by all the aforementioned methodologies, there

are efforts in defining security requirements in IoT deployments. The following statements are briefly

outlining these considerations, as stated in in IoT Security Compliance Framework [18]:

• IoT sensors in machines that provide data are assumed to be reliable.

• Workstations used to access collected data from machines are assumed to be reliable and

operative.

• Software on the servers deployed in the IoT service framework are reliable and continuously

4

updated.

• Servers and IoT services framework are reliable with data protection and privacy concerns, and

reliable applying appropriate security mechanisms at network level.

• Users of the software are authenticated and authorized, and the owner of the service provided

is considered as trusted.

Secure software and firmware updates are a technical measure for IoT, associated with authorization,

as described in ENISA Good practices for IoT [19]. They aim at mitigating different threats associated

with failures, malfunctions among other operational threats related to IoT devices. Software distribution

should be controlled in IoT environments, not only associated with Authorization but also on the

software update process. Overall, DevOps paradigm deals with the above statements related to software

distribution and secure operation.

3 DEVOPS AND DEVSECOPS IN IOT

The following section describes how DevOps and DevSecOps methodologies can be applied and

materialized in the deployment of NG-IoT ecosystems, considering the needs on permanent updates

that NG-IoT components will require, and also the need on collaboration and automation. DevOps and

DevSecOps methodologies have as main objective to facilitate continuous integration and continuous

delivery and deployment in a continuous cycle This approach as a continuous loop methodology will

enable the delivery of NG-IoT security ready applications and services.

3.1 DevOps in IoT

It has been noticed that IoT environments are usually dependent on smart networks and network

functions, built upon Infrastructure as a Code (IaC), and with strong software dependencies on the

deployment. Smart IoT devices need to manage efficiently the frequent software and firmware updates,

since there are several threats associated with software distribution that should be controlled in IoT

environments. In parallel, edge and cloud deployments need tools to support automation to implement

a workflow that can be automated, tested in a continuous workflow, reproducible and repeatable.

Security by design principle is one of the most relevant approaches to be considered for software

development and to perform a secure operation of the software in the deployment phase [20].

Following the systematic analysis of the literature carried out in [15], the conceptual framework of

DevOps is composed of a conceptual map outlining four categories: process which encompasses

business-related concepts, people which covers skills and concepts regarding the culture and

collaboration, delivery related to the Continuous Integration / Continuous Delivery-Deployment

(CI/CD) concept, and runtime that synthesizes concepts needed to guarantee the stability and reliability

of services in a continuous delivery environment. Consequently, DevOps methodology deals with the

statements related to software development, and software distribution in a project management.

Traditionally, DevOps [21] is the combination of best practices in software development and IT

operations, provided to shorten software development, or System Development Life Cycle (SDLC),

enabling continuous delivery without impacting quality [22]. In addition, DevSecOps methodology

introduces security by design among other principles to be applicable in the former DevOps

methodology.

The DevOps practices are organized as follows: Continuous Planning, Continuous Integration,

Continuous Delivery, Continuous Deployment, Continuous Operation and Continuous Feedback (see,

[16] and [26]):

 5

• Continuous Planning: In continuous planning, all the stages of workflow are taken into

consideration. It involves planning, execution, and monitoring of different activities of

development, testing, release, deployment, and operations phases. The tasks related to people,

process, and technologies, like management priorities, budget allocation, resource management

(allocation, education, collaboration, etc.), process enforcement (threat modelling, design review,

code reviews, access and privileges, change management, vulnerability and patch management,

etc.), environment setup, integration and infrastructure availability, communication, sharing,

governance, etc., are identified and planned for execution at relevant stages in the software

development workflow.

• Continuous Integration: DevOps aims at supporting collaboration among Development and

Operations teams. However, coordinating a software development team, where many developers

work simultaneously on a single codebase, may be an issue. A shared code repository is the most

natural solution to this problem. Continuous integration (CI) aligns with the Code and Build phases

of the DevOps pipelines. Generally, it refers to performing all of code tests, unit tests, and

integration tests at each stage. By merging smaller changes more regularly, the issues become

smaller and easier to manage, improving overall productivity.

