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Abstract. Development of next generation Internet of Things ecosys-
tems will require bringing in (semi-)autonomic behaviors. While the re-
search on autonomic systems has a long tradition, the question arises,
are there any “off-the-shelf” tools that can be used directly to implement
autonomic solutions/components for IoT deployments. The objective of
this contribution is to compare real-world-based, autonomy-related re-
quirements derived from ASSIST-IoT project pilots with existing tools.

Keywords: Internet of Things · Autonomic systems · Self-* mecha-
nisms.

1 Introduction

The idea of autonomic systems can be traced back to early works in the dis-
cipline known as cybernetics [1]. However, the modern understanding of the
concept arose from seminal work performed by IBM, within the scope of the
autonomic computing initiative (ACI) [2]. Here, (and in later work [3]) IBM
proposed four categories of, so called, “Self-*” properties, which were to capture
main aspects for development of autonomic systems: (1) Self-configuration: auto-
matic component configuration; (2) Self-healing : automatic fault discovery and
correction; (3) Self-optimization: automatic resource monitoring and control to
ensure optimal performance in accordance with specified requirements; (4) Self-
protection: diligent detection and protection from random attacks. Later, seven
Self-* properties have been proposed [4, 5]. Let us leave aside the number and
scope of Self-* properties and come back to them later.

To realize the Self-* mechanisms, the MAPE-K (Monitor, Analyze, Plan,
Execute, Knowledge) loop was proposed [3]. In the MAPE-K autonomic loop
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sensors gather data about the managed element, while actuators make modifi-
cations to it. Specifically, a manager tracks the state of an element and makes
adjustments using the data gathered by the sensors. As part of its development
work on the Autonomic Computing Toolkit, IBM created a prototype version of
the MAPE-K loop, called the Autonomic Management Engine.

Independently, recent years are characterized by rapid developments in the
area of the Internet of Things. Here, the main idea is to deploy sensors and
actuators, connected using heterogeneous networking infrastructures (wireless
and wired), to deliver novel services for the users. With the size of IoT ecosystem
deployments reaching thousands of elements, it becomes clear that it is not going
to be possible to “hand manage” them. In this context, recently, the European
Commission requested research in the area of Self-adaptive, Self-aware and semi-
autonomous IoT systems4. One of the projects that was funded as a result of
this call is ASSIST-IoT 5. This project is grounded in four pilots, and each one
of them has specific needs for Self-* mechanisms. This leads to the question: can
these needs be satisfied using existing solutions/tools? The aim of this work is
to answer this question.

In this context we proceed as follows. In Section 2 identified Self-* needs of
the ASSIST-IoT pilots are discussed. Next, in Section 3 we present known to us
tools that can be used in context of implementation of Self-* mechanisms. We
follow, in Section 4, with discussion on how the existing solutions address the
identified needs. Section 5, summarizes our findings.

2 Autonomic computing for the real-world IoT

Results of the ASSIST-IoT project will be validated in four pilots: (1) port
automation, (2) smart worker protection, and (3) cohesive vehicle monitoring
and diagnostics. The latter one is divided into sub-pilots dealing with (3a) car
engine monitoring, and (3b) car exterior monitoring. Let us now discuss which
Self-* mechanisms have been identified in each pilot, during the requirements
analysis phase of the project.

2.1 Port automation pilot

Owing to the high volume of TEUs (an inexact measure of cargo capacity that
is frequently employed by port authorities) handled and the growing number
of stopovers, the Malta Freeport Terminal (MFTL) is nearly at capacity, with
almost constant congestion in the terminal area and sporadic disruptions having
a significant effect on business operations. As a consequence, four main problems
can occur: (1) longer vessel dwell periods; (2) increased berthing-wait-time; (3)
vessels being moved to other terminals; and (4) increased wait and turn-around
times of land-side vehicles, all of which contribute to increased environmental
4 https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-
details/ict-56-2020

5 https://assist-iot.eu/



Implementing autonomic IoT ecosystems 3

load, transportation inefficiency, and cost of efficient movements. To deal with
the existing threats, using solutions provided by the ASSIST-IoT project, three
business scenarios have been identified: (1) asset monitoring in the terminal yard,
(2) automated container handling equipment cooperation, and (3) rubber-tired
gantry remote control, with augmented reality assistance. All of those scenar-
ios will need Self-* capabilities, that will work seamlessly in heterogeneous IoT
environment.

Scenarios (1), (2) and (3) will need Self-inspection (sometimes called Self-
awareness) to understand where particular assets are located and what is the
current state of those assets. Self-healing and Self-diagnosis will also be impactful
as they will allow to automatically detect issues, autonomously fix some of them
or call for human operator as a last resort. (1) will also require Self-configuration
capabilities so that new devices can easily connect and acquire required config-
uration (i.e. map of the port). (2) will additionally need Self-organization and
Self-adaptation to autonomously carry on container handling via organizing work
efficiently and by adapting to a changing port environment.

2.2 Smart safety of workers pilot

Construction companies and relevant administration agencies, such as the Euro-
pean Agency for Safety and Health at Work, place a high emphasis on compli-
ance with workplace safety and health standards and risk management at small
or large, private or public construction projects. A vast number of people with
varying degrees of knowledge and experience collaborate with each other, con-
trol equipment, and interface with heavy machinery on each building site, which
is occupied by many subcontracted firms. Their experience, best practises, and
risk management culture offer a layer of security for construction workers, but
it does not ensure that all accidents could be avoided. Accidents will happen in
a split second with no indications. Furthermore, unless appropriate monitoring
mechanisms are in place, a potentially life-saving immediate intervention to an
accident couldn’t be feasible.

ASSIST-IoT solution will enable this pilot to collect accurate and appropri-
ate data in order to produce intelligent insights for the protection of all people
involved at every work site within a vast construction site. Such data and ob-
servations, along with the clear implementation of data security policies, will
advance understanding and increase awareness about workplace safety, as well
as lead to the digital transformation of construction processes that retains the
employee at the leading edge. In this application area, the main goal of ASSIST-
IoT is to prevent and detect common Occupational Safety and Health (OSH)
hazards such as stress, exhaustion, overexposure to heat and ultraviolet rays,
slips, trips, falls from heights, suspension injuries, lack of mobility due to loss
of consciousness, collision with heavy equipment, entrapment and PPE misuse.
The success of implementing this pilot test-bed would result in two key out-
comes: better working conditions for thousands of workers and a clear return on
investment (ROI) for the facility. This pilot has been divided into four business
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scenarios, (1) occupation safety and health monitoring; (2) fall arrest monitoring;
(3) safe navigation; and (4) health and safety inspection support.

(1), (2), (3) and (4) will need Self-inspection to understand where particular
events are taking place or if (and where) someone is accessing dangerous zone.
Self-diagnosis is required so that whole system can autonomously detect any
potential issues. (1) and (3) will also need Self-configuration to automatically
connect upcoming devices and ensure that up-to-date configuration in dynamic
construction site environment is available; (3) will need Self-adaptation so that
in case of dynamically occurring risks, the safest route can be selected.

2.3 Cohesive vehicle monitoring and diagnostics pilot

Currently, ICT penetration in the automobile industry is just a fraction of what
it should be, and it is mostly dominated by car manufactures. Because of high
costs and bandwidth problems, communication between vehicle fleets and origi-
nal equipment manufacturers is also restricted. Due to safety and security con-
cerns, most IoT integration in vehicles programs struggle to incorporate data
from various sources (e.g. industry data, environmental data, data from inside
the car, historical vehicle maintenance data) and to obtain access to vehicle data.
Although real-time operation of a moving vehicle creates safety risks and there-
fore prohibits full unrestricted access to the information and control firmware,
there is no theoretical obstacle to trustworthy third parties having access to
onboard sensor measurements for diagnostics and monitoring. Furthermore, no
existing application or implementation incorporates and delivers automotive de-
tails to a customer in an immersive friendly atmosphere based on their position
and relationship with the vehicle, avoiding recalls.