• Continuous Delivery: Automates the process of deploying new builds into production. The goals

of Continuous Delivery (CD) are: (i) to perform automated testing on each new build in order to

verify that builds are ready for release into production; (ii) to manage the automatic provisioning

and configuration of deployment environments as well as stability, performance, security

compliance testing of these environments; and (iii) to deploy a new release into production, when

approved and manually triggered by the organisation. Continuous Delivery embraces the Test and

Release phases of the pipeline (described later in more detail), allowing organisations to manually

trigger the release of new builds as regularly as possible.

• Continuous Deployment: It is an advanced version of Continuous Delivery, where the manual step

of approving new releases into production is now automated. It involves the Test, Release, and

Deploy phases of the pipeline. In the Continuous Deployment model, each build that passes all the

checks and balances of the pipeline is automatically deployed into the production environment.

• Continuous Operation: Helps to monitor and to adapt changes of the stages of the workflow. The

objective of continuous operation is to ensure service continuity. It involves automated continuous

logging, scanning, monitoring, event correlation and analysing system and application events.

Continuous operation requires also continuous scanning for the vulnerabilities and anomalous

events. Infrastructure orchestration tools are used to scale according to the service demand and

enables continuous operation with an infrastructure prepared to respond to different failures of

services deployed.

• Continuous Feedback: Traditionally included in DevOps in the operation and monitor phase,

continuous feedback practices During operation and monitoring is important to get the relevant

feedback based on monitoring observation and performance data analytics.

3.2 From DevOps to DevSecOps

DevOps has been mainly centred on harmonizing the interplay of development and operations, with the

goal of institutionalizing CI/CD. However, as it can be seen in Fig. 2 [23], since security is not a priority

in DevOps processes, it only involves the security team in the latter stages of development.

6

Figure 2: DevOps workflow

Conversely, DevSecOps [24] considers and elevates security as a key element to be considered during

all stages of the workflow and is devoted to the fundamental principle of “shift-security left”. In other

words, it introduces security controls at early stages of the development cycle -also considering security

by design- while tackling security as early as the planning phase. The change is clear in the DevSecOps

workflow (see Fig. 3), that injects security into the traditional DevOps operations processes. In this

fashion, security is integrated along the continuous DevOps workflow, with specific security activities

involved in the earlier development processes, moving security to the left part of the workflow (without

losing the benefits or controls of classic DevOps approach).

Figure 3: DevSecOps workflow (shifting security left”)

DevSecOps principles are broadly covered in [25], and also agreed in [16], and can be captured

using the following key-phrases: “Shift-security left”, “Security by Design”, Culture, Automation,

Metrics, Security as Code, Infrastructure as Code, Compliance as Code, and Adaptative security. In that

sense, DevSecOps application in NG-IoT architectures has the potential to contribute reducing and

mitigating threats during software delivery in IoT deployments, while helping guarantee secure

operation by applying its most relevant principles such as: shift-security left, and security-by-design.

The main extensions of DevSecOps over the DevOps principles are summarised below:

• Continuous Testing: Testing controls run in parallel with other security controls in different stages

of the workflow. While traditional DevOps tests included functional and non-functional testing

techniques, DevSecOps introduces additional security testing techniques, like Software

Composition Analysis (SCA), Static Application Security Testing (SAST), Dynamic Application

Security Testing (DAST), Interactive Application Security Testing (IAST), and Runtime

Application Security Protection (RASP). These tests are applied at different stages of the

DevSecOps workflow using different tools. In this way they cover all stages of software

development process.

• Continuous Feedback: Additional to DevOps, DevSecOps also extends the continuous feedback

to other stages of the workflow, to obtain feedback from the Build and Test phase, in order to

include relevant security reports.

The security addons of DevSecOps to the rest of the DevOps principles cited before as Continuous

Integration, Continuous Delivery, Continuous Deployment and Continuous Operation are described in

the next section and summarized in the implementation of concrete security controls associated to each

of the stages of the workflow.

4 DEVSECOPS STAGES FOR NG-IOT

 7

Before analysing in-depth the proposed DevSecOps strategy for ASSIST-IoT, it is worth mentioning

how are usually those plans tackled in DevOps. The most frequently phases adopted in DevOps culture

are Plan, Code, Build, Test, Release, Deploy, Operate, and Monitor, and will also be assumed in

ASSIST-IoT.

4.1 Plan, Code and Build phases

The Plan stage covers everything that happens before the developers start writing code. In NG-IoT

environments, security requirements analysis needs to be deeply considered during the planning phase

in order to avoid late mistakes (incurring in inefficiencies and additional temporal and resource costs).