The use of the ASSIST-IoT reference architecture in this pilot will improve
the automotive OEMs’ ability to track the pollution standards of vehicles that
are currently on the road in order to ensure that the fleet maintains certification
limits over its lifespans. Monitoring fleet pollution levels allows for the prompt
execution of corrective measures, if necessary, to return them to acceptable lev-
els. There are two independent sections of this pilot: (1) a Ford initiative and
(2) a TwoTronic initiative. The Ford initiative is divided into two business sce-
narios: (1) fleet in-service conformity verification; and (2) vehicle diagnostics;
while the TwoTronic initiative deals with vehicle exterior condition inspection
and documentation.

Scenarios (1) and (2) will need Self-learning to constantly improve their ca-
pabilities and Self-diagnosability to ensure that all components of the system
provide realistic measurements. We also assumed that Self-configuration will be
required to always be up-to-date with current requirements.

3 State-of-the-art in tools for autonomic computing

Let us now summarize the state-of-the-art in the area of tools that can be used
to implement Self-* mechanisms. Most important factor taken into account was
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their out-of-the-box Self-* capability. Moreover, tools were selected on having
publicly available (open source) code repositories that have recent updates in-
dicting that these tools are currently under active development. Another factor
was the potential to generalize particular tool to solve novel problems.

AMELIA: Analysable Models Inference In [9] authors report on tracking
IoT system trajectories, i.e. a series of latitude and longitude coordinate points
mapped with respect to time [10], in a complex spatial context. This is combined
with accessible space landmarks, to create graph-based spatial models. These
are, in turn, analysed by the MAPE-K loop’s Analyse feature, to search for goal
and requirement violations, during system runtime. The project is available as
a virtual environment, in which it can be run and the findings replicated as
published. The authors run the simulations6 using actual data sets derived from
Taxis (IoT devices) and used city’s landmarks as the graph’s nodes. The project
is primarily built on Python with MongoDB as it can resolve geo-spatial queries.
Shell scripts are used to interface between the project and the operating system.
If required, the project can be built and run locally with different parameters.

OCCI-compliant sensor management The Open Cloud Computing Inter-
face (OCCI) specifies an API for managing large and diverse cloud services that
is independent of the service provider. Various tools offer interfaces for identify-
ing, initiating, and implementing modifications to complex cloud environments.
The authors built an OCCI monitoring extension7 in JAVA that offered man-
aging the implementation and setup of monitoring sensors in the cloud [11].
In an OCCI-compliant runtime model, sensors and their monitoring results are
described. This extension transforms the OCCI runtime model into a knowl-
edge base that, when coupled with the other objects in the OCCI ecosystem,
facilitates full control loops for Self-adaptation into cloud systems. The authors
integrated the project with a real-world cloud infrastructure and included two
sample scenario implementations for other researchers using the test environ-
ment to validate the project outcomes. A Hadoop cluster was implemented and
dynamically scaled in both instances.

PiStarGODA-MDP: A Goal-Oriented Framework to Support Assur-
ances Provision A Self-adaptive system often works in a complex and partly
unknown context, which introduces uncertainty that must be addressed in order
for it to accomplish its objectives. Furthermore, several other types of uncer-
tainties exist, and the causes of these uncertainties are not consistently resolved
by current approaches in the Self Adaptive System (SAS) life cycle. This begets
the question of how can the goals of a system that is subject to continuous
uncertainties be guaranteed? Here, the authors proposed and implemented a
goal-oriented assurance method that allows monitoring sources of uncertainty
6 https://dsg.tuwien.ac.at/team/ctsigkanos/amelia/
7 https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.mocci
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that arise during the design phase, or during runtime execution of a system [12].
The SAS is designed with the goals in mind, and the Self-adaptation occurs
during the runtime. GORE (Goal-Oriented Specifications Engineering) is used
for separating technological and non-technical criteria into clearly specified goals
and justifications for how to accomplish them. These goal models are converted
into reliability and cost parametric formulae using symbolic model checking,
which are then used as runtime models to express the likelihood of SAS goals
being reached. Based on the principle of feedback control, the controller contin-
uously monitors the managed system’s costs and reliability statuses, as well as
contextual constraints, at runtime to address parameterized uncertainties. The
runtime models are then used to assess (i) system’s reliability and cost, and (ii)
policy measures that should be activated to accomplish the goals, influencing
SAS adaptation decisions. The authors evaluated their project’s8 approach us-
ing the Body Sensor Network (BSN) implemented in OpenDaVINCI9 and were
able to effectively provide guarantees for Self-adaptive systems’ goals. JavaScript
and Java were used in the project’s development. Heroku hosts the pistarGODA
modelling and analysis environment.