Therefore, DevSecOps perspective fits perfectly at this point, considering the proposal of “security by

design” and “shift-security left”. Software threat modelling approaches should also be applied, as a way

of understanding the risk that the developed software will face. A software threat modelling will identify

security threats that apply to NG-IoT software components and will study how to mitigate them during

the deployment phase. Use of threat modelling [27], Data Flow Diagrams (DFD) [28], and well-known

vulnerability frameworks like OWASP TOP 10 vulnerabilities [29], or MITRE ATT&CK [30], can

help to avoid the most common vulnerability issues, when developing and exposing APIs, or end-user

applications. These considerations on studying the way that software will be used before the coding

phase commences will build a late understanding of security use and misuse of the application1

supporting the development of abuse test use cases. It must bear in mind that the Plan stage will not be

fixed but dynamic, evolving during the lifecycle of the application. Thus, it must be designed flexible

enough to be adaptable to the deployment/integration environment.

During the Code (see Table 1) phase, the coding guidelines are checked and enforced through the

available plug-ins, for the Integrated Development Environment (IDE) used by the developers. Software

inventory management is something that will allow quality results, while security will have to be

implemented on the Source Code version control system.

Security Controls for Plan, Code and Build Phase

Security requirement analysis
Threat modelling

Adaptative security architecture and design
Adaptative security architecture and design
Security use, misuse, and abuse test cases
Code review and security guidelines check

Software inventory management
Source code version control security
Unit and integration security testing

Static application security testing (SAST)
Unit and integration security testing

Table 1: DevSecOps security controls for plan, code and build phase adapted from [16]

Additionally, peer reviews of code are also considered as best practices to reduce software

vulnerabilities. Functional testing would expect to be focused on the functional requirements of the

software. Unit, Integration, and other functional testing processes should be done also during the code

1 Note that when using the term “application”, authors aim at expressing any software artifact within an IoT

system worthwhile to be controlled under a DevSecOps methodology (a piece of software, SDN rules,

specifications, program configuration, etc.). This comment applies to all the manuscript.

8

phase. Finally, test driven development considers performing tests during the Plan and Code phase.

More concretely, unit testing will examine individual methods and functions, components and modules

used by the software. Unit tests are produced by the software developers who will write different test

cases to test the code. Integration testing verifies that different modules or services are working well

together and are more expensive due to require multiple parts of the application up and running. The

different type of tests mentioned will need to be integrated and automated into the continuous

integration process.

The Build phase starts with compiling the changed source code, while resolving all the

dependencies. Under the DevSecOps perspective, it is recommended to apply Static Composition

Analysis (SCA) as a process for identifying the use of third party and open-source software components.

Additionally, Static Application Security Testing (SAST) will analyse source code to find security

related vulnerabilities.

4.2 Test, and Release phases

The Test stage consists in the integration of application software components and hardware

infrastructure into a single system. In the case of edge devices, which is a key aspect in the NG-IoT

scenarios, integration should be carefully tested, considering associated technologies, e.g., a container

scanning analysis if the application is packaged in a container, and the IaC analysis used for the

integration and automation. Besides, system integration security tests need to be conducted (see Table

2) at this stage, such as Fuzzy testing, which has a similar approach to Dynamic Application Security

Testing (DAST), and it is black box oriented with no access to the software code. Furthermore,

penetration testing needs to be considered, along with security smoke testing, and security patching.

Going beyond, Interactive Application Security Testing (IAST), which will also be performed at this

stage, follows the same line as the previous by introducing an instrumented app environment. Once the

software is ready to be deployed to production, the final system should be tested to check that it is valid.

This should include a wide range of tests, such as load tests, stress tests and usability tests. In terms of

security, monkey testing deals with applying a series of random interactions with the application, and

finally providing new validation status.

Security Controls for Test and Release Phase

Source code version control security
Unit and integration security testing

Container and Infrastructure as Code (IaC) analysis
Artifact Repository Security Management

Software composition analysis (SCA)
Static application security testing (SAST)

Dynamic application security testing (DAST)
Fuzzy testing

Interactive application security testing (IAST)
Run-time application self-protection
Continuous vulnerability scanning

Security patch application

Security smoke testing

Table 2: DevSecOps security controls for test and release phase adapted from [16]

Afterwards, the application is packaged and stored in an artifact repository, in order to be delivered and

 9

accepted later at the release stage. Therefore, in DevSecOps methodology, an artifact repository security

management should be also considered. In this sense, the introduction of Runtime Application Self-

Protection (RASP) technologies can be also placed to improve security whenever the used framework

supports it. This technology, combined with traditional perimetral protection, will enhance the

application protection by: (i) monitoring the inputs received, (ii) considering the contextual

environment, and (iii) protecting them from those that may result in a threat to the application and the

environment.

Finally, as code is progressing from different environments, and credentials, or keys, vary from

one to another, a proper “secrets management” strategy and tool should be included to guarantee the

software code does not reveal credentials or secrets.

4.3 Deployment, and Configure phases

DevSecOps methodologies will use different environments when implementing the pipeline, typical

environments examples could be development, staging, preproduction, and production. The most

important reason to have different environments is the performance of different tests and the validation

acceptance. The Deployment and, later, Configure phases (see Table 3) should be done in the staging

environment, which is a replica of the production environment, where the application is configured with

necessary configuration data, for acceptance testing. At Configure stage, each code change has passed

a series of manual and automated tests, and the operations team can be confident that breaking issues

and regressions are unlikely. All builds arriving at this point would have passed a SAST, DAST and

usual controls and tests, and the artifacts will be preferably signed and ready in the shared repository of

the project/organisation, but still at the “staged repository”, waiting for final validation and release to a

production-close environment/repository.

Security Controls for Deployment and Configure Phase

User acceptance and security testing
Artifact repository security management

Penetration testing
Software composition analysis (SCA)

Static application security testing (SAST)
Dynamic application security testing (DAST)

Fuzzy testing
Interactive application security testing (IAST)

Run-time application self-protection
Continuous vulnerability scanning

Security patch application
Security smoke testing

Secrets management

Infrastructure provisioning and orchestration

Infrastructure hardening and security testing

Container and infrastructure security testing

Table 3: DevSecOps security controls for deployment and configure phase adapted from [16]

10

4.4 Operation, and Monitoring phases

During the Operation phase, the developed software will be deployed in a production environment. To

provide a reliable environment, the infrastructure, being host-based or container-based, should go

through a hardening process and one more round of security operation. Therefore, in order to ensure a

proper Operation execution, it is required to follow a formal DevSecOps methodology to be security

compliant.

At the Monitor phase, different practices for continuous monitoring with logging, analysis,

visualization, and notification tools need to be considered. Continuous Monitoring and Security

Information and Event Management along with penetration testing, DAST, IAST, fuzzy testing,

continuous vulnerability scanning already introduced before. Later and advanced DevSecOps activities

include external security Red Team & internal security Blue Team activities as an effective way to test

that the system implemented, presents detection and response capabilities in production. Adequate

monitoring concludes with incident management, main objective of which is to give a proper treatment

to every detected abnormality. This should include a detection and response process as well as metric

analysis.

Security Controls for Operation and Monitoring Phase

Application and system logging
Continuous monitoring and alerting

Intrusion prevention detection and response
Security incident management

Security metric measurement and analysis
Security audit and compliance

Penetration testing
Dynamic application security testing (DAST)

Fuzzy testing
Interactive application security testing (IAST)

Run-time application self-protection
Continuous vulnerability scanning

Security smoke testing

Infrastructure hardening and security testing

Container and infrastructure security testing

Red, Blue and Purple Team testing

Monkey testing

Table 4: DevSecOps security controls for operation and monitor phase adapted from [16]

5 ASSIST-IOT DEVSECOPS APPROACH AND ESSENTIAL TOOLS

Collaborative work is a centrepiece of NG-IoT architectures design and deployment. The short

concept-to-market and development-to-production times, altogether with strong software dependencies

between different components of the architecture, force NG-IoT teams to work in a distributed

environment. ASSIST-IoT project proposes a DevSecOps methodology for NG-IoT based on two

fundamental pillars [16]:

• Applying practices and principles embedded with security controls.

• Selection of open-source tools that will perform target activities for each of the DevSecOps

practices.

In the following paragraphs, an overview of the selected DevSecOps practices specified for ASSIST-

IoT’s strategy is outlined:

 11

1. During the implementation of DevSecOps methodology in any scenario - and particularly in

the case of NG-IoT- the actual “staging” environments are as follows: 1) Integration and test

environment, 2) Preproduction environment and 3) Production environment.