TRAPP: Traffic Reconfiguration through Adaptive Participatory Plan-
ning Traffic management is a difficult challenge from the standpoint of Self-
adaptation because it is hard to prepare ahead with all potential scenarios and
behaviours. Here, authors present a method for autonomous agents to collabo-
rate in the absence of a centralised data collection and arbitrator [13]. TRAPP
integrates the SUMO [14] and EPOS [15] frameworks. EPOS is a decentralised
combinatorial optimization approach for multi-agent networks, while SUMO is
a simulation environment for traffic dynamics. SUMO sends EPOS a list of
potential routes for each vehicle, and EPOS generates the designated plan for
each vehicle, which SUMO picks up and executes. The mechanism described
above occurs on a regular basis. Periodical adaptation cycles are operated by
the managing system, which, in accordance with the MAPE-K loop, monitor
data, evaluate it for traffic issues or anomalies, schedule subsequent activities
to adjust the way participatory preparation occurs, and eventually perform the
adaptation actions by configuring EPOS accordingly. The revised configuration
is used the next time EPOS is invoked. The authors run simulations10 by deploy-
ing 600 cars in the city of Eichstatt, which has 1131 roads. Python and Jupiter
notebook were used to create the project.

mRUBiS: Model-Based Architectural Self-Healing and Self-Optimiza-
tion Self-adaptive software is a restricted system that uses a feedback mecha-
nism to adjust to changes in the real world. This mechanism is implemented by
the adaptation engine, while the domain logic is realised by adaptable software

8 https://github.com/lesunb/pistarGODA-MDP
9 https://github.com/se-research/OpenDaVINCI

10 https://github.com/iliasger/TRAPP
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and controlled by the engine. The authors came to the conclusion that there is
no off-the-shelf product for designing, testing, and comparing model-based ar-
chitectural Self-adaptation and hence they developed mRUBIs [17]. It simulates
adaptable software and allows for “issues” to be injected into runtime models.
This helps developers to test and compare different adaptation engine variants
as well as validate the Self-adaptation and healing properties of the adaptation
engine. The authors developed a generic modelling language called “CompArch”
to interact with the project11, while the project itself has been implemented in
JAVA.

Lotus@Runtime: Tool for Runtime Monitoring and Verification of
Self-adaptive Systems Lotus@Runtime tracks execution traces provided by
a Self Adaptive System and annotates the probability of occurrence of each sys-
tem operation using a Labelled Transition System model [18]. In addition, the
probabilistic model is used at runtime to check adaptability properties. A warn-
ing function built into the tool notifies the Self-adaptive device if a property is
violated. These notifications are handled by ViolationHandler module that the
user implements during planning phase. The project12 is based over the existing
LoTuS13 project built in JAVA. The authors used Tele Assistance System (TAS)
and Travel Planner Application (TPA) [19] for validating the project14.

Intelligent Ensembles Autonomous components are deployed in a physical
world in smart cyber-physical systems (CPS) like smart cities, where they are
supposed to collaborate with each other and also with humans. They must be
capable of working together and adapt as a group to deal with unexpected cir-
cumstances. To address this problem, the authors applied Intelligent Ensembles.
They’re dynamic groups of components that are generated at runtime depending
on the components’ current state. Components are not capable of communicat-
ing with one another; rather, the ensemble is responsible for communication.
The Intelligent Ensembles framework uses a declarative language called “EDL”
for describing dynamic collaboration groups [20]. The project15 is built over the
Eclipse Modelling Framework and the Z3 SMT solver.