2. Some of the expected tasks, for each of the software components developed and integrated into

the CI/CD pipeline, are likely to be the following:

i. Use and refine use cases in CI/CD pipeline using a sequence of steps or jobs normally

described in a YAML file for describing the pipeline in GitLab or CircleCI or in a

Jenkins file that will describe pipeline steps.

ii. Provision a test environment.

iii. Perform a check out of the code using SAST scan

iv. Configure dependencies needed to test environment

v. Execute test cases created by the code developers

vi. Create an environment to provide continuous delivery/continuous deployment using

appropriate automation tools for testing with DAST; and, finally

vii. Build artifacts in different forms (i.e., as containers or other software packages)

containing the software or application developed to further deploy to staging,

preproduction and production.

3. Associated and related to the pipeline steps described, and considering DevSecOps

methodology, there are some essential features that need to be covered with the appropriate

tools (to address the following needs):

• IDE tools that facilitate the first building and debugging of code and the integration with
SAST tools. As already mentioned and crucial for the paradigm shift-security left, it is very
important that developers could detect security errors in the code they are developing in the
Code phase and even previous the first commit to the repository. This test could be done
integrating security tools like SAST into the IDE environment. As a reference tool for IDE,
it is worth mentioning among others Visual Studio Code [31] as the code editor for writing,
building, and debugging web and cloud applications. It has the added advantage of tight
integration with a broad range of cloud service providers (e.g., AWS, MS Azure, etc.), and
works with a vast ecosystem of extensions, with the choice to include SAST scan tools like
Shift-Left SAST [32] that includes features such as an integrated multi-scanner based design,
to scan and detect various kinds of security flaws.

• Version control is a crucial method of tracking and managing changes to code that must be
followed in all cases. Version control allows developers to see the complete revision history
of a project and revert to a former version or file if needed. Git [33], the most utilised
technology, is a free distributed Version Control System (VCS) that utilizes branching and
merging. Moreover, as already mentioned, one of the DevSecOps principles is the
development in a collaborative environment, where developers make daily/regular updates on
the main branch, including changes completed by the rest of the team. Branching and merging
code are main Git features that stand out from other software code management tools, and it
is known as branching model. Git is a widely used tool as it is admittedly used by almost 85%
of respondents in the Gitlab’s report [5]. There are also different Git implementation
alternatives, but all of them require a hosting service for the software repositories, that can be
done on premises, using internal servers, or using external cloud deployments, depending on
the strategy that better suits the deployment requirements. GitHub [35] is a software code
management tool platform where hundreds of millions of private, public, and open-source
repositories are hosted and reviewed. GitLab [34] is another alternative broadly extended as
the most-used hosting service.

• As a general guideline for NG-IoT software deployments which are following a DevSecOps
methodology, they will consequently need to implement CI/CD processes, with their
associated CI/CD tools. In particular, to implement pipelines to Build, Test and Deploy

12

facilitating continuous integration and continuous delivery. GitHub or GitLab include
different alternatives to implement CI/CD pipelines. More in detail, GitHub is increasingly
expanding its offerings to align with more and more processes in the DevOps workflow
implementing CI/CD features using GitHub actions [38]. GitLab was one of the first hosting
services to fully embrace DevOps and has since been on a mission to create a complete
DevOps platform. GitLab provides everything to manage, plan, create, verify, package,
release, configure, monitor, and secure your applications. Nevertheless, there are more
alternatives that can make use of other specific tools like CircleCI [36], or Jenkins [37], which
will cover the automation feature to implementing CI and CD pipelines.

• Adequate tools for packaging, taking into consideration the business needs for each
environment and using a package registry to facilitate the software deployment. GitLab and
GitHub also offers several package registry solutions that will enable the uses for a variety of
packet registries for Docker and other package distributions and common package managers,
enabling publishing and sharing packages. Further work will also concentrate on the way to
continuous delivery and continuously automate deployments based on solutions to orchestrate
container environments (i.e., as mentioned approach for packaging applications inside
containers) deployed on the edge. As the most predominant technology in the field of
container orchestration is Kubernetes (K8s) [40], a paramount step that must be done in
ASSIST-IoT is to align the overall DevSecOps approach with the different K8s variants and
flavours. This will be specially taken into consideration when aiming at generalizing the
methodology for a “generic” edge-cloud deployment as NG-IoT architectures will require (as
is the case of ASSIST-IoT).