CrowdNav and RTX The authors look at the issue of a crowdsourced nav-
igation system (CrowdNav). It’s a city traffic control system that gathers data
from a variety of sources, such as cars and traffic signals, and then optimises traf-
fic guidance. The authors solve this problem by interpreting and adapting the
stream of data from the distributed system using Real-Time Experimentation

11 https://github.com/thomas-vogel/mRUBiS
12 https://github.com/davimonteiro/lotus-runtime
13 https://github.com/lotus-tool/lotus-tool
14 https://drops.dagstuhl.de/opus/volltexte/2017/7145/
15 https://drops.dagstuhl.de/opus/volltexte/2017/7144/
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(RTX) tool [21]. The project16 is written in Python, configures Kafka and Spark
and links them together. Its architecture is straightforward and restricted to the
most relevant input and output parameters, with Big Data analytics guiding
Self-adaptation based on a continuous stream of operational data from Crowd-
Nav. To help in the assessment of different Self-adaptation strategies for dynamic
large-scale distributed systems, the authors built a concrete model problem using
CrowdNav and SUMO in this exemplar [16, 14].

DeltaIoT: Self-Adaptive Internet of Things Wireless connectivity absorbs
the majority of energy in a standard IoT unit, so developing reliable IoT systems
is critical. Finding the correct network configurations, on the other hand, is dif-
ficult because IoT implementations are subject to a multitude of uncertainties,
such as traffic load fluctuations and connectivity interruption. Self-adaptation
enables hand-tuning or over-provisioning of network settings to be automated.A
feedback loop is installed on top of the network to track and measure the motes
and the environment, allowing the IoT system to adapt autonomously. The
DeltaIoT project17 consists of an offline simulator and a physical setup of 25
mobile nodes which can be remotely controlled for field testing. The IoT sys-
tem is installed on the KU Leuven Computer Science Department’s property.
DeltaIoT [22] is the very first Self-adaptation research project to have both a
simulator and a physical system for testing. DeltaIoT is used in Self-adaptation
studies. It allows researchers to test and compare emerging Self-adaptation ap-
proaches, techniques, and resources in the IoT. The WebService Engine is a user
interface for inspecting and controlling the Internet of Things system. A WSDL
file is used to describe this interface. Just one person may do Self-adaptation at
a time, hence accessibility to the web service is restricted.

TAS: Tele Assistance System TAS [23] was created with the help of the
Research Service Platform (ReSeP)18. ReSeP is built upon the Service-Oriented
Architecture (SOA) principles using JAVA. The tool is an example of a service-
based system (SBS). It gives preventive care to chronic patients in their own
homes. TAS makes use of sensors mounted in a wearable interface, and remote
services from healthcare, pharmacy, and emergency response providers. Periodic
samples of a patient’s critical parameters are taken and exchanged with a med-
ical service for study. The service may invoke a pharmacy service based on the
review to distribute new medication to the patient or to change and upgrade
the medication dose. Using ReSeP the authors defined two different adaptation
policies and validated it with TAS. The first policy was to retry twice in case of
service failure whereas the second policy selects an alternate service with similar
cost and invokes it. The experiment found that the first policy kept the costs
low but failed the reliability constraint while the second one passed successfully
albeit with high costs.
16 https://drops.dagstuhl.de/opus/volltexte/2017/7143/
17 https://people.cs.kuleuven.be/ danny.weyns/software/DeltaIoT/
18 https://github.com/davimonteiro/resep
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DEECo: Dependable Emergent Ensembles of Components The authors
conclude that developing complex Self-adaptive smart CPS is a difficult chal-
lenge that current software engineering models and methods can only partially
solve. The appropriate architecture of a smart CPS adopts a holistic view that
considers the overall system goals, operating models that include system and
climate uncertainties, and the communication models that are being used. To
answer these issues the authors used DEECo [25]. It’s a model and framework
for creating sophisticated smart CPS. It also provides precise information about
the consequences of adaptation techniques in complex smart CPS. The Java and
C++ are included with the DEECo component model [24]. The C++ architec-
ture is used for real-world deployment on embedded devices, like the STM32F4
MCU. Java i.e. JDEECo, on the other hand, is used for adaptation and au-
tonomous components simulation. JDEECo simulates implementations of hybrid
network environments, mixing IP networks and mobile/vehicle ad-hoc networks
(MANETS/VANETS), as seen in current smart-* systems, by using the OMNeT
extensions INET and MIXIM. The project19 was created specifically for the pur-
pose of developing and simulating dynamic Self-adaptive smart CPS. Authors
used a smart parking scenario to validate its usage.