• SAST tools for analysing known vulnerabilities on the code managed. They are preferable to

be integrated into the source code version management repository, as already mentioned, and

built and designed for DevSecOps workflow integration shifting security to the left and to be

able to detect security code vulnerabilities at every stage of the process. As detailed on Fig. 4

SAST scan [39] can be integrated into GitLab CI/CD pipeline, implementing security policies

that will break the Build phase when developer commit the code into the git repository if

parameters configured in the security policy are not fulfilled. The results are presented with a

score on critical, high, medium and low level, associated to each test performed, inside a

GitLab job. Apart from source code analysis to find security and code style issues, SAST

analysis can include the following characteristics: credential scanning to detect accidental

secret leaks, audit of open-source dependencies for known common vulnerability and

exposures (CVEs), checking of license violation, and container image scanning for application

CVE. SAST tools have also good performance in finding keys and certificates uploaded to git

repositories. Also being able to detect the use of versions of libraries with security issues, and

security threats related with the source code (e.g., with the taint checking). It also can detect

data used in the software application that is exported directly to log files.

• DAST tools for analysing the software, looking for security vulnerabilities on runtime will be

also used in ASSIST-IoT DevSecOps processes, so that the software can be tested from the

outside. DAST analysis evolves checking not only Application server security configuration,

but also testing the web Application Programming Interface (API), or endpoints to ensure that

the security of the application cannot be compromised by a malicious use of the API, using

parameters out of the API specification. DAST tools, can detect failures with the SSL

connection, due to issues with certificates or HTTP server configuration, and also miss

configuration of the HTTP server, for example containing multiple index files.

 13

6 CONCLUSIONS AND FUTURE WORK

This work has explored possibilities to manage Next Generation IoT CI/CD operations, development,

and security, and has outlined some approaches towards increasing process control, while using

DevSecOps, without losing the agility and benefits that DevOps offers. It has also reflected on how

DevSecOps practices can be exploited in managing independently addressed verticals. Traditionally,

DevOps and DevSecOps strategies have been applied to the development of different services, while

this work provides strategies on how to apply them across forthcoming NG-IoT architectures.

Applying DevSecOps methodology (and selection of controls) along with use case implementation

guidelines should be able to reduce and mitigate threats to software delivery and operation of NG-IoT

environments. The analysis has provided a comprehensive overview of steps that can be applied in

DevSecOps, in the context of NG-IoT. In the discussion, the approach championed by the ASSIST-IoT

project provides the real-world anchor. The validation results of this study will take place and are

expected to prove the most relevant DevSecOps practices in this area, and result in a conceptual model

of NG-IoT components development and deployment following DevSecOps practices.

As future work, further steps in applying DevSecOps practices to NG-IoT environments in general,

and to ASSIST-IoT in particular, will include the coordination and definition of the continuous delivery

and automated deployments, and later implementing, monitoring, and observability methods and tools

over the NG-IoT deployments. Finally, the validation of the methodology and strategy in verticals

related to the automotive industry, transportation and logistics and safety at work is planned.

ACKNOWLEDGMENT

This work has been partially funded by H2020 project ASSIST-IoT with EC contract number 957258.

REFERENCES

[1] Digitising European Industry. Nov 2017.

https://ec.europa.eu/futurium/en/system/files/ged/15_11_2017_digitising_european_industry_brochure_ec_final

_web3.pdf

[2] AIOTI Strategic Foresight Through Digital Leadership. IoT and Edge Computing Convergence. IoT Research

Working Group. AIOTI October 2020. https://aioti.eu/aioti-strategic-foresight-through-digital-leadership-iot-

and-edge-computing-convergence/

[3] Zhou, Zhi, et al. "Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing."

arXiv preprint (2019)

[4] ASSIST-IoT. https://assist-iot.eu/

[5] Gitlab. (). 2021 Global Survey results: A maturing DevSecOps landscape. https://about.gitlab.com/developer-

survey/

[6] Ahmad, M. O., Markkula, J., & Oivo, M. (2013, September). Kanban in software development: A systematic

literature review. In 2013 39th Euromicro conference on software engineering and advanced applications (pp. 9-

16). IEEE.

[7] Kirovska, N., & Koceski, S. (2015). Usage of Kanban methodology at software development teams. Journal

of applied economics and business, 3(3), 25-34.

https://about.gitlab.com/developer-survey/
https://about.gitlab.com/developer-survey/

14

[8] Royce, W. W. (1987, March). Managing the development of large software systems: concepts and techniques.

In Proceedings of the 9th international conference on Software Engineering (pp. 328-338).

[9] Petersen, K., Wohlin, C., & Baca, D. (2009, June). The waterfall model in large-scale development. In

International Conference on Product-Focused Software Process Improvement (pp. 386-400). Springer, Berlin,

Heidelberg.

[10] Poppendieck, M. (2007, May). Lean software development. In 29th International Conference on Software

Engineering (ICSE'07 Companion) (pp. 165-166). IEEE.

[11] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., ... & Thomas, D.

(2001). Manifesto for agile software development.

[12] Williams, L., & Cockburn, A. (2003). Agile software development: it’s about feedback and change. IEEE

computer, 36(6), 39-43.

[13] Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development, and extreme

programming: the state of research. Journal of Database Management (JDM), 16(4), 88-100.

[14] Mohammad, S. M. (2017). DevOps automation and Agile methodology. International Journal of Creative

Research Thoughts (IJCRT), ISSN, 2320-2882.

[15] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, “A survey of DevOps concepts and challenges”, ACM

Computing Surveys, Vol. 52, No. 6, Article 127. Nov. 2019

[16] Rakesh Kumar, Rinkaj Goyal, July 2020 “Modeling continuous security: A conceptual model for automated

DevSecOps using open-source software over cloud ADOC”

[17] V. Mohan and L. B. Othmane, “Secdevops: Is it a marketing buzzword?-mapping research on security in

devops,” in 2016 11th International Conference on Availability, Reliability and Security (ARES). IEEE, 2016,

pp. 542–547.

[18] IoT Security Compliance Framework. Release 2.1 May 2020. https://www.iotsecurityfoundation.org/best-

practice-guidelines/

[19] ENISA Security Measures. Good practices for IoT and Smart Infrastructures Tool.

https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot/good-practices-for-iot-and-smart-

infrastructures-tool/results#IoT

[20] How to implement security by design for IoT. https://www.enisa.europa.eu/news/enisa-news/how-to-

implement-security-by-design-for-iot

[21] Banica, L., Polychronidou, P., Radulescu, M., Stefan, C., 2018. When IoT meets devops: fostering business

opportunities. KnE Soc. Sci. 3 (10), 250–264.

[22] M. A. López-Peña, J. Díaz, J. E. Pérez and H. Humanes, "DevOps for IoT Systems: Fast and Continuous

Monitoring Feedback of System Availability," in IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10695-

10707, Oct. 2020, doi: 10.1109/JIOT.2020.3012763

[23] The Eight Phases of a DevOps Pipeline. https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-

fda53ec9bba

[24] J. Bird, “Devopssec: Securing software through continuous delivery,” 2016

 15

[25] Appdynamics, 2015. Keep calm and embrace devops. https://kapost-files-

prod.s3.amazonaws.com/published/555271a4c12539dc18000118/ebook-keep-calm-and-embrace-devops.pdf

[26] AWS, 2019. What is devops? https://aws.amazon.com/devops/what- is- devops/

[27] OWASP Threat Model Cookbook. https://owasp.org/www-project-threat-model-cookbook/

[28] A Pythonic framework for threat modelling https://github.com/izar/pytm

[29] OWASP TOP 10 https://owasp.org/www-project-top-ten/

[30] MITRE ATT&CK® https://attack.mitre.org/

[31] Visual Studio Code https://code.visualstudio.com/

[32] Shift-Left SAST scan https://github.com/ShiftLeftSecurity/sast-scan

[33] Git Software Code Management https://git-scm.com/about

[34] GitLab https://about.gitlab.com/stages-devops-lifecycle/

[35] GitHub https://docs.github.com/en/github

[36] CircleCI https://circleci.com/product/

[37] Jenkins https://www.jenkins.io/

[38] GitHub Actions https://docs.github.com/en/actions

[39] SAST-scan https://github.com/ShiftLeftSecurity/sast-scan

[40] Kubernetes Overview. https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

https://github.com/ShiftLeftSecurity/sast-scan