Znn.com Rainbow [26] is a framework for designing a system with Self-adaptive,
run-time capabilities for monitoring, detecting, deciding, and acting on sys-
tem optimization opportunities. Znn.com is an N-tier-style web-based client-
server system. Rainbow uses the following guidelines to handle Znn.com’s Self-
adaptation at peak periods: (i) Changing the server pool size and (ii) switching
between textual and multimedia response [27]. The project20 has been built us-
ing several different languages such as PHP, Shell, Brainfuck, Awk, HTML and
Perl etc.

Dragonfly The authors [28] noted that when designing cyber-physical Systems,
we often encounter defiant systems that can evolve and collaborate to achieve
individual goals but struggle to achieve global goals when combined with other
individual systems. They suggest an integration strategy for converting these
defiant systems to also achieve the overall objectives. Dragonfly21 is a drone
simulator that allows users to simulate up to 400 drones at once. Simulations may
be performed in both regular and unusual conditions. The wrappers implement
the drones’ adaptive behavior and enable runtime adaptation. The simulator is
built using JAVA, AspectJ, HTML and Docker.

DARTSim Cyber-Physical systems make use of Self-adaptive capabilities to
autonomously manage uncertainties at the intersection of the cyber and phys-
ical worlds. Self-adaptation-based approaches face several challenges such as:
19 https://github.com/d3scomp/JDEECo
20 https://github.com/cmu-able/znn
21 https://github.com/DragonflyDrone/Dragonfly
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(i) sensing errors while monitoring environment, (ii) not being able to adapt
in time due to physical constraints etc, (iii) objectives that cannot be coupled
together in a single utility matrix such as providing good service vs avoiding
an accident. To evaluate and compare various Self-adaptation approaches aim-
ing to address these unique challenges of smart CPS, DARTSim was created in
2019 [29]. DARTSim is a simulation of an autonomous team of unmanned aerial
vehicles (UAVs) conducting a reconnaissance mission in a hostile and unfamiliar
area. The squad must follow a predetermined path and pace when attempting
to locate the targets. The lower it goes, the more likely it is to find targets, but
also the more likely it is to be killed by threats. The high-level Self-adaptation
decisions that the machine must make to achieve mission success are the sub-
ject of DARTSim. This sCPS has the “smartness” needed to conduct the task
autonomously thanks to the adaptation manager who makes these decisions.
When a mission detects at least half of the threats, it is considered effective.
The project22 outcome is available as a C++ library or via a TCP interface23.

4 Needs vs available tools – critical analysis

Existing tools/platforms vary in application and abstraction level. Their range of
capabilities varies from solving specific problem using specific type of IoT Device
(TRAPP) to a high-level generic ones that need non-trivial amount of additional
work to solve concrete tasks (e.g. OCCI-compliant, fully causal-connected run-
time models supporting sensor management). In this context, let us consider
existing tools and evaluate their potential to deliver Self-* mechanisms identi-
fied within the ASSIST-IoT pilots. In total, to satisfy all pilot requirements the
following Self-capabilities were identified: (1) Self-inspection (or Self-awareness),
(2) Self-diagnosis, (3) Self-healing, (4) Self-configuration, (5) Self-organization,
(6) Self-adaptation, and (7) Self-learning.

When considering available solutions, we verified whether their public source
code repositories were available and then focused on the fact whether the Self-
* capabilities were available out of the box or with minimal additional work
required. Following is a list of considered solutions with Self-* capabilities that
they support:

AMELIA (1) Self-inspection, (6) Self-adaptation, (7) Self-learning
OCCI (1) Self-inspection, (2) Self-diagnosis, (3) Self-healing, (6) Self-adapta-

tion, (7) Self-learning
PiStarGODA-MDP (1) Self-inspection, (6) Self-adaptation, (7) Self-learning
TRAPP (6) Self-adaptation, (7) Self-learning.
mRUBiS (1) Self-inspection, (2) Self-diagnosis, (3) Self-healing, (5) Self-orga-

nization, (6) Self-adaptation, (7) Self-learning

22 https://github.com/cps-sei/dartsim
23 https://hub.docker.com/r/gabrielmoreno/dartsim/
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Lotus@Runtime: (1) Self-inspection, (2) Self-diagnosis, (3) Self-healing, (6)
Self-adaptation

Intelligent Ensembles (6) Self-adaptation
CrowdNav and RTX (6) Self-adaptation, (7) Self-learning
DeltaIoT (1) Self-inspection, (2) Self-diagnosis, (5) Self-organization, (6) Self-

adaptation
TAS: (1) Self-inspection, (5) Self-organization, (6) Self-adaptation
DEECo (1) Self-inspection, (5) Self-organization, (6) Self-adaptation
Znn.com (1) Self-inspection, (6) Self-adaptation
Dragonfly (1) Self-inspection, (6) Self-adaptation
DARTSim (1) Self-inspection, (6) Self-adaptation

In summary, it is easy to observe that there is no available solution capable
of running heterogeneous Self-* IoT deployments that satisfies needs of all pilots
considered by ASSIST-IoT. Particularly, Self-configuration seems to be a missing
component. If no tool is able to provide common abstraction for detecting and
automatically connecting and configuring various devices that are present in an
IoT ecosystem it will be hard to imagine a widespread adoption of IoT-based
solutions. As a general note, most projects followed a very high-level approach to
Self-*, leaving implementation of components below MAPE-K loop (or analogous
solution) to the user. This is understandable, as most of them were not designed
with IoT deployments in mind, yet widespread adoption needs to be preceded
by developing a well-rounded solution that answers the common Self-* problems
on a more concrete level. There is a set of Self-* enabled tools that focus on
selected problems (for example TRAPP is specific to a car traffic management)
but they are very hard to generalize to conveniently handle as diverse scenarios
as worker safety, coordination between port machinery and detect defects in car
exhaustion system. Those expectations might sound very ambitious, yet this is a
general trend in Software Engineering, where Cloud-based solutions abstracted
away many of the hard problems to the point of few clicks in web-based UI. We
predict that the same is required in IoT based environments.

5 Concluding remarks

The aim of this work is to consider how existing autonomic computing solutions
match actual needs of Internet of Things deployments. Proceeding in this di-
rections we have, first, outlined requirements related to autonomic computing,
in 4 real-world pilots, grounding the work to be completed in the ASSIST-IoT
project. Second, we have summarized state-of-the-art of existing ready-to-use
tools that are claimed to support implementation of autonomic systems. Finally,
we have matched the two, and critically analysed the results.

Overall, we conclude that there is no solution available that can address all
challenges that have been identified in ASSIST-IoT, in the context of apply-
ing Self-* in considered business scenarios and use cases. The existing solutions
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would need to be adapted and combined to cover the set of required features.
Additionally, some of them would need to be verified for their adaptability and
performance in heterogeneous IoT ecosystems that are very ambitious target en-
vironment, for the technological solutions. We foresee that ASSIST-IoT will not
only give opportunity to verify a set of approaches proposed so far, in a real-life
deployments, but will also advance state-of-the-art in Self-* systems in terms of
providing Self-* capabilities for IoT-centric environments.
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